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H|D2 register bit settings 

Bit(s) 
0 

4-7 

8-31 

Name 
LSQE 

WBE 

PSE 

LCE 

DMAQL 

Description 
Load/Store quantized enable (non-indexed format) 
0 psq_l[u] and psq_st[u] instructions are illegal 

1 psq_l[u] and psq_st[u] instructions can be used 

Write buffer enable 

0 write buffer is disabled 

1 write buffer enabled to gather non-cacheable data 

Paired singles enabled 
0 paired singles instructions are illegal 

1 paired singles instructions can be used 

Locked cache enable 

0 Cache is not partitioned - 32 kB of normal cache 

1 Cache is partitioned - 16 kB of normal cache and 

16 kB of locked cache available 

DMA queue length (read only) 
the number of used queue positions in the DMA, 

from O (queue empty) to 15 (queue full) 
Reserved 
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METHOD AND APPARATUS FOR 
OBTAINING A SCALAR VALUE DIRECTLY 

FROM A VECTOR REGISTER 

This application is a continuation of Ser. No. 09/545,184, 
entitled “METHOD AND APPARATUS FOR SOFTWARE 
MANAGEMENT OF ON-CHIP CACHE” and US. appli 
cation Ser. No. 09/545,183 ?led on Apr. 7, 2000, entitled 
“METHOD AND APPARATUS FOR EFFICIENT LOAD 
ING AND STORING OF VECTORS”, ?led by the same 
inventors on the same date as the instant application. Both 
of these related cases are hereby incorporated by reference 
in their entirety. 

FIELD OF THE INVENTION 

This invention relates to information processors, such as 
microprocessors, and, more particularly, to a method and 
apparatus Which improves the operational ef?ciency of 
information processors having a vector processing unit by 
enabling a scalar value to be directly selected from a vector 
register for use, for example, in a mixed vector and scalar 
operation. 

BACKGROUND OF THE INVENTION 

The electronic industry is in a state of evolution spurred 
by the seemingly unquenchable desire of the consumer for 
better, faster, smaller, cheaper and more functional elec 
tronic devices. In their attempt to satisfy these demands, the 
electronic industry must constantly strive to increase the 
speed at Which functions are performed by data processors. 
Videogame consoles are one primary example of an elec 
tronic device that constantly demands greater speed and 
reduced cost. These consoles must be high in performance 
and loW in cost to satisfy the ever increasing demands 
associated thereWith. The instant invention is directed to 
increasing the speed at Which a vector processing units of 
information processors can perform mathematical opera 
tions When a scalar is needed from a vector register to 
perform the operation. 

Microprocessors typically have a number of execution 
units for performing mathematical operations. One example 
of an execution unit commonly found on microprocessors is 
a ?xed point unit (FXU), also knoWn as an integer unit, 
designed to execute integer (Whole number) data manipu 
lation instructions using general purpose registers (GPRs) 
Which provide the source operands and the destination 
results for the instructions. Integer load instructions move 
data from memory to GPRs and store instructions move data 
from GPRs to memory. An exemplary GPR ?le may have 32 
registers, Wherein each register has 32 bits. These registers 
are used to hold and store integer data needed by the integer 
unit to execute integer instructions, such as an integer add 
instruction, Which, for example, adds an integer in a ?rst 
GPR to an integer in a second GPR and then places the result 
thereof back into the ?rst GPR or into another GPR in the 
general purpose register ?le. 

Another type of execution unit found on most micropro 
cessors is a ?oating point unit (FPU), Which is used to 
execute ?oating point instructions involving non-integers or 
?oating point numbers. Floating point numbers are repre 
sented in the form of a mantissa and an exponent, such as 
602x103. A ?oating point register ?le containing ?oating 
point registers (FPRs) is used in a similar manner as the 
GPRs are used in connection With the ?xed point execution 
unit, as explained above. In other Words, the FPRs provide 
source operands and destination results for ?oating point 
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2 
instructions. Floating point load instructions move data from 
memory to FPRs and store instructions move data from 
FPRs to memory. An exemplary FPR ?le may have 32 
registers, Wherein each register has 64 bits. These registers 
are used to hold and store ?oating point data needed by the 
?oating point execution unit (FPU) to execute ?oating point 
instructions, such as a ?oating point add instruction, Which, 
for example, adds a ?oating point number in a ?rst FPR to 
a ?oating point number in a second FPR and then places the 
result thereof back into the ?rst FPR or into another FPR in 
the ?oating point register ?le. 

Microprocessor having ?oating point execution units 
typically enable data movement and arithmetic operations 
on tWo ?oating point formats: double precision and single 
precision. In the example of the ?oating point register ?le 
described above having 64 bits per register, a double pre 
cision ?oating point number is represented using all 64 bits 
of the FPR, While a single precision number only uses 32 of 
the 64 available bits in each FPR. Generally, microproces 
sors having single precision capabilities have single preci 
sion instructions that use a double precision format. 

For applications that perform loW precision vector and 
matrix arithmetic, a third ?oating point format is sometimes 
provided Which is knoWn as paired singles. The paired 
singles capability can improve performance of an applica 
tion by enabling tWo single precision ?oating point values to 
be moved and processed in parallel, thereby substantially 
doubling the speed of certain operations performed on single 
precision values. The term “paired singles” means that the 
?oating point register is logically divided in half so that each 
register contains tWo single precision values. In the example 
64-bit FPR described above, a pair of single precision 
?oating point numbers comprising 32 bits each can be stored 
in each 64 bit FPR. Special instructions are then provided in 
the instruction set of the microprocessor to enable paired 
single operations Which process each 32-bit portion of the 64 
bit register in parallel. The paired singles format basically 
converts the ?oating point register ?le to a vector register 
?le, Wherein each vector has a dimension of tWo. As a result, 
part of the ?oating point execution unit becomes a vector 
processing unit (paired singles unit) in order to execute the 
paired singles instructions. 
Some information processors, from microprocessors to 

supercomputers, have vector processing units speci?cally 
designed to process vectors. Vectors are basically an array or 
set of values. In contrast, a scalar includes only one value, 
such as a single number (integer or non-integer). A vector 
may have any number of elements ranging from 2 to 256 or 
more. Supercomputers typically provide large dimension 
vector processing capabilities. On the other hand, the paired 
singles unit on the microprocessor described above involves 
vectors With a dimension of only 2. In either case, in order 
to store vectors for use by the vector processing unit, vector 
registers are provided Which are similar to those of the GPR 
and FPR register ?les as described above, except that the 
register siZe corresponds to the dimension of the vector on 
Which the vector processing unit operates. For example, if 
the vector includes 64 values (such as integers or ?oating 
point numbers) each of Which require 32 bits, then each 
vector register Will have 2048 bits Which are logically 
divided into 64 32-bit sections. Thus, in this example, each 
vector register is capable of storing a vector having a 
dimension of 64. FIG. 2 shoWs an exemplary vector register 
?le 2 storing four 64 dimension vectors A, B, C and D. 
A primary advantage of a vector processing unit With 

vector register as compared to a scalar processing unit With 
scalar registers is demonstrated With the folloWing example: 
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Assume vectors A and B are de?ned to have a dimension of 
64, ie A=(AO . . . A63) and B=(BO . . . B63). In order to 
perform a common mathematical operation such as an add 
operation using the values in vectors A and B, a scalar 
processor Would have to execute 64 scalar addition instruc 
tions so that the resulting vector Would be R=((A1+B1) . . . 

