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(57) ABSTRACT 
A graphics system including a custom graphics and audio 
processor produces exciting 2D and 3D graphics and Sur 
round sound. The system includes a graphics and audio pro 
cessor including a 3D graphics pipeline and an audio digital 
signal processor. A memory controller performs a wide range 
of memory control related functions including arbitrating 
between various competing resources seeking access to main 
memory, handling memory latency and bandwidth require 
ments of the resources requesting memory access, buffering 
writes to reduce bus turn around, refreshing main memory, 
and protecting main memory using programmable registers. 
The memory controller minimizes memory read/write 
Switching using a "global write queue which queues write 
requests from various diverse competing resources. In this 
fashion, multiple competing resources for memory writes are 
combined into one resource from which write requests are 
obtained. Memory coherency issues are addressed both 
within a single resource that has both read and write capabili 
ties and among different resources by efficiently flushing 
write buffers associated with a resource. 
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GRAPHICS PROCESSING SYSTEM WITH 
ENHANCED MEMORY CONTROLLER 

CROSS-REFERENCES TO RELATED 
APPLICATIONS 

This application is a divisional of application Ser. No. 
09/726,220, filed Nov. 28, 2000, now U.S. Pat. No. 7,538,772 
which claims the benefit of provisional application No. 
60/226,894, filed on Aug. 23, 2000. The contents of these 
applications are incorporated herein in their entirety. 

BACKGROUND AND SUMMARY 

The present invention relates to computer graphics, and 
more particularly to interactive graphics systems such as 
home video game platforms. Still more particularly this 
invention relates to a memory controller for use in Such an 
interactive graphics system that controls resource access to 
main memory. 
Many of us have seen films containing remarkably realistic 

dinosaurs, aliens, animated toys and other fanciful creatures. 
Such animations are made possible by computer graphics. 
Using Such techniques, a computer graphics artist can specify 
how each object should look and how it should change in 
appearance overtime, and a computer then models the objects 
and displays them on a display Such as your television or a 
computer screen. The computer takes care of performing the 
many tasks required to make Sure that each part of the dis 
played image is colored and shaped just right based on the 
position and orientation of each object in a scene, the direc 
tion in which light seems to strike each object, the surface 
texture of each object, and other factors. 

Because computer graphics generation is complex, com 
puter-generated three-dimensional graphics just a few years 
ago were mostly limited to expensive specialized flight simu 
lators, high-end graphics workstations and Supercomputers. 
The public saw some of the images generated by these com 
puter systems in movies and expensive television advertise 
ments, but most of us couldn't actually interact with the 
computers doing the graphics generation. All this has 
changed with the availability of relatively inexpensive 3D 
graphics platforms such as, for example, the Nintendo 64(R) 
and various 3D graphics cards now available for personal 
computers. It is now possible to interact with exciting 3D 
animations and simulations on relatively inexpensive com 
puter graphics systems in your home or office. 

In generating exciting 3D animations and simulations on 
relatively inexpensive computer graphics systems, it is 
important to efficiently control access to main memory 
among competing resources. Any such access control system 
is burdened with considerable constraints. For example, the 
main application program executing CPU, which is but one of 
many resources seeking access to main memory, must be 
granted memory access with a fixed memory read latency 
allowing for high speed execution of instructions. Accord 
ingly, such a CPU should be awarded high priority access to 
main memory. In order to generate exciting graphics, certain 
graphics related resources seeking memory access must like 
wise be guaranteed high speed access to memory sufficient 
for the graphics processing to be rapidly completed. 
The present invention is embodied in the disclosed illus 

trative memory controller described herein, which performs a 
wide range of memory control related functions including 
arbitrating between various competing resources seeking 
access to main memory. Other tasks performed by the unique 
memory controller include handling memory latency and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
bandwidth requirements of the resources requesting memory 
access, buffering writes to reduce turn around, refreshing 
main memory, protecting main memory using programmable 
registers, and numerous other functions. 

