
(12) United States Patent
Liao et al.

US006571328B2

US 6,571,328 B2
May 27, 2003

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)
(22)
(65)

(63)

(51)
(52)

(58)

(56)

METHOD AND APPARATUS FOR
OBTAINING A SCALAR VALUE DIRECTLY
FROM A VECTOR REGISTER

Inventors: Yu-Chung C. Liao, Austin, TX (US);
Peter A. Sandon, Essex Junction, VT
(US); Howard Cheng, Sammamish,
WA (US); Timothy J. Van Hook,
Atherton, CA (US)

Assignee: Nintendo Co., Ltd., Kyoto (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 42 days.

Appl. No.: 09/919,451

Filed: Aug. 1, 2001

Prior Publication Data

US 2002/0032848 A1 Mar. 14, 2002

Related US. Application Data

Continuation of application No. 09/545,183, ?led on Apr. 7,
2000.

Int. Cl.7 G06F 9/38

US. Cl. 712/35; 712/36; 712/22;

712/4
Field of Search 712/35, 36, 22,

712/24, 221, 222, 4—5; 708/523, 524

References Cited

U.S. PATENT DOCUMENTS

4,388,620 A 6/ 1983 Sherman
4,425,559 A 1/1984 Sherman
4,541,046 A 9/1985 Nagashima et al.
4,570,233 A 2/1986 Yan et al.
4,658,247 A 4/1987 Gharachorloo
4,725,831 A 2/ 1988 Coleman
4,829,295 A 5/1989 Hiroyuki
4,841,438 A 6/1989 Yoshida et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

CA 2070934 12/1993
EP 1 074 945 2/2001
EP 1 075 146 2/2001
EP 1 081 649 3/2001
JP 11053580 2/1999
JP 11076614 3/1999
JP 11161819 6/1999
JP 11203500 7/1999

(List continued on next page.)

OTHER PUBLICATIONS

Photograph of Sony PlayStation II System, No Date Pro
vided.

Photograph of Sega Dreamcast System, No Date Provided.
Photograph of Nintendo 64 System, No Date Provided.
Whitepaper: 3D Graphics Demysti?ed, Nov. 11, 1999,
WWW.nvidia.com.

Whitepaper: “Z Buffering, Interpolation and More
W—Buffering”, Doug Rogers, Jan. 31, 2000, WWW.nvidi
a.com.

(List continued on next page.)

Primary Examiner—Richard L. Ellis
(74) Attorney, Agent, or Firm—Nixon & Vanderhye PC.

(57) ABSTRACT

A method and apparatus for obtaining a scalar value from a
vector register for use in a mixed vector and scalar
instruction, including providing a vector in a vector register
?le, and embedding a location identi?er of the scalar value
Within the vector in the bits de?ning the mixed vector and
scalar instruction. The scalar value can be used directly from
the vector register Without the need to load the scalar to a
scalar register prior to executing the instruction. The scalar
location identi?er may be embedded in the secondary op
code of the instruction, or the instruction may have dedi
cated bits for providing the location of the scalar Within the
vector.

9 Claims, 6 Drawing Sheets

format used by paired
singles and single

precision instructions

format used by double
precision instructions

Floating Point Float point register format
Register File 44a

44b P50 PS1
l l l

26 32 bit single precision 32 bit single precision
\ register register

32 64bit ?oating
point registers

64 bit double precision register

42

ps_madds0x
Paired Single Multiply-Add Scalar High

frD, frA, frC, frB (Rc=0)

lrD, frA, irC, frB (Re=1)

psimaddso

ps_madds0.

III-“BEER!
O 56 1516 2021 2526 3031

US 6,571,328 B2
Page 2

US. PATENT DOCUMENTS 5,931,945 A 8/1999 Yung et al.
5,933,157 A 8/1999 Van Hook et al.

4,862,392 A 8/1989 Steiner 5,933,650 A 8/1999 Van Hook et al.
4,866,637 A 9/1989 Gonzalez-Lopez et al. 5,938,756 A 8/1999 Van Hook et a1_
4,881,168 A 11/1989 Inagami er 91- 5,940,086 A 8/1999 Rentschler et al.
4,901,064 A 2/1990 Deering 5,946,496 A 8/1999 Sugumar et al.
4,914,729 A 4/1990 Omori 9t 91- 5,949,424 A 9/1999 Cabral et al.
4945500 A 7/1990 Deming 5,949,440 A 9/1999 Krech, Jr. et al.
5,073,970 A 12/1991 Aoyama 9t 91- 5,954,815 A 9/1999 Joshietal.
5,136,664 A 8/1992 Bersack er 91- 5,969,726 A 10/1999 Rentschler et al.
5,170,468 A 12/1992 Shah et al. 5982939 A 11/1999 Van Hook
5,201,058 A 4/1993 Kinoshita et al. 5,999,196 A 12/1999 Storm et aL
5,226,171 A 7/1993 Hall et al. 6,002,409 A 12/1999 Harkin
5,247,691 A 9/1993 Sakai 6,006,315 A 12/1999 Park
5,261,113 A 11/1993 Jouppi 6,023,738 A 2/2000 Priem et al.
5,299,320 A 3/1994 Aono et al. 6,025,853 A 2/2000 Baldwin
5,392,385 A 2/1995 Evangelisti et al. 6,028,611 A 2/2000 Anderson et aL
5392393 A 2/1995 Deering 6,037,949 A 3/2000 DeRose et al.
5,418,973 A 5/1995 Ellis et al. 6,057,852 A 5/2000 Krech’]r_
5,421,028 A 5/1995 Swanson 6,058,465 A 5/2000 Nguyen
5,423,051 A 6/1995 Fuller 9t 91- 6,075,906 A 6/2000 Fenwick et al.
5,426,754 A 6/1995 Grim er 91- 6,092,124 A 7/2000 Priem et al.
5,430,884 A 7/1995 Beard 9t 91- 6,098,162 A 8/2000 Schif?eger et al.
5,457,775 A 10/1995 Johnson, Jr. et al. 6,141,673 A 10/2000 Thayer et aL
5504917 A 4/1996 Austin 6,166,748 A 12/2000 Van Hook et al.
5510934 A 4/1996 Brennan 9t 91- 6,167,507 A 12/2000 Mahalingaiah et al.
5513366 A 4/1996 Agalwal 9t 91- 6,173,367 B1 1/2001 Aleksic et al.
5,517,666 A 5/1996 Ohtani et al. 6,181,352 B1 1/2001 Kirk et a1_
5526504 A 6/1996 H511 er 91- 6,198,488 B1 3/2001 Lindholm et al.
5,530,881 A 6/1996 Inagami 9t 91- 6,226,012 B1 5/2001 Priem etal.
5,537,538 A 7/1996 Bratt et al.
5,537,606 A 7/1996 Byrne FOREIGN PATENT DOCUMENTS
5,561,808 A 10/1996 Kuma et al.
5,572,704 A 11/1996 Bratt et al. JP 11226257 8/1999
5,574,924 A 11/1996 Yoshinaga et al. JP 11259671 9/1999
5,594,854 A 1/1997 Baldwin et al. JP 11259678 9/1999
5,604,909 A 2/1997 Joshi et al. JP 200966985 3/2000
5,608,424 A 3/1997 Takahashi et al. JP 2000-92390 3/2000
5,625,834 A 4/1997 Nishikawa JP 2000432704 5/2000
5,632,025 A 5/1997 Bratt et al. JP 2000432706 5/2000
5,638,500 A 6/1997 Donovan et al. JP 2000449053 5/2000
5,659,706 A 8/1997 Beard et al. JP 2000456875 6/2000
5,669,013 A 9/1997 Watanabe et al. JP 2000482077 6/2000
5,673,407 A 9/1997 Poland et al. JP 2009207582 7/2000
5,687,357 A 11/1997 Priem JP 2009215325 8/2000
5,689,653 A 11/1997 Karp et al. W0 W0 94/10641 5/1994
5,701,444 A 12/1997 Baldwin
5,721,947 A 2/1998 Priem et al. OTHER PUBLICATIONS

2 \Blgildgggk et a1‘ Whitepaper: Using GLiNVivertexiarray and GLiNVi
5:740j402 A 4/1998 Bratt et aL fence, posted Aug. 1, 2000, www.nvidia.corn.
5,742,277 A 4/1998 Gossett et a1_ Whitepaper: Anistropic Texture Filtering in OpenGL, posted
5,742,842 A 4/1998 Suetake et al. Jul. 17, 2000, www.nvidia.corn.
5,758,182 A 5/1998 Rosentllal et a1~ Whitepaper: Mapping Texels to Pixels in D3D, posted Apr.
5,764,243 A 6/1998 Baldwin 5, 2000, WWW_nVidia_COm_

2 ‘131515315? a1‘ Whitepaper: Guard Band Clipping, posted Jan. 31, 2000,
5,774,133 A 6/1998 Neave et al. www-nvldla-com
5,777,629 A 7/1998 Baldwin Whitepaper: Cube Environment Mapping, posted Jan. 14,
5,798,770 A 8/1998 Baldwin 2000, www.nvidia.corn.
57801706 A 9/1998 Flllita etal- Whitepaper: Color Key in D3D, posted Jan. 11, 2000,

2812222 211222 5:812:147 A 9/1998 VairpHZOk et aL Whitepaper: Vertex Blending Under DX7 for the GeForce
5,815,166 A 9/1998 Baldwin 256, Jan. 5, 2000, WWW.nVidia.COIn.
5,821,949 A 10/1998 Deering Whitepaper: OptirniZing Direct3D for the GeForce 256, Jan.