(A63+B63)). Similarly, in order to perform a common opera 
tion knoWn as DotiProduct, Wherein each corresponding 
value in vectors A and B are multiplied together and then 
each element in the resulting vector are added together to 
provide a resultant scalar, 128 scalar instructions Would have 
to be performed (64 multiplication and 64 addition). In 
contrast, in vector processing a single vector addition 
instruction and a single vector DotiProduct instruction can 
achieve the same result. Moreover, each of the correspond 
ing elements in the vectors can be processed in parallel When 
executing the instruction. Thus, vector processing is very 
advantageous in many information processing applications. 
One problem, hoWever, that is encountered in vector 

processing, is that sometimes it is desired to perform an 
operation using a scalar value contained Within a vector 
register. For example, some applications may require mixed 
vector and scalar calculations, Wherein the scalar needed 
(e.g. C10) to perform the calculation is a single element 
Within a particular vector (e.g. C) stored in a vector register. 
In other Words, While a vector processing unit may easily 
execute a vector instruction Which adds vector A to B and 

places the result in vector C (i.e. C=A+B), the vector 
processing unit cannot directly perform a mixed vector and 
scalar operation When the desired scalar is an element in a 
vector register (i.e. D=C1O+A). The primary reason for this 
limitation is that mixed scalar and vector instructions require 
that the scalar used in the operation be stored is a scalar 
register. In other Words, such instructions do not have the 
ability to select a particular scalar element, such as C10, from 
a vector register. FIG. 1 shoWs an exemplary format of prior 
art instructions for mixed scalar and vector instructions. 
As can be seen in FIG. 1, the typical format for a mixed 

scalar and vector instruction 3 includes a primary op-code 4, 
a scalar register address 5, a vector register address 6 and a 
destination register address 7. The primary op-code identi 
?es the particular type of instruction, such as vector-scalar 
multiplication, and may, for example, comprise the most 
signi?cant 6 bits (bits 0—5) of the instruction. The scalar 
register address 5 provides the particular address of the 
register in the GPR ?le that contains the scalar value needed 
to execute the instruction. The vector register address 6 
provides the particular address of the vector register in the 
vector register ?le Which contains the vector needed to 
execute the instruction. The destination register address 7 
provides the location for the result of the operation. It is 
noted that the instruction format 3 of FIG. 1 is only 
exemplary and that prior art instructions may have other 
formats and/or include other parts, such as a secondary 
op-code, status bits, etc., as one skilled in the art Will readily 
understand. HoWever, as explained above, regardless of the 
particular format of the instruction, the instruction still 
requires that a scalar register be used to store the scalar value 
needed to execute the instruction. 

As a result, if the required scalar is a particular element of 
a vector register (e.g. C10), the entire vector register must 
?rst be copied to memory in order to enable the desired 
scalar (C10) to be loaded into a scalar register. In other 
Words, the prior art provides no suitable mechanism for 
enabling a scalar to be used from a vector register. Thus, 
While such mixed scalar and vector instructions can be 
performed, they require signi?cant overhead in terms of 
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time required to store the vector to memory and load the 
scalar from memory to a scalar register, so that the scalar 
register contains the required scalar value to execute the 
instruction. Even assuming that the required vector is in a 
cache (high speed on-chip memory), thereby eliminating the 
need to access external memory, signi?cant overhead still 
exists. For example, a typical cache may require approxi 
mately 30—50 CPU clock cycles (a time unit by Which the 
central processing unit (CPU) operates) to load data from a 
64-bit 128 dimension vector. Moreover, if cache is not 
available or if a cache miss occurs, the overhead Would be 
approximately an order of magnitude higher to load or 
access the vector in an external memory as compared to a 
cache. Thus, large CPU cycle overhead is required to 
execute an instruction that, Without the above limitations, 
could execute in for example, as fast as 10 clock cycles, ie 
40 to 100s of clock cycle overhead for a 10 cycle instruction. 

Accordingly, a need exists for reducing the large overhead 
associated With such mixed scalar and vector instructions, so 
that the operations associated thereWith can be performed 
faster and so that application performance can be improved. 

SUMMARY OF THE INVENTION 

The instant invention provides a mechanism and a method 
for enabling mixed scalar and vector instructions to run 
more ef?ciently and With less CPU cycle overhead by 
eliminating the need to load a value from a vector register 
into a scalar register in order to be used during execution of 
the instruction. The invention provides an improved instruc 
tion format Which may be used in connection With any 
suitable type of data processor, from microprocessors to 
supercomputers, having a vector processing unit in order to 
improve the operational ef?ciency thereof. 

In accordance With the invention, the improved instruc 
tion format has an embedded bit or a plurality of embedded 
bits that identify a particular element in a vector to be used 
as a scalar during execution of the instruction. In this Way, 
a mixed scalar and vector instruction can be executed 
Without the need to load the scalar operand into a scalar or 
general purpose register. By identifying, in the instruction, 
the location of the scalar in the vector, the scalar can be 
directly used from the vector register ?le for execution of the 
instruction. 

In accordance With a preferred embodiment of the 
invention, the instruction format for mixed scalar and vector 
operations includes a primary op code, a ?rst source vector 
register address, a second source vector register address, a 
destination register vector address, and at least one position 
bit Which indicates the location of a desired scalar in one of 
the vector registers needed to execute the instruction. The 
number of bits needed to indicate the position of the desired 
scalar Within a vector depends on the particular dimension of 
the vector involved. For example, if the vector has a dimen 
sion of 64, then six bits are needed to provide a unique 
identi?er for the particular scalar Within the vector. In other 
Words, if the dimension of the vector is 2”, then n bits are 
needed, in this embodiment, to indicate the location of any 
scalar Within the vector. 

In another embodiment of the invention, the location of 
the scalar Within the vector is determined based on the value 
of a secondary op code in the instruction. It is noted, 
hoWever, that the invention is not limited to any particular 
implementation of the scalar position indicator in the 
instruction. Instead, the invention covers any suitable Way in 
Which the location of a scalar Within the vector can be 
represented or embedded in the bit format comprising the 
instruction. 
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In a preferred embodiment, the invention is implemented 
on a microprocessor, such as the microprocessors in IBM’s 
PoWerPC (IBM Trademark) family of microprocessors 
(hereafter “PoWerPC”), Wherein the microprocessor has 
been modi?ed or redesigned to include a vector processing 
unit, such as a paired singles unit. For more information on 
the PoWerPC microprocessors see PowerPC 740 and Pow 
erPC 750 RISC Microprocessor Family User Manual, IBM 
1998 and PowerPC Microprocessor Family: The Program 
ming Environments, Motorola Inc. 1994, both of Which are 
hereby incorporated by reference in their entirety. 