In controlling memory access between resources seeking 
to read from and write to main memory, the memory control 
ler minimizes Switching between memory reads and memory 
writes to avoid wasting memory bandwidth due to idle cycles 
resulting from Such Switching and thereby enhancing 
memory access time. The illustrative memory controller 
minimizes such Switching by incorporating a unique write 
buffering methodology that uses a “global write queue 
which queues write requests from various diverse competing 
resources to reduce read/write Switching. In this fashion, 
multiple competing resources for memory writes are com 
bined into one resource from which write requests are 
obtained. 
The memory controller in accordance with the illustrative 

embodiment described herein, advantageously optimizes 
access to main memory taking into account resource memory 
latency and bandwidth requirements. 
The memory controller described herein uniquely resolves 

memory coherency issues to avoid accessing stale data from 
memory due to reading data from a main memory address 
location prior to when that same location had been updated by 
a write operation. Coherency issues are addressed both within 
a single resource that has both read and write capability and 
difference resources. The exemplary embodiment addresses 
such coherency issues by efficiently flushing buffers associ 
ated with a resource. For example, a resource that is writing to 
main memory may send a flush signal to the memory control 
ler to indicate that the resource's write buffer should be 
flushed. In accordance with an exemplary implementation, 
the memory controller generates a flush acknowledge hand 
shake signal to indicate to competing resources that data 
written to main memory is actually stored in main memory 
rather than in an associated resource buffer. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features and advantages provided by the 
invention will be better and more completely understood by 
referring to the following detailed description of presently 
preferred embodiments in conjunction with the drawings, of 
which: 

FIG. 1 is an overall view of an example interactive com 
puter graphics system; 

FIG. 2 is a block diagram of the FIG. 1 example computer 
graphics System; 

FIG. 3 is a block diagram of the example graphics and 
audio processor shown in FIG. 2; 

FIG. 4 is a block diagram of the example 3D graphics 
processor shown in FIG. 3; 

FIG. 5 is an example logical flow diagram of the FIG. 4 
graphics and audio processor, 

FIGS. 6A and 6B are block diagrams depicting memory 
controller and competing resources coupled thereto; 

FIG. 7 is an exemplary block diagram depicting various 
resources accessing main memory. 

FIG. 8 is a more detailed block diagram of the memory 
controller shown in FIGS. 6A and 6B; 

FIG. 9 illustrates a memory controller address path; 
FIG. 10 illustrates a memory controller read data path; 
FIG. 11 is a block diagram showing an exemplary set of 

communication signals exchanged between the memory con 
troller and the processor interface (PI); 
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FIG. 12 is a block diagram showing an exemplary set of 
communication signals exchanged between the memory con 
troller and video interface; 

FIG. 13 is a block diagram showing an exemplary set of 
communication signals exchanged between the memory con 
troller and cache/command processor, 

FIG. 14 is a block diagram showing an exemplary set of 
communication signals exchanged between the memory con 
troller and the texture unit 500: 

FIG. 15 is a block diagram showing an exemplary set of 
communication signals exchanged between the memory con 
troller and the pixel engine (PE) 700; and 

FIGS. 16A and 16B show example alternative compatible 
implementations. 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

FIG. 1 shows an example interactive 3D computer graphics 
system 50. System 50 can be used to play interactive 3D video 
games with interesting Stereo sound. It can also be used for a 
variety of other applications. 

In this example, system 50 is capable of processing, inter 
actively in real time, a digital representation or model of a 
three-dimensional world. System 50 can display some or all 
of the world from any arbitrary viewpoint. For example, 
system 50 can interactively change the viewpoint in response 
to real time inputs from handheld controllers 52a, 52b or 
other input devices. This allows the game player to see the 
world through the eyes of someone within or outside of the 
world. System 50 can be used for applications that do not 
require real time 3D interactive display (e.g., 2D display 
generation and/or non-interactive display), but the capability 
of displaying quality 3D images very quickly can be used to 
create very realistic and exciting game play or other graphical 
interactions. 

To play a video game or other application using system 50. 
the user first connects a main unit 54 to his or her color 
television set 56 or other display device by connecting a cable 
58 between the two. Main unit 54 produces both video signals 
and audio signals for controlling color television set 56. The 
Video signals are what controls the images displayed on the 
television screen 59, and the audio signals are played back as 
sound through television stereo loudspeakers 61L, 61R. 
The user also needs to connect main unit 54 to a power 

Source. This power source may be a conventional AC adapter 
(not shown) that plugs into a standard home electrical wall 
socket and converts the house current into a lower DC voltage 
signal suitable for powering the main unit 54. Batteries could 
be used in other implementations. 