A Schif?eger Ct 8.1. 3, WWW'nVidia_COm_

2 $333121? a1‘ Whitepaper: Dot Product Texture Blending, Dec. 3, 1999,
5,898,882 A 4/1999 Kahle et al. WWW~nV1d1a~C°m~
5,917,496 A 6/1999 Fujita et a1_ Whitepaper: Technical Brief: AGP 4X with Fast Writes,
5,920,326 A 7/1999 Rentschler et al. Nov. 10, 1999, www.nvidia.corn.

US 6,571,328 B2
Page 3

Technical Brief: Transform and Lighting, Nov. 10, 1999,
WWW.nvidia, com.
Technical Brief: What’s NeW With Microsoft DirectX7,
posted Nov. 10, 1999, WWW.nvidia.com.
Mitchell et al., “Multitexturing in DirectX6”, Game Devel
oper, Sep. 1998, WWW.gdmag.com.
VisionTek, “GeForce2 GS Graphics Processing Unit”,
@2000 WWW.visiontek.com.
Jim Bushnell et al. “Advanced Multitexture Effects With
Direct3D and OpenGL”, Pyramid Peak Design & ATI
Research, Inc., GameDevelopers Conference, @1999.
Sony PlayStation II Instruction Manual, Sony Computer
Entertainment Inc., @2000.
Stand and Be Judged, Next Generation, May 2000.
PlayStation II: HardWare Heaven or Hell‘), Next Generation,
Jan. 2000.
Chris Charla, “Play Station II: The Latest NeWs”, Next
Generation, Sep. 1999.
“First PlayStation II Gameplay Screens Revealed!”, Next
Generation, Sep. 1999.
Game Enthusiast Online Highlights, Mar. 18, 1999.
Game Enthusiast Online Highlights, Mar. 19, 1999.
Game Enthusiast Online Highlights, Mar. 17, 1999.
Game Enthusiast Online Highlights, Oct. 20, 1999.
Joel Easley, “PlayStation II Revealed”, Game Week, Sep.
29, 1999.
Inside Sony’s Next Generation Playstation, @1999.
Press Releases, Mar. 18, 1999.
Chris Johnston, “PlayStation Part Deux”, Press Start,
@1999.
Nikkei Shimbun, “Sony Making SME, Chemical and SPT
into Wholly—OWned Subsidiaries”, Mar. 9, 1999.
AM NeWs: Japanese Developers Not All Sold on PS2, Next
Generation, Mar. 16, 1999.
Sony To Turn PlayStation Maker Into Wholly OWned Unit—
Nikkei, DoW Jones NeWs Service, Mar. 8, 1999.
Yumiko Ono, Sony Antes Up Its Chips In Bet On NeW Game
System, DoW Jones NeWs Service, Mar. 4, 1999.
MacWeek.Com Gets Inside Story on Connectix VGS for
WindoWs; Controversial Emulator of Sony PlayStation
Games Cureently Available for Macs Only, Business Wire,
Mar. 12, 1999.
“DexDrive Bridges Gap”, The Tampa Tribune, Mar. 12,
1999.
A Microprocessor With a 128b CPU 10 Floating—Point
MAC’s, 4 Floating—Point Dividers, and an MPEG2
Decoder, 1999 IEEE International Solid—State Circuits Con
ference, Feb. 16, 1999.
Dreamcast Instruction Manual, Sega Enterprises, Ltd.,
©1998.
“Sega To Launch Video Camera for Dreamcast”, Reuters
Business NeWs, Feb. 16, 2000.
David PescovitZ, “Dream On”, Wired, Aug. 1999.
Randy Nelson, “Dreamcast 101: Everything You Ever
Wanted To KnoW About Sega’s PoWerful NeW Console”,
Of?cial Sega Dreamcast MagaZine, Jun. 1999.
2D/3D Graphics Card User Manual, Guillemot @1999.
Nintendo 64 Instruction Booklet, Nintendo of America,
1998.
Steven Levy, “Here Comes PlayStation II”, NeWsWeek, Mar.
6, 2000.
David Sheff, “Sony Smackage: Test Driving The PlayStation
II”, Wired, Nov. 1999.

Introducing The Next Generation PlayStation, Sony Com
puter Entertainment Inc., ©1999.
Leadtek GTS, Aug. 3, 2000, WWW.hexus.net.
Voodoo 5 5500 RevieW, Jul. 26, 2000, WWW.hexus.net.
ATI Radeon 64 Meg DDR OEM, Aug. 19, 2000, WWW.hex
us.net.

Microsoft Xbox—The Future of Gaming, Microsoft Xbox
Performance Sheet, WWW.xbox.com, No Date Provided.
Robert L. Cook, “Shade Trees”, Computer Graphics, vol. 18,
No. 3, Jul. 1984.
Wang et al., “Second—Depth ShadoW Mapping”, Depart
ment of Computer Science, Univ. N.C, Chapel Hill, NC. pp.
1—7, No Date Provided.
Peercy et al., “Ef?cient Bump Mapping HardWare”, Com
puter Graphics Proceedings, Annual Conference Series,
1997.
Gustavo Oliveira, “Refractive Texture Mappig, Part One”,
WWW.gamasutra.com, Nov. 10, 2000.
John Schlag, Fast Embossing Effects on Raster Image Data,
Graphics Gems IV, Edited by Paul S. Heckbert, Computer
Science Department, Carnegie Mellon University, Academic
Press, Inc., 1994, pp. 433—437.
James F. Blinn, “Simulationof Wrinkled Surfaces,” Caltech/
JPL, pp. 286—292, SIGGRAPH 78 (1978).
Tomas Moller and Eric Haines “Real—Time Rendering”, AK
Paters, Ltd., @1999, pp. 127—142.
Technical Presentation: Vertex Buffers, posted Jun. 12,
2000, WWW.nvidia.com.
Technical Presentation: HardWare Transform and Lighting,
WWW.nvidia.com, posted Jun. 12, 2000.
Technical Presentation: HardWare Bump—mapping Choices
and Concepts, Jun. 7, 2000, WWW.nvidia.com.
Technical Presentation: HoW to Bump Map a Skinned
Polygonal Model, Jun. 7, 2000, WWW.nvidia.com.
Technical Presentation: Computations for HardWare Light
ing and Shading, Mar. 17, 2000, WWW.nvidia.com.
Technical Presentation: Practical Bump—mapping for
Today’s GPUs, Mar. 17, 2000 WWW.nvidia.com.
Technical Presentation: ShadoWs, Transparency, & Fog,
Mar. 17, 2000 WWW.nvidia.com.
Technical Presentation: GeForce 256 Register Combiners,
Mar. 17, 2000, WWW.nvidia.com.
Technical Presentation: TexGen & The Texture Matrix, Mar.
15, 2000 WWW.nvidia.com.
Technical Presentation: Toon Shading, Mar. 15, 2000,
WWW.nvidia.com.
Technical Presentation: D3D 7 Vertex Lighting, Mar. 15,
2000, WWW.nvidia.com.
Technical Presentation: Per—Pixel Lighting (by S. Dietrich)
Mar. 14, 2000 WWW.nvidia.com.
Technical Presentation: GeForce 256 and RIVA TNT Com
biners, Dec. 8, 1999, WWW.nvidia.com.
Technical Presentation: Vertex Cache OptimiZation, Nov.
12, 1999, WWW.nvidia.com.
Technical Presentation: Vertex Blending, Nov. 12, 1999,
WWW.nvidia.com.
Technical Presentation: HardWare Transform and Lighting,
Nov. 12, 1999, WWW.nvidia.com.
Technical Presentation: GeForce 256 OvervieW, Nov. 12,
1999, WWW.nvidia.com.
Technical Presentation: DirectX 7 and Texture Management,
Nov. 12, 1999 WWW.nvidia.com.
Technical Presentation: Dot Product Lighting, Nov. 12,
1999, WWW.nvidia.com.

US 6,571,328 B2
Page 4

Technical Presentation: Texture Coordinate Generation,
Nov. 3, 1999, WWW.nvidia.com.
Technical Presentation: Phong Shading and Lightmaps, Nov.
3, 1999, WWW.nvidia.com.
Technical Presentation: The ARBimultitexture Extension,
Nov. 3, 1999 WWW.nvidia.com.
Technical Presentation: Multitexture Combiners, Nov. 3,
1999, WWW.nvidia.com.
Technical Presentation: Emboss Bump Mapping, Nov. 3,
1999, WWW.nvidia.com.
Technical Presentation: HardWare Accelerated Anisotropic
Lighting, Nov. 3, 1999 WWW.nvidia.com.
Technical Presentation: Guard Band Clipping, Nov. 3, 1999,
WWW.nvidia.com.
The RenderMan Interface, Stephan R. Keith, Version 3.1,
Pixar Animation Studios, Sep. 1989.
The RenderMan Interface, Version 3.2, Pixar Animation
Studios, Jul. 2000, WWW.pixar.com.
NVIDIA Product OvervieW, “GeForce2Ultra”, NVIDIA
Corporation, Aug. 21, 2000, WWW.nvidia.com.
Duke, “Dreamcast Technical Specs”, Sega Dreamcast
RevieW, Sega, Feb. 1999, WWW.game—revolution.com.
Marlin RoWley, “GeForce 1 & 2 GPU Speed Tests”, May 11,
2000, WWW.g256.com.
“Dreamcast: The Full Story”, Next Generation, Sep. 1998.
DirectX 7.0 Programmer’s Reference, Microsoft Corpora
tion, 1995—1999 (as part of the DirctX 7.0 SDK on the
Companion CD included With “Inside Direct3D”, Microsoft
Programming Series, Peter J. Kovach, Microsoft Press,
1999).