In the modi?ed PoWerPC example described above, the 
paired singles operation may be selectively enabled by, for 
example, providing a hardWare implementation speci?c 
special purpose register (e.g. HID2) having a bit (e. g. 3’d bit) 
Which controls Whether paired single instructions can be 
executed. Other bits in the special purpose register can be 
used, for example, to control other enhancement options that 
may be available on the microprocessor. 

The invention also provides speci?c instruction de?ni 
tions for mixed vector and scalar operations. The invention 
is also directed to a decoder, such as a microprocessor or a 
virtual machine (e.g. softWare implemented hardWare 
emulator), Which is capable of decoding any of all of these 
particular instructions disclosed herein. The invention fur 
ther relates to a storage medium Which stores any or all of 
the particular instructions disclosed herein. 

BRIEF DESCRIPTION OF THE DRAWINGS: 

Other objects, features and advantages of the instant 
invention Will become apparent upon revieW of the detailed 
description beloW When read in conjunction With the accom 
panying draWings, in Which: 

FIG. 1 shoWs a format of a conventional instruction Which 
performs a mathematical operation involving a scalar and 
vector; 

FIG. 2 shoWs an exemplary representation of a vector 
register ?le; 

FIG. 3 shoWs an exemplary microprocessor and external 
memory Which can be used to implement the instant inven 
tion; 

FIG. 4 is a table shoWing the de?nition of an exemplary 
special purpose register (HID2) used to control paired single 
operation of the vector processing unit, as Well as other 
optional enhancements to the microprocessor of FIG. 3, in 
accordance With one embodiment of the instant invention; 

FIG. 5 is an illustration of the ?oating point register ?le 
of the microprocessor of FIG. 3, Wherein tWo possible 
?oating point formats for the registers are shoWn; 

FIG. 6 shoWs a preferred embodiment of the format for an 
instruction used to obtain a scalar value directly from a 
vector register, in accordance With the instant invention; 

FIG. 7 shoWs an exemplary paired single instruction 
format Which only uses vectors; and 

FIGS. 8 and 9 shoW exemplary paired single instructions 
that enables a scalar to be directed used from a vector 
register, in accordance With a preferred embodiment of the 
instant invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS: 

In the folloWing description, numerous speci?c details are 
set forth regarding a preferred embodiment of the instant 
invention. HoWever, the speci?c details are meant to be 

10 

15 

25 

35 

45 

55 

65 

6 
exemplary only and are not meant to limit the invention to 
the particular embodiment described herein. In other Words, 
numerous changes and modi?cations may be made to the 
described embodiment Without deviating from the true scope 
and spirit of the instant invention, as a person skilled in the 
art Will readily understand from revieW of the description 
herein. 

FIG. 3 is a diagram of a single-chip microprocessor 10 in 
Which the present invention has been implemented, in accor 
dance With one exemplary embodiment of the instant inven 
tion. It is noted that FIG. 3 only shoWs a simpli?ed repre 
sentation of a microprocessor, due to that fact that the 
majority of the elements in the microprocessor, as Well as 
their interconnection and operation, are Well knoWn to one 
skilled in the art. Thus, in order not to obscure the instant 
invention With details regarding knoWn elements, the draW 
ings and description herein are presented in a simpli?ed 
form and only to the extent necessary to provide a full 
understanding of the instant invention for a person skilled in 
the art. 

The microprocessor 10 is connected, in a knoWn manner, 
to an off-chip (external) memory 12 or main memory via an 
address bus 14 and data bus 16. The external memory 12 
contains data and/or instructions, such as 3D graphics 
instructions, needed by the microprocessor 10 in order 
perform desired functions. It is noted that the microproces 
sor 10 and external memory 12 may be implemented in a 
larger overall information processing system (not shoWn). 
The microprocessor includes a control unit 18, ?xed point 
units 20a and 20b, general purpose registers (GPRs) 22, a 
load and store unit 24, ?oating point unit 28, paired single 
unit (vector processing unit) 30 and ?oating point registers 
26, all of Which generally interconnect and operate in a 
knoWn manner. In addition, the microprocessor 10 includes 
a level one instruction cache 32, a level one data cache 34, 
a level tWo cache 36 With associated tags 38, and bus 
interface unit (BIU) 40, all of Which may generally operate 
in a conventional manner. HoWever, the data cache 34 and 
the direct memory access unit may have special operations 
as disclosed in copending US. patent application Ser. No. 
09/545,184 entitled “Method and Apparatus for SoftWare 
Management of On-Chip Cache” and ?led concurrently 
hereWith by the same inventors and assignees. For additional 
information on cache instructions for the PoWerPC see Zen 
and the Art of Cache Maintenance, Byte Magazine, March 
1997. 
The structure and operation of this exemplary micropro 

cessor 10 is similar to IBM’s PoWerPC microprocessors, 
With certain modi?cations to implement the instant inven 
tion. Details regarding the operation of most of the elements 
of this exemplary microprocessor are found in the folloWing 
publications: PowerPC 740 and PowerPC 750 RISC Micro 
processor Family User Manual, IBM 1998 and PoWerPC 
Microprocessor Family: The Programming Environments, 
Motorola Inc. 1994. It is noted, hoWever, that the instant 
invention may be implemented on any suitable data 
processor, from a microprocessor to a supercomputer, to 
improve vector operations using one or more scalar values 
contained in one or more vector registers. 

As indicted above, this exemplary microprocessor 10 is 
an implementation of the PoWerPC microprocessor family 
of reduced instruction set computer (RISC) microprocessors 
With extensions to improve the ?oating point performance, 
in accordance With the instant invention. The folloWing 
provides a general overvieW of the operation of this exem 
plary microprocessor 10 and is not intended to limit the 
invention to any speci?c feature described. 
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The exemplary microprocessor 10 implements the 32-bit 
portion of the PoWerPC architecture, Which provides 32-bit 
effective addresses, integer data types of 8, 16, and 32 bits, 
and ?oating-point data types of single- and double 
precision. In addition, the microprocessor extends the PoW 
erPC architecture With the paired single-precision ?oating 
point data type and a set of paired single ?oating point 
instructions, as Will be described in greater detail beloW, The 
microprocessor 10 is a superscalar processor that can com 
plete tWo instructions simultaneously. It incorporates the 
folloWing ?ve main execution units: 1) ?oating-point unit 
(FPU) 28; 2) branch processing unit or control unit 18; 3) 
System register unit (SRU) (not shoWn); 4) Load/store unit 
(LSU) 24; and 5) TWo integer units (FXUs) 20a and 20b, 
Wherein FXUl executes all integer instructions and FXU2 
executes all integer instructions except multiply and divide 
instructions. The ability to execute several instructions in 
parallel and the use of simple instructions With rapid execu 
tion times yield high ef?ciency and throughput for systems 
using this exemplary microprocessor. Most integer instruc 
tions execute in one clock cycle. The FPU is preferably 
pipelined such that it breaks the tasks it performs into 
subtasks, and then executes in three successive stages. 
Typically, a ?oating-point instruction can occupy only one 
of the three stages at a time, freeing the previous stage to 
Work on the next ?oating-point instruction. Thus, three 
single- or paired single-precision ?oating-point instructions 
can be in the FPU execute stage at a time. Double-precision 
add instructions have a three-cycle latency; double-precision 
multiply and multiply-add instructions have a four-cycle 
latency. 