The user may use hand controllers 52a, 52b to control main 
unit 54. Controls 60 can be used, for example, to specify the 
direction (up or down, left or right, closer or further away) that 
a character displayed on television 56 should move within a 
3D world. Controls 60 also provide input for other applica 
tions (e.g., menu selection, pointer/cursor control, etc.). Con 
trollers 52a and 52b can take a variety of forms. In this 
example, controllers 52 shown each include controls 60a or 
60b such as joysticks, push buttons and/or directional 
switches. Controllers 52 may be connected to main unit 54 by 
cables or wirelessly via electromagnetic (e.g., radio or infra 
red) waves. 

To play an application Such as a game, the user selects an 
appropriate storage medium 62 storing the video game or 
other application he or she wants to play, and inserts that 
storage medium into a slot 64 in main unit 54. Storage 
medium 62 may, for example, be a specially encoded and/or 
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4 
encrypted optical and/or magnetic disk. The user may operate 
a power switch 66 to turn on main unit 54 and cause the main 
unit to begin running the video game or other application 
based on the software stored in the storage medium 62. The 
user may operate controllers 52a, 52b to provide inputs to 
main unit 54. For example, operating a control 60a, 60b may 
cause the game or other application to start. Moving other 
controls 60a, 60b can cause animated characters to move in 
different directions or change the user's point of view in a 3D 
world. Depending upon the particular software stored within 
the storage medium 62, the various controls 60a, 60b on a 
controller 52a, 52b can perform different functions at differ 
ent times. 

Example Electronics of Overall System 

FIG. 2 shows a block diagram of example components of 
system 50. The primary components include: 

a main processor (CPU) 110, 
a main memory 112, and 
a graphics and audio processor 114. 
In this example, main processor 110 (e.g., an enhanced 

IBM Power PC 750) receives inputs from handheld control 
lers 52 (and/or other input devices) via graphics and audio 
processor 114. Main processor 110 interactively responds to 
user inputs, and executes a video game or other program 
Supplied, for example, by external storage media 62 via a 
mass storage access device 106 Such as an optical disk drive. 
As one example, in the context of video game play, main 
processor 110 can perform collision detection and animation 
processing in addition to a variety of interactive and control 
functions. 

In this example, main processor 110 generates 3D graphics 
and audio commands and sends them to graphics and audio 
processor 114. The graphics and audio processor 114 pro 
cesses these commands to generate dynamic visual images on 
display 59 and high quality stereo sound on Stereo loudspeak 
ers 61R, 61L or other suitable sound-generating devices. 
Example system 50 includes a video encoder 120 that 

receives image signals from graphics and audio processor 114 
and converts the image signals into analog and/or digital 
Video signals Suitable for display on a standard display device 
such as a computer monitor or home color television set 56. 
System 50 also includes an audio codec (compressor/decom 
pressor) 122 that compresses and decompresses digitized 
audio signals and may also convert between digital and ana 
log audio signaling formats as needed. Audio codec 122 can 
receive audio inputs via a buffer 124 and provide them to 
graphics and audio processor 114 for processing (e.g., mixing 
with other audio signals the processor generates and/or 
receives via a streaming audio output of mass storage access 
device 106). Graphics and audio processor 114 in this 
example can store audio related information in an audio 
memory 126 that is available for audio tasks. Graphics and 
audio processor 114 provides the resulting audio output sig 
nals to audio codec 122 for decompression and conversion to 
analog signals (e.g., via buffer amplifiers 128L, 128R) so they 
can be reproduced by loudspeakers 61L, 61R. 

Graphics and audio processor 114 has the ability to com 
municate with various additional devices that may be present 
within system 50. For example, a parallel digital bus 130 may 
be used to communicate with mass storage access device 106 
and/or other components. A serial peripheral bus 132 may 
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communicate with a variety of peripheral or other devices 
including, for example: 

a programmable read-only memory and/or real time clock 
134, 

a modem 136 or other networking interface (which may in 
turn connect system 50 to a telecommunications net 
work 138 such as the Internet or other digital network 
from/to which program instructions and/or data can be 
downloaded or uploaded), and 

flash memory 140. 
A further external bus 142, which may, by way of example 
only, be a serial bus, and may be used to communicate with 
additional expansion memory 144 (e.g., a memory card) or 
other devices. Connectors may be used to connect various 
devices to busses 130, 132, 142. 