“Inside Direct3D”, Microsoft Programming Series, Peter J.
Kovach, Microsoft Press, 1999.
“OpenGL Programming Guide, The Official Guide to Learn
ing OpenGL, Release 1”, Jackie Nieder, Tom David, Mason
Woo, Addison—Wesley Publishing Co., 1993.
“Procedural Elements for Computer Graphics,” Second Edi
tion, David F. Rogers, McGraW Hill, 1998.
“Real—Time Rendering,” Tomas Molleir, Eric Haines, AK
Peters, 1999.
“Computer Graphics, Principles and Practice,” Second Edi
tion, The Systems Programming Series, Foley, van Dam,
Fiener, Hughes, Addison Wesley, 1990.
“Principles of Three—Dimensional Computer Animation”,
Revised Edition, Michael O’Rourke, W.W. Norton & Com
pany, 1998.
Motorola Inc., “PoWerPC Microprocessor Family: The Pro
gramming Environments”, 1994.
IBM, “PoWerPC 740 and PoWerPC 750 RISC Microproces
sor Family User Manual”, 1998.
MIPS Technologies, Inc., Silicon Graphics Introduces
Enhanced MIPS® Architecture to Lead the Interactive Digi
tal Revolution—Future Digital Media Processors Will
Enable NeW World of High—Performance and LoW—Cost
Interactive Digital Applications, 1996.
Web Extension I: Survey of RISC Architectures, No Date
Provided.
MIPS V Instruction Set, No Date Provided.
MIPS Extention for Digital Media With 3D, Dec. 3, 1996.
IEEE, “SubWord Parallelism With MAX—2”, 1996.

U.S. Patent May 27, 2003 Sheet 1 0f 6 US 6,571,328 B2

Flg . 1 / 3

OP Code Register # Register # Register #

Scalar-Vector Scalar Register Source Vector Destination
Multiplication Register Register

4 5 6 7

Fig. 2 2

A0 A1 A2 A63

B0 B1 B2 B63

C0 C1 C:2 C63

D D D D 63

U.S. Patent May 27, 2003 Sheet 2 0f 6 US 6,571,328 B2

wmn 0 rgn 3_.m.mU PS U

V 8

2_ w
+ + a

8S 3 mr
e

v mum F DnnvB

40
-J

60X
BlU/CMA

‘

256K

%
V

e In C a m K 2 3

2_ 3
>

. -J

.ah n

U Wnlv .m HT w. BB

n o C:

n |
n n

.m U m d hlV ‘a. UhC D. wmm .m m? D
:

m

.% mt m ‘mm m yU o S

C ,

V U :4
e 8 m6

r 2_m aunuv
‘ nu 26 8B R

w

b
V H

1
w U 2_ a

v

L2 Cache

36/

1 a2 %a .

32K DCache/
Optional Local

Memory‘ Partition

12

U.S. Patent May 27, 2003 Sheet 3 0f 6 US 6,571,328 B2

H|D2 register bit settings

Bit(s)
0

4-7

8-31

Name
LSQE

WBE

PSE

LCE

DMAQL

Description
Load/Store quantized enable (non-indexed format)
0 psq_l[u] and psq_st[u] instructions are illegal

1 psq_l[u] and psq_st[u] instructions can be used

Write buffer enable

0 write buffer is disabled

1 write buffer enabled to gather non-cacheable data

Paired singles enabled
0 paired singles instructions are illegal

1 paired singles instructions can be used

Locked cache enable

0 Cache is not partitioned - 32 kB of normal cache

1 Cache is partitioned - 16 kB of normal cache and

16 kB of locked cache available

DMA queue length (read only)
the number of used queue positions in the DMA,

from O (queue empty) to 15 (queue full)
Reserved

U.S. Patent May 27, 2003 Sheet 5 0f 6 US 6,571,328 B2

46

Op Code Register # N Position Bit(s) Register # Register #

Scalar-Vector Source Vector Position Bit Source Vector Destination
Multiplication Register 1 Register 2 Vector Register

/ / / / /
48 5O 52 54 56

F lg. 6

ps_addx

Paired Single Add

ps_add frD, frA, frB (Rc=0)

ps_add_ frD, frA, frB (Rc=1)

4 D A B 00000 21 RC
0 56 1011 1516 2021 2526 3031

Fig. 7

U.S. Patent May 27, 2003 Sheet 6 6f 6 US 6,571,328 B2

ps_maddsOx
Paired Single Multiply-Add Scalar High

ps_maddsO frD, frA, frC, frB (Rc=0)

ps_maddsO. frD, frA, frC, frB (Rc=1)

4 D A B C 14 RC

0 56 1011 1516 2021 2526 3031

frD_psO = frA_psO * frC_psO + frB_psO

frD_ps1 = frA_ps1 * frC_psO + frB_ps1

ps_madds1x
Paired Single Multiply-Add Scalar Low

ps_madds1 frD, frA, frC, frB (Rc=0)

ps_madds1. frD, frA, frC, frB (Rc=1)

4 D A B C 15 RC

0 56 1011 1516 2021 2526 3031

frD_psO = frA_psO * frC_ps1 + frB_psO

frD_ps1 = frA_ps1 * frC_ps1 + frB_ps1

Fig. 9

US 6,571,328 B2
1

METHOD AND APPARATUS FOR
OBTAINING A SCALAR VALUE DIRECTLY

FROM A VECTOR REGISTER

This application is a continuation of Ser. No. 09/545,184,
entitled “METHOD AND APPARATUS FOR SOFTWARE
MANAGEMENT OF ON-CHIP CACHE” and US. appli
cation Ser. No. 09/545,183 ?led on Apr. 7, 2000, entitled
“METHOD AND APPARATUS FOR EFFICIENT LOAD
ING AND STORING OF VECTORS”, ?led by the same
inventors on the same date as the instant application. Both
of these related cases are hereby incorporated by reference
in their entirety.

FIELD OF THE INVENTION

This invention relates to information processors, such as
microprocessors, and, more particularly, to a method and
apparatus Which improves the operational ef?ciency of
information processors having a vector processing unit by
enabling a scalar value to be directly selected from a vector
register for use, for example, in a mixed vector and scalar
operation.

BACKGROUND OF THE INVENTION

The electronic industry is in a state of evolution spurred
by the seemingly unquenchable desire of the consumer for
better, faster, smaller, cheaper and more functional elec
tronic devices. In their attempt to satisfy these demands, the
electronic industry must constantly strive to increase the
speed at Which functions are performed by data processors.
Videogame consoles are one primary example of an elec
tronic device that constantly demands greater speed and
reduced cost. These consoles must be high in performance
and loW in cost to satisfy the ever increasing demands
associated thereWith. The instant invention is directed to
increasing the speed at Which a vector processing units of
information processors can perform mathematical opera
tions When a scalar is needed from a vector register to
perform the operation.

Microprocessors typically have a number of execution
units for performing mathematical operations. One example
of an execution unit commonly found on microprocessors is
a ?xed point unit (FXU), also knoWn as an integer unit,
designed to execute integer (Whole number) data manipu
lation instructions using general purpose registers (GPRs)
Which provide the source operands and the destination
results for the instructions. Integer load instructions move
data from memory to GPRs and store instructions move data
from GPRs to memory. An exemplary GPR ?le may have 32
registers, Wherein each register has 32 bits. These registers
are used to hold and store integer data needed by the integer
unit to execute integer instructions, such as an integer add
instruction, Which, for example, adds an integer in a ?rst
GPR to an integer in a second GPR and then places the result
thereof back into the ?rst GPR or into another GPR in the
general purpose register ?le.

Another type of execution unit found on most micropro
cessors is a ?oating point unit (FPU), Which is used to
execute ?oating point instructions involving non-integers or
?oating point numbers. Floating point numbers are repre
sented in the form of a mantissa and an exponent, such as
602x103. A ?oating point register ?le containing ?oating
point registers (FPRs) is used in a similar manner as the
GPRs are used in connection With the ?xed point execution
unit, as explained above. In other Words, the FPRs provide
source operands and destination results for ?oating point

10

15

20

25

30

35

40

45

50

55

60

65

2
instructions. Floating point load instructions move data from
memory to FPRs and store instructions move data from
FPRs to memory. An exemplary FPR ?le may have 32
registers, Wherein each register has 64 bits. These registers
are used to hold and store ?oating point data needed by the
?oating point execution unit (FPU) to execute ?oating point
instructions, such as a ?oating point add instruction, Which,
for example, adds a ?oating point number in a ?rst FPR to
a ?oating point number in a second FPR and then places the
result thereof back into the ?rst FPR or into another FPR in
the ?oating point register ?le.

Microprocessor having ?oating point execution units
typically enable data movement and arithmetic operations
on tWo ?oating point formats: double precision and single
precision. In the example of the ?oating point register ?le
described above having 64 bits per register, a double pre
cision ?oating point number is represented using all 64 bits
of the FPR, While a single precision number only uses 32 of
the 64 available bits in each FPR. Generally, microproces
sors having single precision capabilities have single preci
sion instructions that use a double precision format.