FIG. 3 shoWs the parallel organiZation of the execution 
units. The control unit 18 fetches, dispatches, and predicts 
branch instructions. It is noted that this is a conceptual 
model that shoWs basic features rather than attempting to 
shoW hoW features are implemented physically. The micro 
processor 10 has independent on-chip, 32 Kbyte, eight-Way 
set-associative, physically addressed caches for instructions 
and data and independent instruction and data memory 
management units. The data cache can be selectively con 
?gured as a four-Way 16 KByte locked cache (softWare 
controlled) and a four-Way 16 KByte normal cache. Each 
memory management unit has a 128-entry, tWo-Way set 
associative translation lookaside buffer that saves recently 
used page address translations. Block address translation 
(BAT) is done through four-entry instruction and data block 
address translation arrays, de?ned by the PoWerPC archi 
tecture. During block translation, effective addresses are 
compared simultaneously With all four BAT entries. The L2 
cache is implemented With an on-chip, tWo-Way set 
associative tag memory 38, and an on-chip 256 Kbyte 
SRAM 36 With ECC for data storage. The microprocessor 
10 preferably has a direct memory access (DMA) engine to 
transfer data from the external memory 12 to the optional 
locked data cache 34b and to transfer data from the locked 
data cache to the external memory. A Write gather pipe is 
preferably provided for ef?cient non-cacheable store opera 
tions. 

The microprocessor 10 has a 32-bit address bus and a 
64-bit data bus. Multiple devices compete for system 
resources through a central external arbiter. The micropro 
cessor’s three-state cache-coherency protocol (MEI) sup 
ports the modi?ed, exclusive and invalid states, a compatible 
subset of the MESI (modi?ed/exclusive/shared/invalid) 
four-state protocol, and it operates coherently in systems 
With four-state caches. The microprocessor supports single 
beat and burst data transfers for external memory accesses 
and memory-mapped I/O operations. 
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8 
In the exemplary embodiment of FIG. 3, the micropro 

cessor includes separate 32-Kbyte, eight-Way associative 
instruction and data caches (32 and 34) to alloW the various 
execution units (18, 20a, 20b, 28 and 30) and registers rapid 
access to instructions and data, thereby reducing the number 
of relatively sloW accesses to the external memory 12. The 
caches preferably implement a pseudo least-recently-used 
(PLRU) replacement algorithm for managing the contents of 
the caches. The cache directories are physically addressed, 
the physical (real) address tag being stored in the cache 
directory. Both the instruction and data caches have 32-byte 
cache block siZe, Wherein a cache block is the block of 
memory that a coherency state describes (also referred to as 
a cache line). TWo coherency state bits for each data cache 
block alloW encoding for three states—Modi?ed (exclusive) 
(M), Exclusive (unmodi?ed) (E), and Invalid (I)—thereby 
de?ning an MEI three-state cache coherency protocol. A 
single coherency state bit for each instruction cache block 
alloWs encoding for tWo possible states: invalid (INV) or 
Valid In accordance With the instant invention, each 
cache can be invalidated or locked by setting the appropriate 
bits in a hardWare implementation-dependent register (a 
special purpose register described in detail beloW). 
The microprocessor 10 preferably supports a fully 

coherent 4-Gbyte physical address space. Bus snooping is 
used to drive the MEI three-state cache coherency protocol 
that ensures the coherency of global memory With respect to 
the processor’s data cache. The data cache 34 coherency 
protocol is a coherent subset of the standard MESI four-state 
cache protocol that omits the shared state. The data cache 34 
characteriZes each 32-byte block it contains as being in one 
of three MEI states. Addresses presented to the cache are 
indexed into the cache directory With bits A(20—26), and the 
upper-order 20 bits from the physical address translation 
(PA(0—19)) are compared against the indexed cache direc 
tory tags. If neither of the indexed tags matches, the result 
is a cache miss (required data not found in cache). On a 
cache miss, the microprocessor cache blocks are ?lled in 
four beats of 64 bits each. The burst ?ll is performed as a 
critical-double-Word-?rst operation—the critical double 
Word is simultaneously Written to the cache and forWarded 
to the requesting unit, thus minimiZing stalls due to cache ?ll 
latency. If a tag matches, a cache hit occurred and the 
directory indicates that state of the cache block through tWo 
state bits kept With the tag. The microprocessor 10 prefer 
ably has dedicated hardWare to provide memory coherency 
by snooping bus transactions. 

Both caches 32 and 34 are preferably tightly coupled into 
the bus interface unit (BUI) 40 to alloW ef?cient access to 
the system memory controller and other potential bus mas 
ters. The BUI 40 receives requests for bus operations from 
the instruction and data caches, and executes operations per 
the 60x bus protocol. The BUI 40 provides address queues, 
prioritiZing logic and bus control logic. The BUI also 
captures snoop addresses for data cache, address queue and 
memory reservation operations. The data cache is preferably 
organiZed as 128 sets of eight Ways, Wherein each Way 
consists of 32 bytes, tWo state bits and an address tag. In 
accordance With the instant invention, an additional bit may 
be added to each cache block to indicate that the block is 
locked. Each cache block contains eight contiguous Words 
from memory that are loaded from an eight-Word boundary 
(i.e., bits A(27—31) of the logical (effective) addresses are 
Zero). As a result, cache blocks are aligned With page 
boundaries. Address bits A(20—26) provide the index to 
select a cache set. Bits A(27—31) select a byte Within a block. 
The on-chip data cache tags are single ported, and load or 
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store operations must be arbitrated With snoop accesses to 
the data cache tags. Load and store operations can be 
performed to the cache on the clock cycle immediately 
following a snoop access if the snoop misses. Snoop hits 
may block the data cache for tWo or more cycles, depending 
on Whether a copy-back to main memory 12 is required. 

The level one (L1) caches (32 and 34) are preferably 
controlled by programming speci?c bits in a ?rst special 
purpose register (HIDO-not shoWn) and by issuing dedicated 
cache control instructions. The HIDO special purpose reg 
ister preferably contains several bits that invalidate, disable, 
and lock the instructions and data caches. The data cache 34 
is automatically invalidated When the microprocessor 10 is 
poWered up and during a hard reset. HoWever, a soft reset 
does not automatically invalidate the data cache. SoftWare 
uses the HIDO data cache ?ash invalidate bit (HIDO(DCFI)) 
if the cache invalidation is desired after a soft reset. Once the 
HIDO(DCFI) is set through move-to-special-purpose 
register (mtspr) operation, the microprocessor automatically 
clears this bit in the next clock cycle (provided that the data 
cache is enabled in the HIDO register). 

