

Written by Tom Bell

Detecting USB Device Insertion and Removal Using Windows API

When I needed to know how to detect USB device insertion and removal, I was developing

an application for backing up USB devices. I had to research the methods using the

Microsoft Developer Network. The method described in this guide can be used whether

you're developing a Windowed application, or a Windows service. I will outline how to

detect the devices in a Windowed application and Windows service.

First of all we are going to look at how we would go about creating a user-mode

application to detect a hardware device change on the system, for example plugging in a

USB disk drive (this refers to USB hard disk drives, and USB thumb and flash drives),

plugging in an iPod, or any other USB device. You can also do things such as disabling the

device, but this is beyond the scope of this guide.

How Do I Detect a Hardware Device Change?

It is very easy to detect this change, because the operating system will send a

WM_DEVICECHANGE message to the application when a device change is detected. All we

need to do is handle this message in the window procedure of the application. When the

window procedure is called the parameters passed will be as follows.

Parameter Description
HWND hWnd Handle to the window
UINT uiMessage WM_DEVICECHANGE
WPARAM wParam Device-change event
LPARAM lParam Event-specific data

This means, hWnd will be the handle to our window, uiMessage will be the window

message WM_DEVICECHANGE, wParam will be the device-change event such as

DBT_DEVICEARRIVAL or DBT_DEVICEREMOVECOMPLETE, and finally lParam is a pointer to

the device broadcast header. Below is an example of how you could implement a handler

for WM_DEVICECHANGE in code section 1.0.

Code Section 1.0

__

LRESULT CALLBACK WindowProcedure(HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg)

 {

 case WM_DEVICECHANGE:

 {

 PDEV_BROADCAST_HDR pHdr = (PDEV_BROADCAST_HDR) lParam;

 switch (wParam)

 {

 case DBT_DEVICEARRIVAL:

 MessageBox(hWnd, "A device has been inserted.", "USB Notice", MB_OK);

 break;

 case DBT_DEVICEREMOVECOMPLETE:

 MessageBox(hWnd, "A device has been removed.", "USB Notice", MB_OK);

 break;

 }

 }

 break;

 default:

 return DefWindowProc(hWnd, uiMsg, wParam, lParam);

 break;

 }

 return 0;

}

__

This code will display a message box when a new device is inserted or removed from the

system, with an appropriate message. You can take it further by detecting the device type

which is stored in the dbch_devicetype member of the PDEV_BROADCAST_HEADER.

There are a couple of problems which you may encounter. The first is that the operating

system will only send the WM_DEVICECHANGE to applications with a top-level window.

The second is that the operating system will send the WM_DEVICECHANGE message on

port and volume changes only. This is not that much of a problem since you will know

when you mount and unmount an extra disk drive.

Fortunately for us, the Windows API provides a way for us to receive notification of other

types of device changes. You can use this method if you are running as a Windows

service, or don't have a top-level window. We can use the function

RegisterDeviceNotification(...) to be notified upon interface change. An example of

registering a device notification is shown below in code section 2.0.

Code Section 2.0

__

DEV_BROADCAST_DEVICEINTERFACE NotificationFilter;

HDEVNOTIFY hDeviceNotify = NULL;

static const GUID GuidDevInterfaceDisk =

{

 0x53f56307, 0xb6bf, 0x11d0, { 0x94, 0xf2, 0x00, 0xa0, 0xc9, 0x1e, 0xfb, 0x8b }

};

ZeroMemory(&NotificationFilter, sizeof(NotificationFilter));

NotificationFilter.dbcc_size = sizeof(DEV_BROADCADT_DEVICEINTERFACE);

NotificationFilter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;

NotificationFilter.dbcc_classguid = GuidDevInterfaceDisk;

hDeviceNotify = RegisterDeviceNotification(hWnd, &NotificationFilter

DEVICE_NOTIFY_WINDOW_HANDLE);

if (hDeviceNotify == NULL)

{

 // Handle the error...

}

__

Plug and Play (PnP) devices are typically associated with two different GUIDs, a device

interface GUID, and a device class GUID. A device class GUID defines a broad category of

devices. When you look in the Windows Device Manager, it is ordered by the type of

devices. Each of those devices is a device class and each of those classes is identified by a

device class GUID.