For applications that perform loW precision vector and
matrix arithmetic, a third ?oating point format is sometimes
provided Which is knoWn as paired singles. The paired
singles capability can improve performance of an applica
tion by enabling tWo single precision ?oating point values to
be moved and processed in parallel, thereby substantially
doubling the speed of certain operations performed on single
precision values. The term “paired singles” means that the
?oating point register is logically divided in half so that each
register contains tWo single precision values. In the example
64-bit FPR described above, a pair of single precision
?oating point numbers comprising 32 bits each can be stored
in each 64 bit FPR. Special instructions are then provided in
the instruction set of the microprocessor to enable paired
single operations Which process each 32-bit portion of the 64
bit register in parallel. The paired singles format basically
converts the ?oating point register ?le to a vector register
?le, Wherein each vector has a dimension of tWo. As a result,
part of the ?oating point execution unit becomes a vector
processing unit (paired singles unit) in order to execute the
paired singles instructions.
Some information processors, from microprocessors to

supercomputers, have vector processing units speci?cally
designed to process vectors. Vectors are basically an array or
set of values. In contrast, a scalar includes only one value,
such as a single number (integer or non-integer). A vector
may have any number of elements ranging from 2 to 256 or
more. Supercomputers typically provide large dimension
vector processing capabilities. On the other hand, the paired
singles unit on the microprocessor described above involves
vectors With a dimension of only 2. In either case, in order
to store vectors for use by the vector processing unit, vector
registers are provided Which are similar to those of the GPR
and FPR register ?les as described above, except that the
register siZe corresponds to the dimension of the vector on
Which the vector processing unit operates. For example, if
the vector includes 64 values (such as integers or ?oating
point numbers) each of Which require 32 bits, then each
vector register Will have 2048 bits Which are logically
divided into 64 32-bit sections. Thus, in this example, each
vector register is capable of storing a vector having a
dimension of 64. FIG. 2 shoWs an exemplary vector register
?le 2 storing four 64 dimension vectors A, B, C and D.
A primary advantage of a vector processing unit With

vector register as compared to a scalar processing unit With
scalar registers is demonstrated With the folloWing example:

US 6,571,328 B2
3

Assume vectors A and B are de?ned to have a dimension of
64, ie A=(AO . . . A63) and B=(BO . . . B63). In order to
perform a common mathematical operation such as an add
operation using the values in vectors A and B, a scalar
processor Would have to execute 64 scalar addition instruc
tions so that the resulting vector Would be R=((A1+B1) . . .

(A63+B63)). Similarly, in order to perform a common opera
tion knoWn as DotiProduct, Wherein each corresponding
value in vectors A and B are multiplied together and then
each element in the resulting vector are added together to
provide a resultant scalar, 128 scalar instructions Would have
to be performed (64 multiplication and 64 addition). In
contrast, in vector processing a single vector addition
instruction and a single vector DotiProduct instruction can
achieve the same result. Moreover, each of the correspond
ing elements in the vectors can be processed in parallel When
executing the instruction. Thus, vector processing is very
advantageous in many information processing applications.
One problem, hoWever, that is encountered in vector

processing, is that sometimes it is desired to perform an
operation using a scalar value contained Within a vector
register. For example, some applications may require mixed
vector and scalar calculations, Wherein the scalar needed
(e.g. C10) to perform the calculation is a single element
Within a particular vector (e.g. C) stored in a vector register.
In other Words, While a vector processing unit may easily
execute a vector instruction Which adds vector A to B and

places the result in vector C (i.e. C=A+B), the vector
processing unit cannot directly perform a mixed vector and
scalar operation When the desired scalar is an element in a
vector register (i.e. D=C1O+A). The primary reason for this
limitation is that mixed scalar and vector instructions require
that the scalar used in the operation be stored is a scalar
register. In other Words, such instructions do not have the
ability to select a particular scalar element, such as C10, from
a vector register. FIG. 1 shoWs an exemplary format of prior
art instructions for mixed scalar and vector instructions.
As can be seen in FIG. 1, the typical format for a mixed

scalar and vector instruction 3 includes a primary op-code 4,
a scalar register address 5, a vector register address 6 and a
destination register address 7. The primary op-code identi
?es the particular type of instruction, such as vector-scalar
multiplication, and may, for example, comprise the most
signi?cant 6 bits (bits 0—5) of the instruction. The scalar
register address 5 provides the particular address of the
register in the GPR ?le that contains the scalar value needed
to execute the instruction. The vector register address 6
provides the particular address of the vector register in the
vector register ?le Which contains the vector needed to
execute the instruction. The destination register address 7
provides the location for the result of the operation. It is
noted that the instruction format 3 of FIG. 1 is only
exemplary and that prior art instructions may have other
formats and/or include other parts, such as a secondary
op-code, status bits, etc., as one skilled in the art Will readily
understand. HoWever, as explained above, regardless of the
particular format of the instruction, the instruction still
requires that a scalar register be used to store the scalar value
needed to execute the instruction.

As a result, if the required scalar is a particular element of
a vector register (e.g. C10), the entire vector register must
?rst be copied to memory in order to enable the desired
scalar (C10) to be loaded into a scalar register. In other
Words, the prior art provides no suitable mechanism for
enabling a scalar to be used from a vector register. Thus,
While such mixed scalar and vector instructions can be
performed, they require signi?cant overhead in terms of

10

15

25

35

45

55

65

4
time required to store the vector to memory and load the
scalar from memory to a scalar register, so that the scalar
register contains the required scalar value to execute the
instruction. Even assuming that the required vector is in a
cache (high speed on-chip memory), thereby eliminating the
need to access external memory, signi?cant overhead still
exists. For example, a typical cache may require approxi
mately 30—50 CPU clock cycles (a time unit by Which the
central processing unit (CPU) operates) to load data from a
64-bit 128 dimension vector. Moreover, if cache is not
available or if a cache miss occurs, the overhead Would be
approximately an order of magnitude higher to load or
access the vector in an external memory as compared to a
cache. Thus, large CPU cycle overhead is required to
execute an instruction that, Without the above limitations,
could execute in for example, as fast as 10 clock cycles, ie
40 to 100s of clock cycle overhead for a 10 cycle instruction.

Accordingly, a need exists for reducing the large overhead
associated With such mixed scalar and vector instructions, so
that the operations associated thereWith can be performed
faster and so that application performance can be improved.

SUMMARY OF THE INVENTION

The instant invention provides a mechanism and a method
for enabling mixed scalar and vector instructions to run
more ef?ciently and With less CPU cycle overhead by
eliminating the need to load a value from a vector register
into a scalar register in order to be used during execution of
the instruction. The invention provides an improved instruc
tion format Which may be used in connection With any
suitable type of data processor, from microprocessors to
supercomputers, having a vector processing unit in order to
improve the operational ef?ciency thereof.

In accordance With the invention, the improved instruc
tion format has an embedded bit or a plurality of embedded
bits that identify a particular element in a vector to be used
as a scalar during execution of the instruction. In this Way,
a mixed scalar and vector instruction can be executed
Without the need to load the scalar operand into a scalar or
general purpose register. By identifying, in the instruction,
the location of the scalar in the vector, the scalar can be
directly used from the vector register ?le for execution of the
instruction.

In accordance With a preferred embodiment of the
invention, the instruction format for mixed scalar and vector
operations includes a primary op code, a ?rst source vector
register address, a second source vector register address, a
destination register vector address, and at least one position
bit Which indicates the location of a desired scalar in one of
the vector registers needed to execute the instruction. The
number of bits needed to indicate the position of the desired
scalar Within a vector depends on the particular dimension of
the vector involved. For example, if the vector has a dimen
sion of 64, then six bits are needed to provide a unique
identi?er for the particular scalar Within the vector. In other
Words, if the dimension of the vector is 2”, then n bits are
needed, in this embodiment, to indicate the location of any
scalar Within the vector.

In another embodiment of the invention, the location of
the scalar Within the vector is determined based on the value
of a secondary op code in the instruction. It is noted,
hoWever, that the invention is not limited to any particular
implementation of the scalar position indicator in the
instruction. Instead, the invention covers any suitable Way in
Which the location of a scalar Within the vector can be
represented or embedded in the bit format comprising the
instruction.

US 6,571,328 B2
5

In a preferred embodiment, the invention is implemented
on a microprocessor, such as the microprocessors in IBM’s
PoWerPC (IBM Trademark) family of microprocessors
(hereafter “PoWerPC”), Wherein the microprocessor has
been modi?ed or redesigned to include a vector processing
unit, such as a paired singles unit. For more information on
the PoWerPC microprocessors see PowerPC 740 and Pow
erPC 750 RISC Microprocessor Family User Manual, IBM
1998 and PowerPC Microprocessor Family: The Program
ming Environments, Motorola Inc. 1994, both of Which are
hereby incorporated by reference in their entirety.

In the modi?ed PoWerPC example described above, the
paired singles operation may be selectively enabled by, for
example, providing a hardWare implementation speci?c
special purpose register (e.g. HID2) having a bit (e. g. 3’d bit)
Which controls Whether paired single instructions can be
executed. Other bits in the special purpose register can be
used, for example, to control other enhancement options that
may be available on the microprocessor.

The invention also provides speci?c instruction de?ni
tions for mixed vector and scalar operations. The invention
is also directed to a decoder, such as a microprocessor or a
virtual machine (e.g. softWare implemented hardWare
emulator), Which is capable of decoding any of all of these
particular instructions disclosed herein. The invention fur
ther relates to a storage medium Which stores any or all of
the particular instructions disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS:

Other objects, features and advantages of the instant
invention Will become apparent upon revieW of the detailed
description beloW When read in conjunction With the accom
panying draWings, in Which:

FIG. 1 shoWs a format of a conventional instruction Which
performs a mathematical operation involving a scalar and
vector;

FIG. 2 shoWs an exemplary representation of a vector
register ?le;

FIG. 3 shoWs an exemplary microprocessor and external
memory Which can be used to implement the instant inven
tion;

FIG. 4 is a table shoWing the de?nition of an exemplary
special purpose register (HID2) used to control paired single
operation of the vector processing unit, as Well as other
optional enhancements to the microprocessor of FIG. 3, in
accordance With one embodiment of the instant invention;

FIG. 5 is an illustration of the ?oating point register ?le
of the microprocessor of FIG. 3, Wherein tWo possible
?oating point formats for the registers are shoWn;

FIG. 6 shoWs a preferred embodiment of the format for an
instruction used to obtain a scalar value directly from a
vector register, in accordance With the instant invention;

FIG. 7 shoWs an exemplary paired single instruction
format Which only uses vectors; and

FIGS. 8 and 9 shoW exemplary paired single instructions
that enables a scalar to be directed used from a vector
register, in accordance With a preferred embodiment of the
instant invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS:

In the folloWing description, numerous speci?c details are
set forth regarding a preferred embodiment of the instant
invention. HoWever, the speci?c details are meant to be

10

15

25

35

45

55

65

6
exemplary only and are not meant to limit the invention to
the particular embodiment described herein. In other Words,
numerous changes and modi?cations may be made to the
described embodiment Without deviating from the true scope
and spirit of the instant invention, as a person skilled in the
art Will readily understand from revieW of the description
herein.