The data cache may be enabled or disabled by using the 
data cache enable bit (HIDO(DCE)) Which is cleared on 
poWer-up, disabling the data cache. When the data cache is 
in the disabled state (HIDO(DCE)=0), the cache tag state bits 
are ignored, and all accesses are propagated to the L2 cache 
36 or 60x bus as single beat transactions. The contents of the 
data cache can be locked by setting the data cache lock bit 
(HIDO(DLOCK)). A data access that hits in a locked data 
cache is serviced by the cache. HoWever, all accesses that 
miss in the locked cache are propagated to the L2 cache 36 
or 60x bus as single-beat transactions. The microprocessor 
10 treats snoop hits in the locked data cache the same as 
snoop hits in an unlocked data cache. HoWever, any cache 
block invalidated by a snoop remains invalid until the cache 
is unlocked. The instruction cache 32 operates in a similar 
manner as the data cache described above, except that 
different bits are used in the HIDO register for invalidation 
and locking, i.e. instruction cache ?ash invalidate bit HIDO 
(ICFI) and instruction cache lock bit HIDO(ILOCK). 

The microprocessor 10 preferably includes another hard 
Ware implementation-dependent special purpose register 
(HID2) that, in accordance With the instant invention, is used 
to enable the ?oating point unit to operate in paired singles 
mode, i.e. enables the 64-bit FPRs to be treated as a pair of 
32-bit registers containing tWo single precision ?oating 
point numbers. Speci?cally, the HID2 register contains a 
paired singles enable bit (PSE) that is used to enable paired 
singles operation. An example de?nition for the HID2 
register is shoWn in FIG. 4, Wherein bit number 2 is the PSE 
bit for controlling paired single format. The other bits in the 
HID2 register are used to control other enhanced features 
that may be provided in the microprocessor 10, such as data 
quantization, locked cache, Write buffering, and DMA queue 
length as shoWn on FIG. 4. It is noted that, While FIG. 2 
shoWs that bits 8—31 of the HID2 register are reserved, these 
bits may be used to indicate, for example, cache instruction 
hit error, DMA access to normal cache error, DMA cache 
miss error, DMA queue length over?oW error, instruction 
cache hit error enable, DMA cache miss error enable, and 
DMA queue over?oW error enable. 

When the HID2(PSE) bit is set to 1, paired singles 
instructions can be used. Thus, the ?oating point unit 28 of 
microprocessor 10 includes a paired singles unit 30 for 
processing the tWo dimensional vectors de?ned by paired 
singles. In other Words, the microprocessor 10 has the ability 
to perform vector processing as described above, Wherein 
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the dimension of the vector is tWo. A?oating point status and 
control register (FPSCR) is also provided Which contains 
?oating point exception signal bits, exception summary bits, 
exception enable bits, and rounding control bits needed for 
compliance With the IEEE standard. 

Thus, in addition to single- and double-precision 
operands, When HID2(PSE)=1, the microprocessor 10 sup 
ports a third format: paired singles. As shoWn in FIG. 5, the 
64-bit registers in the ?oating point register ?le 26, Which 
typically are treated as a single 64-bit register 42, are 
converted to a pair of 32 bit registers 44a and 44b each being 
operable to store a single precision (32-bit) ?oating point 
number. The single-precision ?oating point value in the high 
order Word is referred to herein as ps0, While the single 
precision ?oating point value in the loW order Word is 
referred to herein as ps1. Special instructions are provided in 
the instruction set of the microprocessor 10 for manipulating 
these operands Which alloW both values (ps0 and ps1) be 
processed in parallel in the paired singles unit 30. For 
example, a paired single multiply-add instruction (psimadd) 
instruction may be provided that multiplies ps0 in frAby ps0 
in frC, then adds it to ps0 in frB to get a result that is placed 
in ps0 in frD. Simultaneously, the same operations are 
applied to the corresponding ps1 values. Paired single 
instructions may be provided Which perform an operation 
comparable to one of the existing double-precision instruc 
tions in provided in the PoWerPc instruction set. For 
example, a fadd instruction adds double-precision operands 
from tWo registers and places the result into a third register. 
In the corresponding paired single instruction, psiadd, tWo 
such operations are performed in parallel, one on the ps0 
values, and one on the ps1 values. An exemplary format for 
a psiadd instruction format is shoWn in FIG. 7, Wherein the 
instruction includes 32 bits, and further Wherein bits 0—5 
encode a primary op code of 4, bits 6—10 designate a ?oating 
point destination register for storing a pair of 32-bit single 
precision ?oating point values resulting from the paired 
single ?oating point add instruction, bits 11—15 designate a 
?oating point source register storing a pair of 32-bit single 
precision ?oating point values, bits 16—20 designate a fur 
ther ?oating point source register storing a pair of 32-bit 
single-precision ?oating point values, bits 21—25 encode a 
reserved ?eld of “00000”, bits 26—30 encode a secondary op 
code of 21, and bit 31 comprises a record bit indicating 
updating of a condition register. 
Most paired single instructions produce a pair of result 

values. The Floating-Point Status and Control Register 
(FPSCR) contains a number of status bits that are affected by 
the ?oating-point computation. FPSCR bits 15—19 are the 
result bits. They may be determined by the result of the ps0 
or the ps1 computation. When in paired single mode (HID2 
(PSE)=1), all the double-precision instructions are still valid, 
and execute as in non-paired single mode. In paired single 
mode, all the single-precision ?oating-point instructions) are 
valid, and operate on the ps0 operand of the speci?ed 
registers. 

In accordance With an important aspect of the instant 
invention, special paired single instructions are provided 
Which involve a combination of vector and scalar values 
Without requiring that the scalar value be moved or located 
in a scalar register in order to execute the instructions. More 
particularly, in accordance With the invention, the location of 
the scalar Within the vector is provided in the instruction 
itself, thereby enabling the desired scalar to be directly used 
from the vector. 

FIGS. 8 and 9 shoW tWo exemplary instructions for 
performing mixed vector and scalar operations, in accor 
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dance With the instant invention. FIG. 8 is a paired-single 
multiply-scalar-high instruction called psfmaddsOx. This 
instruction is a paired single instruction Which performs a 
scalar-vector multiply-add operation using ps0 (the high 
order Word or ?rst single-precision value of the register) as 
the scalar. The psfmaddsOx instruction includes 32 bits, 
Wherein bits 0—5 encode a primary op code of 4, bits 6—10 
designate a ?oating point destination register for storing the 
results of the instruction, bits 11—15 designate a ?rst ?oating 
point register as a ?rst source storing a ?rst pair of 32-bit 
single-precision ?oating point values, bits 16—20 designate 
a second ?oating point register as a second source storing a 
second pair of 32-bit single-precision ?oating point values, 
bits 21—25 designate a third ?oating point register as a third 
source storing a third pair of 32-bit single-precision ?oating 
point values, bits 26—30 encode a secondary op code of 14 
and bit 31 comprises a record bit indicating updating of a 
condition register. In this exemplary instruction, the location 
of the scalar to be used is determined by the secondary op 
code, indicates, among other things, that ps0 is be used as the 
scalar. In other Words, the position of the scalar is embedded 
in the secondary op code. 
As can be seen in FIG. 8, in accordance With this 

ps-maddsOx instruction, the ?oating-point operand in regis 
ter frA(ps0) is multiplied by the ?oating-point operand in 
register frC(ps0). Then, the ?oating-point operand in register 
frB(ps0) is added to this intermediate result. If the most 
signi?cant bit of the resultant signi?cand is not a one, the 
result is normaliZed. The result is then rounded to single 
precision under control of a ?oating-point rounding control 
?eld RN of the FPSCR and is placed into frD(ps0). In 
addition, the ?oating-point operand in register frA(ps1) is 
multiplied by the ?oating-point operand in register frC(ps0). 
Then, the ?oating-point operand in register frB(ps1) is 
added to this intermediate result. If the most-signi?cant bit 
of the resultant signi?cand is not a one, the result is 
normaliZed. The result is then rounded to single-precision 
under control of the ?oating-point rounding control ?eld RN 
of the FPSCR and is placed into frD(ps1). FPSCR(FPRF) is 
set to the class and sign of the ps0 result, except for invalid 
operation exceptions When FPSCR(VE)=1. 