A device interface GUID specifies a particular input/output interface contract. Every

instance of the device interface GUID is expected to support the same basic set of

inputs/outputs. The device interface GUID is what the device driver will register and

enable or disabled based on the PnP state.

In the above code we just use the GUID for a disk device. Some of the common GUIDs for

device interface classes are listed below.

Device Interface Name Device Interface Class GUID
USB Raw Device {a5dcbf10-6530-11d2-901f-00c04fb951ed}
Disk Device {53f56307-b6bf-11d0-94f2-00a0c91efb8b}
Human Interface Device (HID) {4d1e55b2-f16f-11cf-88cb-001111000030}
Network Card {784126bf-4190-11d4-b5c2-00c04f687a67}
You can use a simple for loop to register multiple device notifications for each GUID. An

example is shown below in code section 3.0.

Code Section 3.0

__

DEV_BROADCAST_DEVICEINTERFACE NotificationFilter;

HDEVNOTIFY hDeviceNotify = NULL;

static const GUID GuidDevInterfaceList[] =

{

 { 0xa5dcbf10, 0x6530, 0x11d2, { 0x90, 0x1f, 0x00, 0xc0, 0x4f, 0xb9, 0x51, 0xed } },

 { 0x53f56307, 0xb6bf, 0x11d0, { 0x94, 0xf2, 0x00, 0xa0, 0xc9, 0x1e, 0xfb, 0x8b } },

 { 0x4d1e55b2, 0xf16f, 0x11Cf, { 0x88, 0xcb, 0x00, 0x11, 0x11, 0x00, 0x00, 0x30 } },

 { 0xad498944, 0x762f, 0x11d0, { 0x8d, 0xcb, 0x00, 0xc0, 0x4f, 0xc3, 0x35, 0x8c } }

};

ZeroMemory(&NotificationFilter, sizeof(NotificationFilter));

NotificationFilter.dbcc_size = sizeof(DEV_BROADCADT_DEVICEINTERFACE);

NotificationFilter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;

for (int i = 0; i < sizeof(GuidDevInterfaceList); i++)

{

 NotificationFilter.dbcc_classguid = GuidDevInterfaceList[i];

 hDeviceNotify = RegisterDeviceNotification(hWnd, &NotificationFilter

DEVICE_NOTIFY_WINDOW_HANDLE);

 if (hDeviceNotify == NULL)

 {

 // Handle the error...

 }

}

__

This will register a device notification for each of the device interface class GUIDs. Now

our application will receive the WM_DEVICECHANGE window message even if it is not a

top-level window.

If you are doing this as a Windows service, there are some significant changes you will

need to make to the above code. When you register a device notification you will need to

use the constant DEVICE_NOTIFY_SERVICE_HANDLE instead of

DEVICE_NOTIFY_WINDOW_HANDLE. Example code for registering a device notification for

a Windows service is shown below in code section 4.0.

Code Section 4.0

__

SERVICE_STATUS_HANDLE hServiceStatus = NULL;

hServiceStatus = RegisterServiceCtrlHandlerEx("ServiceName", (LPHANDLER_FUNCTION_EX)

HandlerProcedure, 0);

if (hServiceStatus == NULL)

{

 // Handle the error...

}

DEV_BROADCAST_DEVICEINTERFACE NotificationFilter;

HDEVNOTIFY hDeviceNotify = NULL;

static const GUID GuidDevInterfaceDisk =

{

 0x53f56307, 0xb6bf, 0x11d0, { 0x94, 0xf2, 0x00, 0xa0, 0xc9, 0x1e, 0xfb, 0x8b }

};

ZeroMemory(&NotificationFilter, sizeof(NotificationFilter));

NotificationFilter.dbcc_size = sizeof(DEV_BROADCADT_DEVICEINTERFACE);

NotificationFilter.dbcc_devicetype = DBT_DEVTYP_DEVICEINTERFACE;

NotificationFilter.dbcc_classguid = GuidDevInterfaceDisk;

hDeviceNotify = RegisterDeviceNotification(hServiceStatus, &NotificationFilter

DEVICE_NOTIFY_SERVICE_HANDLE);

if (hDeviceNotify == NULL)

{

 // Handle the error...