FIG. 3 is a diagram of a single-chip microprocessor 10 in
Which the present invention has been implemented, in accor
dance With one exemplary embodiment of the instant inven
tion. It is noted that FIG. 3 only shoWs a simpli?ed repre
sentation of a microprocessor, due to that fact that the
majority of the elements in the microprocessor, as Well as
their interconnection and operation, are Well knoWn to one
skilled in the art. Thus, in order not to obscure the instant
invention With details regarding knoWn elements, the draW
ings and description herein are presented in a simpli?ed
form and only to the extent necessary to provide a full
understanding of the instant invention for a person skilled in
the art.

The microprocessor 10 is connected, in a knoWn manner,
to an off-chip (external) memory 12 or main memory via an
address bus 14 and data bus 16. The external memory 12
contains data and/or instructions, such as 3D graphics
instructions, needed by the microprocessor 10 in order
perform desired functions. It is noted that the microproces
sor 10 and external memory 12 may be implemented in a
larger overall information processing system (not shoWn).
The microprocessor includes a control unit 18, ?xed point
units 20a and 20b, general purpose registers (GPRs) 22, a
load and store unit 24, ?oating point unit 28, paired single
unit (vector processing unit) 30 and ?oating point registers
26, all of Which generally interconnect and operate in a
knoWn manner. In addition, the microprocessor 10 includes
a level one instruction cache 32, a level one data cache 34,
a level tWo cache 36 With associated tags 38, and bus
interface unit (BIU) 40, all of Which may generally operate
in a conventional manner. HoWever, the data cache 34 and
the direct memory access unit may have special operations
as disclosed in copending US. patent application Ser. No.
09/545,184 entitled “Method and Apparatus for SoftWare
Management of On-Chip Cache” and ?led concurrently
hereWith by the same inventors and assignees. For additional
information on cache instructions for the PoWerPC see Zen
and the Art of Cache Maintenance, Byte Magazine, March
1997.
The structure and operation of this exemplary micropro

cessor 10 is similar to IBM’s PoWerPC microprocessors,
With certain modi?cations to implement the instant inven
tion. Details regarding the operation of most of the elements
of this exemplary microprocessor are found in the folloWing
publications: PowerPC 740 and PowerPC 750 RISC Micro
processor Family User Manual, IBM 1998 and PoWerPC
Microprocessor Family: The Programming Environments,
Motorola Inc. 1994. It is noted, hoWever, that the instant
invention may be implemented on any suitable data
processor, from a microprocessor to a supercomputer, to
improve vector operations using one or more scalar values
contained in one or more vector registers.

As indicted above, this exemplary microprocessor 10 is
an implementation of the PoWerPC microprocessor family
of reduced instruction set computer (RISC) microprocessors
With extensions to improve the ?oating point performance,
in accordance With the instant invention. The folloWing
provides a general overvieW of the operation of this exem
plary microprocessor 10 and is not intended to limit the
invention to any speci?c feature described.

US 6,571,328 B2
7

The exemplary microprocessor 10 implements the 32-bit
portion of the PoWerPC architecture, Which provides 32-bit
effective addresses, integer data types of 8, 16, and 32 bits,
and ?oating-point data types of single- and double
precision. In addition, the microprocessor extends the PoW
erPC architecture With the paired single-precision ?oating
point data type and a set of paired single ?oating point
instructions, as Will be described in greater detail beloW, The
microprocessor 10 is a superscalar processor that can com
plete tWo instructions simultaneously. It incorporates the
folloWing ?ve main execution units: 1) ?oating-point unit
(FPU) 28; 2) branch processing unit or control unit 18; 3)
System register unit (SRU) (not shoWn); 4) Load/store unit
(LSU) 24; and 5) TWo integer units (FXUs) 20a and 20b,
Wherein FXUl executes all integer instructions and FXU2
executes all integer instructions except multiply and divide
instructions. The ability to execute several instructions in
parallel and the use of simple instructions With rapid execu
tion times yield high ef?ciency and throughput for systems
using this exemplary microprocessor. Most integer instruc
tions execute in one clock cycle. The FPU is preferably
pipelined such that it breaks the tasks it performs into
subtasks, and then executes in three successive stages.
Typically, a ?oating-point instruction can occupy only one
of the three stages at a time, freeing the previous stage to
Work on the next ?oating-point instruction. Thus, three
single- or paired single-precision ?oating-point instructions
can be in the FPU execute stage at a time. Double-precision
add instructions have a three-cycle latency; double-precision
multiply and multiply-add instructions have a four-cycle
latency.

FIG. 3 shoWs the parallel organiZation of the execution
units. The control unit 18 fetches, dispatches, and predicts
branch instructions. It is noted that this is a conceptual
model that shoWs basic features rather than attempting to
shoW hoW features are implemented physically. The micro
processor 10 has independent on-chip, 32 Kbyte, eight-Way
set-associative, physically addressed caches for instructions
and data and independent instruction and data memory
management units. The data cache can be selectively con
?gured as a four-Way 16 KByte locked cache (softWare
controlled) and a four-Way 16 KByte normal cache. Each
memory management unit has a 128-entry, tWo-Way set
associative translation lookaside buffer that saves recently
used page address translations. Block address translation
(BAT) is done through four-entry instruction and data block
address translation arrays, de?ned by the PoWerPC archi
tecture. During block translation, effective addresses are
compared simultaneously With all four BAT entries. The L2
cache is implemented With an on-chip, tWo-Way set
associative tag memory 38, and an on-chip 256 Kbyte
SRAM 36 With ECC for data storage. The microprocessor
10 preferably has a direct memory access (DMA) engine to
transfer data from the external memory 12 to the optional
locked data cache 34b and to transfer data from the locked
data cache to the external memory. A Write gather pipe is
preferably provided for ef?cient non-cacheable store opera
tions.

The microprocessor 10 has a 32-bit address bus and a
64-bit data bus. Multiple devices compete for system
resources through a central external arbiter. The micropro
cessor’s three-state cache-coherency protocol (MEI) sup
ports the modi?ed, exclusive and invalid states, a compatible
subset of the MESI (modi?ed/exclusive/shared/invalid)
four-state protocol, and it operates coherently in systems
With four-state caches. The microprocessor supports single
beat and burst data transfers for external memory accesses
and memory-mapped I/O operations.

10

15

25

35

45

55

65

8
In the exemplary embodiment of FIG. 3, the micropro

cessor includes separate 32-Kbyte, eight-Way associative
instruction and data caches (32 and 34) to alloW the various
execution units (18, 20a, 20b, 28 and 30) and registers rapid
access to instructions and data, thereby reducing the number
of relatively sloW accesses to the external memory 12. The
caches preferably implement a pseudo least-recently-used
(PLRU) replacement algorithm for managing the contents of
the caches. The cache directories are physically addressed,
the physical (real) address tag being stored in the cache
directory. Both the instruction and data caches have 32-byte
cache block siZe, Wherein a cache block is the block of
memory that a coherency state describes (also referred to as
a cache line). TWo coherency state bits for each data cache
block alloW encoding for three states—Modi?ed (exclusive)
(M), Exclusive (unmodi?ed) (E), and Invalid (I)—thereby
de?ning an MEI three-state cache coherency protocol. A
single coherency state bit for each instruction cache block
alloWs encoding for tWo possible states: invalid (INV) or
Valid In accordance With the instant invention, each
cache can be invalidated or locked by setting the appropriate
bits in a hardWare implementation-dependent register (a
special purpose register described in detail beloW).
The microprocessor 10 preferably supports a fully

coherent 4-Gbyte physical address space. Bus snooping is
used to drive the MEI three-state cache coherency protocol
that ensures the coherency of global memory With respect to
the processor’s data cache. The data cache 34 coherency
protocol is a coherent subset of the standard MESI four-state
cache protocol that omits the shared state. The data cache 34
characteriZes each 32-byte block it contains as being in one
of three MEI states. Addresses presented to the cache are
indexed into the cache directory With bits A(20—26), and the
upper-order 20 bits from the physical address translation
(PA(0—19)) are compared against the indexed cache direc
tory tags. If neither of the indexed tags matches, the result
is a cache miss (required data not found in cache). On a
cache miss, the microprocessor cache blocks are ?lled in
four beats of 64 bits each. The burst ?ll is performed as a
critical-double-Word-?rst operation—the critical double
Word is simultaneously Written to the cache and forWarded
to the requesting unit, thus minimiZing stalls due to cache ?ll
latency. If a tag matches, a cache hit occurred and the
directory indicates that state of the cache block through tWo
state bits kept With the tag. The microprocessor 10 prefer
ably has dedicated hardWare to provide memory coherency
by snooping bus transactions.