FIG. 9 is a paired-single-multiply-scalar-loW instruction 
called psimaddslx. This instruction is a paired single 
instruction Which performs a scalar-vector multiply-add 
operation using ps1 (the loW order Word or second single 
precision value of the register) as the scalar. The 
psimaddslx instruction includes 32 bits, Wherein bits 0—5 
encode a primary op code of 4, bits 6—10 designate a ?oating 
point destination register for storing the results of the 
instruction, bits 11—15 designate a ?rst ?oating point register 
as a ?rst source storing a ?rst pair of 32-bit single-precision 
?oating point values, bits 16—20 designate a second ?oating 
point register as a second source storing a second pair of 
32-bit single-precision ?oating point values, bits 21—25 
designate a third ?oating point register as a third source 
storing a third pair of 32-bit single-precision ?oating point 
values, bits 26—30 encode a secondary op code of 15 and bit 
31 comprises a record bit indicating updating of a condition 
register. In this exemplary instruction, the location of the 
scalar to be used is determined by the secondary op code, 
indicates, among other things, that ps1 is be used as the 
scalar. In other Words, the position of the scalar is embedded 
in the secondary op code. 
As can be seen in FIG. 9, in accordance With this 

ps-madds1x instruction, the ?oating-point operand in regis 
ter frA(ps0) is multiplied by the ?oating-point operand in 
register frC(ps1). The ?oating-point operand in register 
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frB(ps0) is then added to this intermediate product. If the 
most-signi?cant bit of the resultant signi?cand is not a one, 
the result is normaliZed. The result is then rounded to 
single-precision under control of the ?oating-point rounding 
control ?eld RN of the FPSCR and placed into frD(ps0). In 
addition, the ?oating-point operand in register frA(ps1) is 
multiplied by the ?oating-point operand in register frC(ps1). 
The ?oating-point operand in register frB(ps1) is then added 
to this intermediate product. If the most-signi?cant bit of the 
resultant signi?cand is not a one, the result is normaliZed. 
The result is then rounded to single-precision under control 
of the ?oating-point rounding control ?eld RN of the FPSCR 
and placed into frD(ps1). FPSCR(FPRF) is set to the class 
and sign of the ps0 result, except for invalid operation 
exceptions When FPSCR(VE)=1. 

It is noted that in each of the examples provided above for 
mixed vector and scalar instructions, the secondary op code 
is used to indicate the particular scalar intended for use by 
the instruction. HoWever, this implementation is only exem 
plary and Was selected in this embodiment due to the fact 
that the microprocessor 10 is based on the PoWerPC micro 
processor. Thus, embedding of the location of the scalar in 
the secondary op code is used in this example because it Was 
the most convenient Way of implementing the invention 
based on the existing circuitry found in the PoWerPC. Thus, 
depending of the particular implementation of the invention, 
the manner and location in Which the scalar location is 
embedded in the instruction may change. In other Words, the 
scalar location may take any suitable form in the instruction, 
as long as the decoder thereof can identify the scalar Within 
the vector needed to execute the instruction. 

While the above embodiment of the invention describes a 
particular microprocessor implementation of the instant 
invention, the invention is in noW Way limited to use in a 
microprocessor environment. In fact, the invention is appli 
cable to any data processor, from microprocessors to 
supercomputers, that includes a vector processing unit, 
regardless of the dimension of the vectors operated thereon. 
FIG. 6 shoWs an exemplary general format for a mixed 
vector and scalar instruction 46 in accordance With the 
instant invention. As shoWn in FIG. 6, this general bit format 
includes a primary op code 48, a ?rst source vector register 
location 50, position bit(s) 52, a second source vector 
register location 54, and a destination vector register loca 
tion 56. Thus, When FIG. 6 is compared to FIG. 1, a major 
advantage of the instant invention can be seen, ie the 
exemplary instruction format of the instant invention (FIG. 
6) does not need to have the scalar value in a scalar register 
as required by the prior art instruction format (see element 
5 of FIG. 1). Thus, in accordance With the instant invention, 
the need to store the vector register in memory (or cache) 
and to load the scalar value from the stored vector into a 
scalar register has been eliminated. In other Words, the 
improved format of FIG. 6 enables a mixed scalar and vector 
operation to be performed using only the vectors stored in 
the vector registers, by using the information in the position 
bit(s) to identify the location of the desired scalar in the 
vector register. 

In accordance With the invention, the number of bits 
needed to indicate the position of the desired scalar Within 
a vector depends on the particular dimension of the vector 
involved. For example, if the vector has a dimension of 64, 
then six bits are needed to provide a unique identi?er for the 
particular scalar Within the vector. In other Words, if the 
dimension of the vector is 2”, then n bits are needed, in this 
embodiment, to indicate the location of any scalar Within the 
vector. 
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In accordance With the invention other mixed vector and 
scalar instructions may be used Which embed the location of 
the desired scalar in the bits of the instruction. For example, 
scalar-vector multiply instructions may be used, Wherein the 
bits in the instructions, such as the bits comprising the 
secondary op code, indicate Whether ps0 or ps1 is to be used 
as the scalar, e.g. psfmulsOx and psimulslx instructions. 
Amain difference betWeen the instructions of FIGS. 8 and 

9 and that of FIG. 6, is that, in FIGS. 8 and 9, the position 
bits are basically embedded in the secondary op code. In 
contrast, in the format of FIG. 6, certain dedicated bits 52 (N 
position bits) are used to identify the location of the scalar 
Within the vector. It is noted, hoWever, that the invention is 
not limited to either of these approaches and may be 
implemented by using any bits in the instruction to identify 
the location of the scalar Within the vector. In other Words, 
the invention covers any type of embedding of the position 
bit in the instruction regardless of the particular location or 
format of the position bit(s) or the instruction. The invention 
may also be implemented in an type of vector processing 
unit regardless of the type of date for Which the unit is 
designed. For example, the invention may be used for 
integer vectors as Well as for is ?oating point vectors. 