}

__

Now the message SERVICE_CONTROL_DEVICEEVENT will be sent the handler procedure

passed as a parameter to RegisterServiceCtrlHandlerEx(...). We need to handle the

service control message SERVICE_CONTROL_DEVICEEVENT, which is similar to

WM_DEVICECHANGEI. When the service control handler is called the parameters that will

be passed are as follows.

Parameter Description
DWORD dwOpcode SERVICE_CONTROL_DEVICEEVENT
DWORD evtype Device-change event
DWORD evdata Event-specific data
PVOID Context User-defined data

With these parameters in mind, we can handle the device change event. Handling the

event is similar to the method used in a windowed application. Except the parameters

have different names. Below is an example of how to handle the device change event in

code section 5.0.

Code Section 5.0

__

void WINAPI HandlerProcedure(DWORD dwOpcode, DWORD evtype, PVOID evdata, PVOID

Context)

{

 switch (dwOpcode)

 {

 case SERVICE_CONTROL_DEVICEEVENT:

 switch (evtype)

 {

 case DBT_DEVICEARRIVAL:

 // Handle device arrival here...

 break;

 case DBT_DEVICEREMOVECOMPLETE:

 // Handle device removal here...

 break;

 }

 break;

 }

}

__

You can handle the different device-events accordingly. Now you should understand the

basics of detecting whether a USB device has been inserted or removed. As an extra last

minute tip, if the device plugged in is a volume, you can get the drive letter of the volume

which has been inserted or removed. You can find this in the dbcv_unitmask of a

PDEV_BROADCAST_VOLUME structure. Example code for this is shown below in code

section 6.0.

Code Section 6.0

__

char GetDriveLetter(unsigned long ulUnitMask)

{

 for (char c = 0; c < 26; c++)

 {

 if (ulUnitMask & 0x01)

 {

 break;

 }

 ulUnitMask = ulUnitMask >> 1;

 }

 return (c + 'A');

}

__

This function is passed the member dbcv_unitmask of a PDEV_BROADCAST_VOLUME

structure. The function returns the drive letter as a char. Below is an example of using

this function in the window procedure function of a windowed application to get the drive

letter, in code section 7.0.

Code Section 7.0

__

LRESULT WINAPI WindowProcedure(HWND hWnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg)

 {

 case WM_DEVICECHANGE:

 {

 PDEV_BROADCAST_HDR pHdr = (PDEV_BROADCAST_HDR) lParam;

 switch (wParam)

 {

 case DBT_DEVICEARRIVAL:

 if (pHdr->dhch_devicetype == DBT_DEVTYP_VOLUME)

 {

 PDEV_BROADCAST_VOLUME pVol = (PDEV_BROADCAST_VOLUME) pHdr;

 char szMessage[80];

 char cDriveLetter = GetDriveLetter(pVol->dbcv_unitmask);

 wsprintf(szMessage, "Device '%c:' has been inserted.", cDriveLetter);

 MessageBox(hWnd, szMessage, "USB Notice", MB_OK);

 }

 break;

 }

 }

 break;

 }

 return 0;

}

__

This would display a message box which displays a message saying "Device '%c:' has been

inserted" where %c is the drive letter of the device.

Unfortunately, this will trigger on any disk device being inserted. For example CD/DVD

disks, USB disks, etc. I did come up with a small hack to get around this. I found out that

WM_DEVICECHANGE is sent to the window procedure twice when you plug a USB disk

drive in. The first time WM_DEVICECHANGE is sent, the dhch_devicetype is

DBT_DEVTYP_DEVICEINTERFACE, we can check for this device type first, and set a flag

variable to true. The second time WM_DEVICECHANGE is received, dhch_devicetype is

DBT_DEVTYP_VOLUME. So we can check for this device type and whether the flag for a

USB device is set to true. After you handle the new volume, you set the flag back to false.

For more information about the WM_DEVICECHANGE window message visit:

http://msdn2.microsoft.com/en-us/library/aa363480.aspx

For more Information about the SERVICE_CONTROL_DEVICEEVENT message visit:

http://msdn2.microsoft.com/en-us/library/ms683241.aspx