Both caches 32 and 34 are preferably tightly coupled into
the bus interface unit (BUI) 40 to alloW ef?cient access to
the system memory controller and other potential bus mas
ters. The BUI 40 receives requests for bus operations from
the instruction and data caches, and executes operations per
the 60x bus protocol. The BUI 40 provides address queues,
prioritiZing logic and bus control logic. The BUI also
captures snoop addresses for data cache, address queue and
memory reservation operations. The data cache is preferably
organiZed as 128 sets of eight Ways, Wherein each Way
consists of 32 bytes, tWo state bits and an address tag. In
accordance With the instant invention, an additional bit may
be added to each cache block to indicate that the block is
locked. Each cache block contains eight contiguous Words
from memory that are loaded from an eight-Word boundary
(i.e., bits A(27—31) of the logical (effective) addresses are
Zero). As a result, cache blocks are aligned With page
boundaries. Address bits A(20—26) provide the index to
select a cache set. Bits A(27—31) select a byte Within a block.
The on-chip data cache tags are single ported, and load or

US 6,57l,328 B2

store operations must be arbitrated With snoop accesses to
the data cache tags. Load and store operations can be
performed to the cache on the clock cycle immediately
following a snoop access if the snoop misses. Snoop hits
may block the data cache for tWo or more cycles, depending
on Whether a copy-back to main memory 12 is required.

The level one (L1) caches (32 and 34) are preferably
controlled by programming speci?c bits in a ?rst special
purpose register (HIDO-not shoWn) and by issuing dedicated
cache control instructions. The HIDO special purpose reg
ister preferably contains several bits that invalidate, disable,
and lock the instructions and data caches. The data cache 34
is automatically invalidated When the microprocessor 10 is
poWered up and during a hard reset. HoWever, a soft reset
does not automatically invalidate the data cache. SoftWare
uses the HIDO data cache ?ash invalidate bit (HIDO(DCFI))
if the cache invalidation is desired after a soft reset. Once the
HIDO(DCFI) is set through move-to-special-purpose
register (mtspr) operation, the microprocessor automatically
clears this bit in the next clock cycle (provided that the data
cache is enabled in the HIDO register).

The data cache may be enabled or disabled by using the
data cache enable bit (HIDO(DCE)) Which is cleared on
poWer-up, disabling the data cache. When the data cache is
in the disabled state (HIDO(DCE)=0), the cache tag state bits
are ignored, and all accesses are propagated to the L2 cache
36 or 60x bus as single beat transactions. The contents of the
data cache can be locked by setting the data cache lock bit
(HIDO(DLOCK)). A data access that hits in a locked data
cache is serviced by the cache. HoWever, all accesses that
miss in the locked cache are propagated to the L2 cache 36
or 60x bus as single-beat transactions. The microprocessor
10 treats snoop hits in the locked data cache the same as
snoop hits in an unlocked data cache. HoWever, any cache
block invalidated by a snoop remains invalid until the cache
is unlocked. The instruction cache 32 operates in a similar
manner as the data cache described above, except that
different bits are used in the HIDO register for invalidation
and locking, i.e. instruction cache ?ash invalidate bit HIDO
(ICFI) and instruction cache lock bit HIDO(ILOCK).

The microprocessor 10 preferably includes another hard
Ware implementation-dependent special purpose register
(HID2) that, in accordance With the instant invention, is used
to enable the ?oating point unit to operate in paired singles
mode, i.e. enables the 64-bit FPRs to be treated as a pair of
32-bit registers containing tWo single precision ?oating
point numbers. Speci?cally, the HID2 register contains a
paired singles enable bit (PSE) that is used to enable paired
singles operation. An example de?nition for the HID2
register is shoWn in FIG. 4, Wherein bit number 2 is the PSE
bit for controlling paired single format. The other bits in the
HID2 register are used to control other enhanced features
that may be provided in the microprocessor 10, such as data
quantization, locked cache, Write buffering, and DMA queue
length as shoWn on FIG. 4. It is noted that, While FIG. 2
shoWs that bits 8—31 of the HID2 register are reserved, these
bits may be used to indicate, for example, cache instruction
hit error, DMA access to normal cache error, DMA cache
miss error, DMA queue length over?oW error, instruction
cache hit error enable, DMA cache miss error enable, and
DMA queue over?oW error enable.

When the HID2(PSE) bit is set to 1, paired singles
instructions can be used. Thus, the ?oating point unit 28 of
microprocessor 10 includes a paired singles unit 30 for
processing the tWo dimensional vectors de?ned by paired
singles. In other Words, the microprocessor 10 has the ability
to perform vector processing as described above, Wherein

15

25

35

45

55

65

10
the dimension of the vector is tWo. A?oating point status and
control register (FPSCR) is also provided Which contains
?oating point exception signal bits, exception summary bits,
exception enable bits, and rounding control bits needed for
compliance With the IEEE standard.

Thus, in addition to single- and double-precision
operands, When HID2(PSE)=1, the microprocessor 10 sup
ports a third format: paired singles. As shoWn in FIG. 5, the
64-bit registers in the ?oating point register ?le 26, Which
typically are treated as a single 64-bit register 42, are
converted to a pair of 32 bit registers 44a and 44b each being
operable to store a single precision (32-bit) ?oating point
number. The single-precision ?oating point value in the high
order Word is referred to herein as ps0, While the single
precision ?oating point value in the loW order Word is
referred to herein as ps1. Special instructions are provided in
the instruction set of the microprocessor 10 for manipulating
these operands Which alloW both values (ps0 and ps1) be
processed in parallel in the paired singles unit 30. For
example, a paired single multiply-add instruction (psimadd)
instruction may be provided that multiplies ps0 in frAby ps0
in frC, then adds it to ps0 in frB to get a result that is placed
in ps0 in frD. Simultaneously, the same operations are
applied to the corresponding ps1 values. Paired single
instructions may be provided Which perform an operation
comparable to one of the existing double-precision instruc
tions in provided in the PoWerPc instruction set. For
example, a fadd instruction adds double-precision operands
from tWo registers and places the result into a third register.
In the corresponding paired single instruction, psiadd, tWo
such operations are performed in parallel, one on the ps0
values, and one on the ps1 values. An exemplary format for
a psiadd instruction format is shoWn in FIG. 7, Wherein the
instruction includes 32 bits, and further Wherein bits 0—5
encode a primary op code of 4, bits 6—10 designate a ?oating
point destination register for storing a pair of 32-bit single
precision ?oating point values resulting from the paired
single ?oating point add instruction, bits 11—15 designate a
?oating point source register storing a pair of 32-bit single
precision ?oating point values, bits 16—20 designate a fur
ther ?oating point source register storing a pair of 32-bit
single-precision ?oating point values, bits 21—25 encode a
reserved ?eld of “00000”, bits 26—30 encode a secondary op
code of 21, and bit 31 comprises a record bit indicating
updating of a condition register.
Most paired single instructions produce a pair of result

values. The Floating-Point Status and Control Register
(FPSCR) contains a number of status bits that are affected by
the ?oating-point computation. FPSCR bits 15—19 are the
result bits. They may be determined by the result of the ps0
or the ps1 computation. When in paired single mode (HID2
(PSE)=1), all the double-precision instructions are still valid,
and execute as in non-paired single mode. In paired single
mode, all the single-precision ?oating-point instructions) are
valid, and operate on the ps0 operand of the speci?ed
registers.

In accordance With an important aspect of the instant
invention, special paired single instructions are provided
Which involve a combination of vector and scalar values
Without requiring that the scalar value be moved or located
in a scalar register in order to execute the instructions. More
particularly, in accordance With the invention, the location of
the scalar Within the vector is provided in the instruction
itself, thereby enabling the desired scalar to be directly used
from the vector.

FIGS. 8 and 9 shoW tWo exemplary instructions for
performing mixed vector and scalar operations, in accor

US 6,571,328 B2
11

dance With the instant invention. FIG. 8 is a paired-single
multiply-scalar-high instruction called psfmaddsOx. This
instruction is a paired single instruction Which performs a
scalar-vector multiply-add operation using ps0 (the high
order Word or ?rst single-precision value of the register) as
the scalar. The psfmaddsOx instruction includes 32 bits,
Wherein bits 0—5 encode a primary op code of 4, bits 6—10
designate a ?oating point destination register for storing the
results of the instruction, bits 11—15 designate a ?rst ?oating
point register as a ?rst source storing a ?rst pair of 32-bit
single-precision ?oating point values, bits 16—20 designate
a second ?oating point register as a second source storing a
second pair of 32-bit single-precision ?oating point values,
bits 21—25 designate a third ?oating point register as a third
source storing a third pair of 32-bit single-precision ?oating
point values, bits 26—30 encode a secondary op code of 14
and bit 31 comprises a record bit indicating updating of a
condition register. In this exemplary instruction, the location
of the scalar to be used is determined by the secondary op
code, indicates, among other things, that ps0 is be used as the
scalar. In other Words, the position of the scalar is embedded
in the secondary op code.
As can be seen in FIG. 8, in accordance With this

ps-maddsOx instruction, the ?oating-point operand in regis
ter frA(ps0) is multiplied by the ?oating-point operand in
register frC(ps0). Then, the ?oating-point operand in register
frB(ps0) is added to this intermediate result. If the most
signi?cant bit of the resultant signi?cand is not a one, the
result is normaliZed. The result is then rounded to single
precision under control of a ?oating-point rounding control
?eld RN of the FPSCR and is placed into frD(ps0). In
addition, the ?oating-point operand in register frA(ps1) is
multiplied by the ?oating-point operand in register frC(ps0).
Then, the ?oating-point operand in register frB(ps1) is
added to this intermediate result. If the most-signi?cant bit
of the resultant signi?cand is not a one, the result is
normaliZed. The result is then rounded to single-precision
under control of the ?oating-point rounding control ?eld RN
of the FPSCR and is placed into frD(ps1). FPSCR(FPRF) is
set to the class and sign of the ps0 result, except for invalid
operation exceptions When FPSCR(VE)=1.