In accordance With a preferred embodiment of the micro 
processor of FIG. 3, in order to move data ef?ciently 
betWeen the CPU and memory subsystems, certain load and 
store instructions can preferably implicitly convert their 
operands betWeen single precision ?oating point and loWer 
precision, quantized data types. Thus, in addition to the 
?oating-point load and store instructions de?ned in the 
PoWerPC architecture, the microprocessor 10 preferably 
includes eight additional load and store instructions that can 
implicitly convert their operands betWeen single-precision 
?oating-point and loWer precision, quantized data types. For 
load instructions, this conversion is an inverse quantization, 
or dequantization, operation that converts signed or 
unsigned, 8 or 16 bit integers to 32 bit single-precision 
?oating-point operands. This conversion takes place in the 
load/store unit 24 as the data is being transferred to a 
?oating-point register (FPR). For store instructions, the 
conversion is a quantization operation that converts single 
precision ?oating-point numbers to operands having one of 
the quantized data types. This conversion takes place in the 
load/store unit 24 as the data is transferred out of an FPR. 
The load and store instructions for Which data quantization 
applies are for paired single operands, and so are valid only 
When HID2(PSE)=1. These neW load and store instructions 
cause an illegal instruction exception if execution is 
attempted When HID2(PSE)=0. Furthermore, the nonin 
dexed forms of these loads and stores (psqil(u) and psqi 
st(u)) are illegal unless HID2(LSQE)=1 as Well (see FIG. 4). 
The quantization/dequantization hardWare in the load/store 
unit assumes big-endian ordering of the data in memory. Use 
of these instructions in little-endian mode Will give unde 
?ned results. Whenever a pair of operands are converted, 
they are both converted in the same manner. When operating 
in paired single mode (HID2(PSE)=1), a single-precision 
?oating-point load instruction Will load one single-precision 
operand into both the high and loW order Words of the 
operand pair in an FPR. A single-precision ?oating-point 
store instruction Will store only the high order Word of the 
operand pair in an FPR. preferably, tWo paired single load 
(psqil, psqilu) and tWo paired single store (psqist, psqi 
stu) instructions use a variation of the D-form instruction 
format. Instead of having a 16 bit displacement ?eld, 12 bits 
are used for displacement, and the remaining four are used 
to specify Whether one or tWo operands are to be processed 
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(the 1 bit W ?eld) and Which of eight general quantization 
registers (GQRs) is to be used to specify the scale and type 
for the conversion (a 3 bit I ?eld). TWo remaining paired 
single load (psqilx, psqilux) and the tWo remaining paired 
single store (psqistx, psqistux) instructions use a variation 
of the X-form instruction format. Instead of having a 10 bit 
secondary op code ?eld, 6 bits are used for the secondary op 
code, and the remaining four are used for the W ?eld and the 
I ?eld. 
An exemplary dequantization algorithm used to convert 

each integer of a pair to a single-precision ?oating-point 
operand is as folloWs: 

1. read integer operand from L1 cache; 
2. convert data to sign and magnitude according to type 

speci?ed in the selected GQR; 
3. convert magnitude to normalized mantissa and expo 

nent; 
4. subtract scaling factor speci?ed in the selected GQR 

from the exponent; and 
5. load the converted value into the target FPR. 
For an integer value, I, in memory, the ?oating-point 

value F, loaded into the target FPR, is F=I*2**(—S), Where 
S is the tWos compliment value in the LDiSCALE ?eld of 
the selected GQR. For a single-precision ?oating-point 
operand, the value from the L1 cache is passed directly to the 
register Without any conversion. This includes the case 
Where the operand is a denorm. 
An exemplary quantization algorithm used to convert 

each single-precision ?oating-point operand of a pair to an 
integer is as folloWs: 

1. move the single-precision ?oating-point operand from 
the FPR to the completion store queue; 

2. add the scaling factor speci?ed in the selected GQR to 
the exponent; 

3. shift mantissa and increment/decrement exponent until 
exponent is zero; 

4. convert sign and magnitude to 2s complement repre 
sentation; 

5. round toWard zero to get the type speci?ed in the 
selected GQR; 

6. adjust the resulting value on over?oW; and 
7. store the converted value in the L1 cache. 
The adjusted result value for over?oW of unsigned inte 

gers is zero for negative values, 255 and 65535 for positive 
values, for 8 and 16 bit types, respectively. The adjusted 
result value for over?oW of signed integers is —128 and 
—32768 for negative values, 127 and 32767 for positive 
values, for 8 and 16 bit types, respectively. The converted 
value produced When the input operand is +Inf or NaN is the 
same as the adjusted result value for over?oW of positive 
values for the target data type. The converted value produced 
When the input operand is —Inf is the same as the adjusted 
result value for over?oW of negative values. For a single 
precision ?oating-point value, F, in an FPR, the integer value 
I, stored to memory, is I=ROUND(F*2**(S)), Where S is the 
tWos compliment value in the STiSCALE ?eld of the 
selected GQR, and ROUND applies the rounding and 
clamping appropriate to the particular target integer format. 
For a single-precision ?oating-point operand, the value from 
the FPR is passed directly to the L1 cache Without any 
conversion, except When this operand is a denorm. In the 
case of a denorm, the value 0.0 is stored in the L1 cache. 

It is noted that the above data quantization feature is only 
optional and exemplary in accordance With the instant 
invention. HoWever, its use can further improve the opera 
tion of the microprocessor 10 for certain applications. 
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In accordance With a further aspect of the invention, the 
microprocessor 10 is considered to be a decoder and execu 
tor for the particular instructions described herein. Thus, part 
of the instant invention involves providing an instruction 
decoder and executor for the neW instructions de?ned in the 
above description of the invention. The invention, hoWever, 
is not limited to a hardWare decoder or executor, such as a 
microprocessor, but also covers softWare decoders and 
executors provided by, for example, a virtual machine, such 
as a softWare emulator of the instant microprocessor. In 
other Words, the invention also relates to softWare emulators 
that emulate the operation of the instant microprocessor by 
decoding and executing the particular instructions described 
herein. The invention further relates to a storage medium, 
such as a compact disk Which stores any or all of the unique 
instructions described herein, thereby enabling a micropro 
cessor or virtual machine to operate in accordance With the 
invention described herein. 
As can be seen from the description above, the instant 

invention enables fast and ef?cient processing of mixed 
vector and scalar operations in a vector processing 
environment, thereby reducing the overhead and improving 
the speed at Which these and similar instructions can be 
executed by a vector processing unit, such as a paired singles 
unit or any other vector processor operating on vectors With 
any dimension. It is noted that the instant invention is 
particularly advantageous When implemented in loW cost, 
high performance microprocessors, such as microprocessors 
designed and intended for use in videogame consoles for 
household use or the like. 