FIG. 9 is a paired-single-multiply-scalar-loW instruction
called psimaddslx. This instruction is a paired single
instruction Which performs a scalar-vector multiply-add
operation using ps1 (the loW order Word or second single
precision value of the register) as the scalar. The
psimaddslx instruction includes 32 bits, Wherein bits 0—5
encode a primary op code of 4, bits 6—10 designate a ?oating
point destination register for storing the results of the
instruction, bits 11—15 designate a ?rst ?oating point register
as a ?rst source storing a ?rst pair of 32-bit single-precision
?oating point values, bits 16—20 designate a second ?oating
point register as a second source storing a second pair of
32-bit single-precision ?oating point values, bits 21—25
designate a third ?oating point register as a third source
storing a third pair of 32-bit single-precision ?oating point
values, bits 26—30 encode a secondary op code of 15 and bit
31 comprises a record bit indicating updating of a condition
register. In this exemplary instruction, the location of the
scalar to be used is determined by the secondary op code,
indicates, among other things, that ps1 is be used as the
scalar. In other Words, the position of the scalar is embedded
in the secondary op code.
As can be seen in FIG. 9, in accordance With this

ps-madds1x instruction, the ?oating-point operand in regis
ter frA(ps0) is multiplied by the ?oating-point operand in
register frC(ps1). The ?oating-point operand in register

10

15

25

35

45

55

65

12
frB(ps0) is then added to this intermediate product. If the
most-signi?cant bit of the resultant signi?cand is not a one,
the result is normaliZed. The result is then rounded to
single-precision under control of the ?oating-point rounding
control ?eld RN of the FPSCR and placed into frD(ps0). In
addition, the ?oating-point operand in register frA(ps1) is
multiplied by the ?oating-point operand in register frC(ps1).
The ?oating-point operand in register frB(ps1) is then added
to this intermediate product. If the most-signi?cant bit of the
resultant signi?cand is not a one, the result is normaliZed.
The result is then rounded to single-precision under control
of the ?oating-point rounding control ?eld RN of the FPSCR
and placed into frD(ps1). FPSCR(FPRF) is set to the class
and sign of the ps0 result, except for invalid operation
exceptions When FPSCR(VE)=1.

It is noted that in each of the examples provided above for
mixed vector and scalar instructions, the secondary op code
is used to indicate the particular scalar intended for use by
the instruction. HoWever, this implementation is only exem
plary and Was selected in this embodiment due to the fact
that the microprocessor 10 is based on the PoWerPC micro
processor. Thus, embedding of the location of the scalar in
the secondary op code is used in this example because it Was
the most convenient Way of implementing the invention
based on the existing circuitry found in the PoWerPC. Thus,
depending of the particular implementation of the invention,
the manner and location in Which the scalar location is
embedded in the instruction may change. In other Words, the
scalar location may take any suitable form in the instruction,
as long as the decoder thereof can identify the scalar Within
the vector needed to execute the instruction.

While the above embodiment of the invention describes a
particular microprocessor implementation of the instant
invention, the invention is in noW Way limited to use in a
microprocessor environment. In fact, the invention is appli
cable to any data processor, from microprocessors to
supercomputers, that includes a vector processing unit,
regardless of the dimension of the vectors operated thereon.
FIG. 6 shoWs an exemplary general format for a mixed
vector and scalar instruction 46 in accordance With the
instant invention. As shoWn in FIG. 6, this general bit format
includes a primary op code 48, a ?rst source vector register
location 50, position bit(s) 52, a second source vector
register location 54, and a destination vector register loca
tion 56. Thus, When FIG. 6 is compared to FIG. 1, a major
advantage of the instant invention can be seen, ie the
exemplary instruction format of the instant invention (FIG.
6) does not need to have the scalar value in a scalar register
as required by the prior art instruction format (see element
5 of FIG. 1). Thus, in accordance With the instant invention,
the need to store the vector register in memory (or cache)
and to load the scalar value from the stored vector into a
scalar register has been eliminated. In other Words, the
improved format of FIG. 6 enables a mixed scalar and vector
operation to be performed using only the vectors stored in
the vector registers, by using the information in the position
bit(s) to identify the location of the desired scalar in the
vector register.

In accordance With the invention, the number of bits
needed to indicate the position of the desired scalar Within
a vector depends on the particular dimension of the vector
involved. For example, if the vector has a dimension of 64,
then six bits are needed to provide a unique identi?er for the
particular scalar Within the vector. In other Words, if the
dimension of the vector is 2”, then n bits are needed, in this
embodiment, to indicate the location of any scalar Within the
vector.

US 6,571,328 B2
13

In accordance With the invention other mixed vector and
scalar instructions may be used Which embed the location of
the desired scalar in the bits of the instruction. For example,
scalar-vector multiply instructions may be used, Wherein the
bits in the instructions, such as the bits comprising the
secondary op code, indicate Whether ps0 or ps1 is to be used
as the scalar, e.g. psfmulsOx and psimulslx instructions.
Amain difference betWeen the instructions of FIGS. 8 and

9 and that of FIG. 6, is that, in FIGS. 8 and 9, the position
bits are basically embedded in the secondary op code. In
contrast, in the format of FIG. 6, certain dedicated bits 52 (N
position bits) are used to identify the location of the scalar
Within the vector. It is noted, hoWever, that the invention is
not limited to either of these approaches and may be
implemented by using any bits in the instruction to identify
the location of the scalar Within the vector. In other Words,
the invention covers any type of embedding of the position
bit in the instruction regardless of the particular location or
format of the position bit(s) or the instruction. The invention
may also be implemented in an type of vector processing
unit regardless of the type of date for Which the unit is
designed. For example, the invention may be used for
integer vectors as Well as for is ?oating point vectors.

In accordance With a preferred embodiment of the micro
processor of FIG. 3, in order to move data ef?ciently
betWeen the CPU and memory subsystems, certain load and
store instructions can preferably implicitly convert their
operands betWeen single precision ?oating point and loWer
precision, quantized data types. Thus, in addition to the
?oating-point load and store instructions de?ned in the
PoWerPC architecture, the microprocessor 10 preferably
includes eight additional load and store instructions that can
implicitly convert their operands betWeen single-precision
?oating-point and loWer precision, quantized data types. For
load instructions, this conversion is an inverse quantization,
or dequantization, operation that converts signed or
unsigned, 8 or 16 bit integers to 32 bit single-precision
?oating-point operands. This conversion takes place in the
load/store unit 24 as the data is being transferred to a
?oating-point register (FPR). For store instructions, the
conversion is a quantization operation that converts single
precision ?oating-point numbers to operands having one of
the quantized data types. This conversion takes place in the
load/store unit 24 as the data is transferred out of an FPR.
The load and store instructions for Which data quantization
applies are for paired single operands, and so are valid only
When HID2(PSE)=1. These neW load and store instructions
cause an illegal instruction exception if execution is
attempted When HID2(PSE)=0. Furthermore, the nonin
dexed forms of these loads and stores (psqil(u) and psqi
st(u)) are illegal unless HID2(LSQE)=1 as Well (see FIG. 4).
The quantization/dequantization hardWare in the load/store
unit assumes big-endian ordering of the data in memory. Use
of these instructions in little-endian mode Will give unde
?ned results. Whenever a pair of operands are converted,
they are both converted in the same manner. When operating
in paired single mode (HID2(PSE)=1), a single-precision
?oating-point load instruction Will load one single-precision
operand into both the high and loW order Words of the
operand pair in an FPR. A single-precision ?oating-point
store instruction Will store only the high order Word of the
operand pair in an FPR. preferably, tWo paired single load
(psqil, psqilu) and tWo paired single store (psqist, psqi
stu) instructions use a variation of the D-form instruction
format. Instead of having a 16 bit displacement ?eld, 12 bits
are used for displacement, and the remaining four are used
to specify Whether one or tWo operands are to be processed

15

25

35

45

55

65

14
(the 1 bit W ?eld) and Which of eight general quantization
registers (GQRs) is to be used to specify the scale and type
for the conversion (a 3 bit I ?eld). TWo remaining paired
single load (psqilx, psqilux) and the tWo remaining paired
single store (psqistx, psqistux) instructions use a variation
of the X-form instruction format. Instead of having a 10 bit
secondary op code ?eld, 6 bits are used for the secondary op
code, and the remaining four are used for the W ?eld and the
I ?eld.
An exemplary dequantization algorithm used to convert

each integer of a pair to a single-precision ?oating-point
operand is as folloWs:

1. read integer operand from L1 cache;
2. convert data to sign and magnitude according to type

speci?ed in the selected GQR;
3. convert magnitude to normalized mantissa and expo

nent;
4. subtract scaling factor speci?ed in the selected GQR

from the exponent; and
5. load the converted value into the target FPR.
For an integer value, I, in memory, the ?oating-point

value F, loaded into the target FPR, is F=I*2**(—S), Where
S is the tWos compliment value in the LDiSCALE ?eld of
the selected GQR. For a single-precision ?oating-point
operand, the value from the L1 cache is passed directly to the
register Without any conversion. This includes the case
Where the operand is a denorm.
An exemplary quantization algorithm used to convert

each single-precision ?oating-point operand of a pair to an
integer is as folloWs:

1. move the single-precision ?oating-point operand from
the FPR to the completion store queue;

2. add the scaling factor speci?ed in the selected GQR to
the exponent;

3. shift mantissa and increment/decrement exponent until
exponent is zero;

4. convert sign and magnitude to 2s complement repre
sentation;

5. round toWard zero to get the type speci?ed in the
selected GQR;

6. adjust the resulting value on over?oW; and
7. store the converted value in the L1 cache.
The adjusted result value for over?oW of unsigned inte

gers is zero for negative values, 255 and 65535 for positive
values, for 8 and 16 bit types, respectively. The adjusted
result value for over?oW of signed integers is —128 and
—32768 for negative values, 127 and 32767 for positive
values, for 8 and 16 bit types, respectively. The converted
value produced When the input operand is +Inf or NaN is the
same as the adjusted result value for over?oW of positive
values for the target data type. The converted value produced
When the input operand is —Inf is the same as the adjusted
result value for over?oW of negative values. For a single
precision ?oating-point value, F, in an FPR, the integer value
I, stored to memory, is I=ROUND(F*2**(S)), Where S is the
tWos compliment value in the STiSCALE ?eld of the
selected GQR, and ROUND applies the rounding and
clamping appropriate to the particular target integer format.
For a single-precision ?oating-point operand, the value from
the FPR is passed directly to the L1 cache Without any
conversion, except When this operand is a denorm. In the
case of a denorm, the value 0.0 is stored in the L1 cache.