While the preferred forms and embodiments have been 
illustrated and described herein, various changes and modi 
?cation may be made to the exemplary embodiment Without 
deviating from the scope of the invention, as one skilled in 
the art Will readily understand from the description herein. 
Thus, the above description is not meant to limit the scope 
of the appended claims beyond the true scope and sprit of the 
instant invention as de?ned herein. 
What is claimed is: 
1. An information processor, including a decoder for 

decoding instructions including at least some graphics 
instructions and at least one paired singles instruction, 
Wherein the decoder is operable to decode a 32-bit paired 
single-scalar-vector-multiply-add-high (psfmaddsOx) 
instruction Wherein a high order Word of a paired singles 
register is used as a scalar, and further Wherein the 
psfmaddsOx instruction includes bits 0 through 31, Wherein 
bits 0—5 encode a primary op code of 4, bits 6—10 designate 
a ?oating point destination register for storing the results of 
the instruction, bits 11—15 designate a ?rst ?oating point 
register as a ?rst source storing a ?rst pair of 32-bit single 
precision ?oating point values, bits 16—20 designate a sec 
ond ?oating point register as a second source storing a 
second pair of 32-bit single-precision ?oating point values, 
bits 21—25 designate a third ?oating point register as a third 
source storing a third pair of 32-bit single-precision ?oating 
point values, bits 26—30 encode a secondary op code of 14 
and bit 31 comprises a record bit indicating updating of a 
condition register, and further Wherein the secondary op 
code indicates that the high order Word is to be used as the 
scalar. 

2. The information processor of claim 1, Wherein the 
decoder is further operable to decode a 32-bit paired-single 
scalar-vector-multiply-add-loW (psimaddslx) instruction 
Wherein a loW order Word of a paired singles register is used 
as a scalar, and further Wherein the psimaddslx instruction 
includes bits 0 through 31, Wherein bits 0—5 encode a 
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primary op code of 4, bits 6—10 designate a ?oating point 
destination register for storing the results of the instruction, 
bits 11—15 designate a ?rst ?oating point register as a ?rst 
source storing a ?rst pair of 32-bit single-precision ?oating 
point values, bits 16—20 designate a second ?oating point 
register as a second source storing a second pair of 32-bit 
single-precision ?oating point values, bits 21—25 designate 
a third ?oating point register as a third source storing a third 
pair of 32-bit single-precision ?oating point values, bits 
26—30 encode a secondary op code of 15 and bit 31 
comprises a record bit indicating updating of a condition 
register, and further Wherein the secondary op code indicates 
that the loW order Word is to be used as the scalar. 

3. The information processor of claim 2, Wherein the 
decoder is further operable to decode a special purpose 
register command bit pattern including a special purpose 
register bit encoding Whether paired singles operation is 
enabled, Wherein the special purpose register bit is the third 
bit in the bit pattern. 

4. A decoder for decoding instructions including at least 
some graphics instructions, Wherein the decoder is operable 
to decode: 

a 32-bit paired-single-scalar-vector-multiply-add-high 
(psfmaddsOx) instruction Wherein a high order Word 
of a paired singles register is used as a scalar, and 
further Wherein the psfmaddsOx instruction includes 
bits 0 through 31, Wherein bits 0—5 encode a primary op 
code of 4, bits 6—10 designate a ?oating point destina 
tion register for storing the results of the instruction, 
bits 11—15 designate a ?rst ?oating point register as a 
?rst source storing a ?rst pair of 32-bit single-precision 
?oating point values, bits 16—20 designate a second 
?oating point register as a second source storing a 
second pair of 32-bit single-precision ?oating point 
values, bits 21—25 designate a third ?oating point 
register as a third source storing a third pair of 32-bit 
single-precision ?oating point values, bits 26—30 
encode a secondary op code of 14 and bit 31 comprises 
a record bit indicating updating of a condition register, 
and further Wherein the secondary op code indicates 
that the high order Word is to be used as the scalar. 

5. The decoder of claim 4, Wherein the decoder is further 
operable to decode a 32-bit paired-single-scalar-vector 
multiply-add-loW (psimaddslx) instruction Wherein a loW 
order Word of a paired singles register is used as a scalar, and 
further Wherein the psimaddslx instruction includes bits 0 
through 31, Wherein bits 0—5 encode a primary op code of 
4, bits 6—10 designate a ?oating point destination register for 
storing the results of the instruction, bits 11—15 designate a 
?rst ?oating point register as a ?rst source storing a ?rst pair 
of 32-bit single-precision ?oating point values, bits 16—20 
designate a second ?oating point register as a second source 
storing a second pair of 32-bit single-precision ?oating point 
values, bits 21—25 designate a third ?oating point register as 
a third source storing a third pair of 32-bit single-precision 
?oating point values, bits 26—30 encode a secondary op code 
of 15 and bit 31 comprises a record bit indicating updating 
of a condition register, and further Wherein the secondary op 
code indicates that the loW order Word is to be used as the 
scalar. 

6. The decoder of claim 5, Wherein the decoder is further 
operable to decode a special purpose register command bit 
pattern including a special purpose register bit encoding 
Whether paired singles operation is enabled, Wherein the 
special purpose register bit is the third bit in the bit pattern. 

7. A storage medium storing a plurality of instructions 
including at least some graphics instructions and a 32-bit 
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paired-single-scalar-vector-multiply-add-high (psi 
maddsOX) instruction wherein a high order Word of a paired 
singles register is used as a scalar, and further Wherein the 
psimaddsOX instruction includes bits 0 through 31, Wherein 
bits 0—5 encode a primary op code of 4, bits 6—10 designate 
a ?oating point destination register for storing the results of 
the instruction, bits 11—15 designate a ?rst ?oating point 
register as a ?rst source storing a ?rst pair of 32-bit single 
precision ?oating point values, bits 16—20 designate a sec 
ond ?oating point register as a secondsource storing a 
second pair of 32-bit single-precision ?oating point values, 
bits 21—25 designate a third ?oating point register as a third 
source storing a third pair of 32-bit single-precision ?oating 
point values, bits 26—30 encode a secondary op code of 14 
and bit 31 comprises a record bit indicating updating of a 
condition register, and further Wherein the secondary op 
code indicates that the high order Word is to be used as the 
scalar. 

8. The storage medium of claim 7, further storing a 32-bit 
paired-single-scalar-vector-multiply-add-loW (psi 
madds1X) instruction Wherein a loW order Word of a paired 
singles register is used as a scalar, and further Wherein the 
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psimaddslx instruction includes bits 0 through 31, Wherein 
bits 0—5 encode a primary op code of 4, bits 6—10 designate 
a ?oating point destination register for storing the results of 
the instruction, bits 11—15 designate a ?rst ?oating point 
register as a ?rst source storing a ?rst pair of 32-bit single 
precision ?oating point values, bits 16—20 designate a sec 
ond ?oating point register as a second source storing a 
second pair of 32-bit single-precision ?oating point values, 
bits 21—25 designate a third ?oating point register as a third 
source storing a third pair of 32-bit single-precision ?oating 
point values, bits 26—30 encode a secondary op code of 15 
and bit 31 comprises a record bit indicating updating of a 
condition register, and further Wherein the secondary op 
code indicates that the loW order Word is to be used as the 
scalar. 

9. The storage medium of claim 8, Wherein the storage 
medium further stores a special purpose register command 
bit pattern including a special purpose register bit encoding 
Whether paired singles operation is enabled, Wherein the 
special purpose register bit is the third bit in the bit pattern. 

* * * * * 