It is noted that the above data quantization feature is only
optional and exemplary in accordance With the instant
invention. HoWever, its use can further improve the opera
tion of the microprocessor 10 for certain applications.

US 6,571,328 B2
15

In accordance With a further aspect of the invention, the
microprocessor 10 is considered to be a decoder and execu
tor for the particular instructions described herein. Thus, part
of the instant invention involves providing an instruction
decoder and executor for the neW instructions de?ned in the
above description of the invention. The invention, hoWever,
is not limited to a hardWare decoder or executor, such as a
microprocessor, but also covers softWare decoders and
executors provided by, for example, a virtual machine, such
as a softWare emulator of the instant microprocessor. In
other Words, the invention also relates to softWare emulators
that emulate the operation of the instant microprocessor by
decoding and executing the particular instructions described
herein. The invention further relates to a storage medium,
such as a compact disk Which stores any or all of the unique
instructions described herein, thereby enabling a micropro
cessor or virtual machine to operate in accordance With the
invention described herein.
As can be seen from the description above, the instant

invention enables fast and ef?cient processing of mixed
vector and scalar operations in a vector processing
environment, thereby reducing the overhead and improving
the speed at Which these and similar instructions can be
executed by a vector processing unit, such as a paired singles
unit or any other vector processor operating on vectors With
any dimension. It is noted that the instant invention is
particularly advantageous When implemented in loW cost,
high performance microprocessors, such as microprocessors
designed and intended for use in videogame consoles for
household use or the like.

While the preferred forms and embodiments have been
illustrated and described herein, various changes and modi
?cation may be made to the exemplary embodiment Without
deviating from the scope of the invention, as one skilled in
the art Will readily understand from the description herein.
Thus, the above description is not meant to limit the scope
of the appended claims beyond the true scope and sprit of the
instant invention as de?ned herein.
What is claimed is:
1. An information processor, including a decoder for

decoding instructions including at least some graphics
instructions and at least one paired singles instruction,
Wherein the decoder is operable to decode a 32-bit paired
single-scalar-vector-multiply-add-high (psfmaddsOx)
instruction Wherein a high order Word of a paired singles
register is used as a scalar, and further Wherein the
psfmaddsOx instruction includes bits 0 through 31, Wherein
bits 0—5 encode a primary op code of 4, bits 6—10 designate
a ?oating point destination register for storing the results of
the instruction, bits 11—15 designate a ?rst ?oating point
register as a ?rst source storing a ?rst pair of 32-bit single
precision ?oating point values, bits 16—20 designate a sec
ond ?oating point register as a second source storing a
second pair of 32-bit single-precision ?oating point values,
bits 21—25 designate a third ?oating point register as a third
source storing a third pair of 32-bit single-precision ?oating
point values, bits 26—30 encode a secondary op code of 14
and bit 31 comprises a record bit indicating updating of a
condition register, and further Wherein the secondary op
code indicates that the high order Word is to be used as the
scalar.

2. The information processor of claim 1, Wherein the
decoder is further operable to decode a 32-bit paired-single
scalar-vector-multiply-add-loW (psimaddslx) instruction
Wherein a loW order Word of a paired singles register is used
as a scalar, and further Wherein the psimaddslx instruction
includes bits 0 through 31, Wherein bits 0—5 encode a

10

15

25

35

45

55

65

16
primary op code of 4, bits 6—10 designate a ?oating point
destination register for storing the results of the instruction,
bits 11—15 designate a ?rst ?oating point register as a ?rst
source storing a ?rst pair of 32-bit single-precision ?oating
point values, bits 16—20 designate a second ?oating point
register as a second source storing a second pair of 32-bit
single-precision ?oating point values, bits 21—25 designate
a third ?oating point register as a third source storing a third
pair of 32-bit single-precision ?oating point values, bits
26—30 encode a secondary op code of 15 and bit 31
comprises a record bit indicating updating of a condition
register, and further Wherein the secondary op code indicates
that the loW order Word is to be used as the scalar.

3. The information processor of claim 2, Wherein the
decoder is further operable to decode a special purpose
register command bit pattern including a special purpose
register bit encoding Whether paired singles operation is
enabled, Wherein the special purpose register bit is the third
bit in the bit pattern.

4. A decoder for decoding instructions including at least
some graphics instructions, Wherein the decoder is operable
to decode:

a 32-bit paired-single-scalar-vector-multiply-add-high
(psfmaddsOx) instruction Wherein a high order Word
of a paired singles register is used as a scalar, and
further Wherein the psfmaddsOx instruction includes
bits 0 through 31, Wherein bits 0—5 encode a primary op
code of 4, bits 6—10 designate a ?oating point destina
tion register for storing the results of the instruction,
bits 11—15 designate a ?rst ?oating point register as a
?rst source storing a ?rst pair of 32-bit single-precision
?oating point values, bits 16—20 designate a second
?oating point register as a second source storing a
second pair of 32-bit single-precision ?oating point
values, bits 21—25 designate a third ?oating point
register as a third source storing a third pair of 32-bit
single-precision ?oating point values, bits 26—30
encode a secondary op code of 14 and bit 31 comprises
a record bit indicating updating of a condition register,
and further Wherein the secondary op code indicates
that the high order Word is to be used as the scalar.

5. The decoder of claim 4, Wherein the decoder is further
operable to decode a 32-bit paired-single-scalar-vector
multiply-add-loW (psimaddslx) instruction Wherein a loW
order Word of a paired singles register is used as a scalar, and
further Wherein the psimaddslx instruction includes bits 0
through 31, Wherein bits 0—5 encode a primary op code of
4, bits 6—10 designate a ?oating point destination register for
storing the results of the instruction, bits 11—15 designate a
?rst ?oating point register as a ?rst source storing a ?rst pair
of 32-bit single-precision ?oating point values, bits 16—20
designate a second ?oating point register as a second source
storing a second pair of 32-bit single-precision ?oating point
values, bits 21—25 designate a third ?oating point register as
a third source storing a third pair of 32-bit single-precision
?oating point values, bits 26—30 encode a secondary op code
of 15 and bit 31 comprises a record bit indicating updating
of a condition register, and further Wherein the secondary op
code indicates that the loW order Word is to be used as the
scalar.

6. The decoder of claim 5, Wherein the decoder is further
operable to decode a special purpose register command bit
pattern including a special purpose register bit encoding
Whether paired singles operation is enabled, Wherein the
special purpose register bit is the third bit in the bit pattern.

7. A storage medium storing a plurality of instructions
including at least some graphics instructions and a 32-bit

US 6,571,328 B2
17

paired-single-scalar-vector-multiply-add-high (psi
maddsOX) instruction wherein a high order Word of a paired
singles register is used as a scalar, and further Wherein the
psimaddsOX instruction includes bits 0 through 31, Wherein
bits 0—5 encode a primary op code of 4, bits 6—10 designate
a ?oating point destination register for storing the results of
the instruction, bits 11—15 designate a ?rst ?oating point
register as a ?rst source storing a ?rst pair of 32-bit single
precision ?oating point values, bits 16—20 designate a sec
ond ?oating point register as a secondsource storing a
second pair of 32-bit single-precision ?oating point values,
bits 21—25 designate a third ?oating point register as a third
source storing a third pair of 32-bit single-precision ?oating
point values, bits 26—30 encode a secondary op code of 14
and bit 31 comprises a record bit indicating updating of a
condition register, and further Wherein the secondary op
code indicates that the high order Word is to be used as the
scalar.

8. The storage medium of claim 7, further storing a 32-bit
paired-single-scalar-vector-multiply-add-loW (psi
madds1X) instruction Wherein a loW order Word of a paired
singles register is used as a scalar, and further Wherein the

10

15

18
psimaddslx instruction includes bits 0 through 31, Wherein
bits 0—5 encode a primary op code of 4, bits 6—10 designate
a ?oating point destination register for storing the results of
the instruction, bits 11—15 designate a ?rst ?oating point
register as a ?rst source storing a ?rst pair of 32-bit single
precision ?oating point values, bits 16—20 designate a sec
ond ?oating point register as a second source storing a
second pair of 32-bit single-precision ?oating point values,
bits 21—25 designate a third ?oating point register as a third
source storing a third pair of 32-bit single-precision ?oating
point values, bits 26—30 encode a secondary op code of 15
and bit 31 comprises a record bit indicating updating of a
condition register, and further Wherein the secondary op
code indicates that the loW order Word is to be used as the
scalar.

9. The storage medium of claim 8, Wherein the storage
medium further stores a special purpose register command
bit pattern including a special purpose register bit encoding
Whether paired singles operation is enabled, Wherein the
special purpose register bit is the third bit in the bit pattern.

* * * * *