Example Graphics and Audio Processor 

FIG.3 is a block diagram of an example graphics and audio 
processor 114. Graphics and audio processor 114 in one 
example may be a single-chip ASIC (application specific 
integrated circuit). In this example, graphics and audio pro 
cessor 114 includes: 

a processor interface 150, 
a memory interface/controller 152, 
a 3D graphics processor 154, 
an audio digital signal processor (DSP) 156, 
an audio memory interface 158, 
an audio interface and mixer 160, 
a peripheral controller 162, and 
a display controller 164. 
3D graphics processor 154 performs graphics processing 

tasks. Audio digital signal processor 156 performs audio pro 
cessing tasks. Display controller 164 accesses image infor 
mation from main memory 112 and provides it to video 
encoder 120 for display on display device 56. Audio interface 
and mixer 160 interfaces with audio codec 122, and can also 
mix audio from different Sources (e.g., streaming audio from 
mass storage access device 106, the output of audio DSP 156, 
and external audio input received via audio codec 122). Pro 
cessor interface 150 provides a data and control interface 
between main processor 110 and graphics and audio proces 
sor 114. 
As will be explained in detail below, memory interface 152 

provides a data and control interface between graphics and 
audio processor 114 and memory 112. In this example, main 
processor 110 accesses main memory 112 via processorinter 
face 150 and memory interface 152 that are part of graphics 
and audio processor 114. Peripheral controller 162 provides a 
data and control interface between graphics and audio pro 
cessor 114 and the various peripherals mentioned above. 
Audio memory interface 158 provides an interface with audio 
memory 126. 

Example Graphics Pipeline 

FIG. 4 shows a graphics processing system including a 
more detailed view of an exemplary FIG. 3 3D graphics 
processor 154. 3D graphics processor 154 includes, among 
other things, a command processor 200 and a 3D graphics 
pipeline 180. Main processor 110 communicates streams of 
data (e.g., graphics command streams and display lists) to 
command processor 200. Main processor 110 has a two-level 
cache 115 to minimize memory latency, and also has a write 
gathering buffer 111 for uncached data streams targeted for 
the graphics and audio processor 114. The write-gathering 
buffer 111 collects partial cache lines into full cache lines and 
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6 
sends the data out to the graphics and audio processor 114 one 
cache line at a time for maximum bus usage. 
Command processor 200 receives display commands from 

main processor 110 and parses them—obtaining any addi 
tional data necessary to process them from shared memory 
112 via memory controller 152. The command processor 200 
provides a stream of vertex commands to graphics pipeline 
180 for 2D and/or 3D processing and rendering. Graphics 
pipeline 180 generates images based on these commands. The 
resulting image information may be transferred to main 
memory 112 for access by display controller/video interface 
unit 164 which displays the frame buffer output of pipeline 
180 on display 56. 

FIG. 5 is a block logical flow diagram portraying illustra 
tive processing performed using graphics processor 154. 
Main processor 110 may store graphics command streams 
210, display lists 212 and vertex arrays 214 in main memory 
112, and pass pointers to command processor 200 via proces 
sor/bus interface 150. The main processor 110 stores graphics 
commands in one or more graphics first-in-first-out (FIFO) 
buffers 210 it allocates in main memory 110. The command 
processor 200 fetches: 
command streams from main memory 112 via an on-chip 
FIFO memory buffer 216 that receives and buffers the 
graphics commands for synchronization/flow control 
and load balancing, 

display lists 212 from main memory 112 via an on-chip call 
FIFO memory buffer 218, and 

vertex attributes from the command stream and/or from 
vertex arrays 214 in main memory 112 via a vertex cache 
220. 

Command processor 200 performs command processing 
operations 200a that convert attribute types to floating point 
format, and pass the resulting complete vertex polygon data 
to graphics pipeline 180 for rendering/rasterization. A pro 
grammable memory arbitration circuitry 130 (see FIG. 4) 
arbitrates access to shared main memory 112 between graph 
ics pipeline 180, command processor 200 and display con 
troller/video interface unit 164. 

FIG. 4 shows that graphics pipeline 180 may include: 
a transform unit 300, 
a setup/rasterizer 400, 
a texture unit 500, 
a texture environment unit 600, and 
a pixel engine 700. 
Transform unit 300 performs a variety of 2D and 3D trans 

form and other operations 300a (see FIG. 5). Transform unit 
300 may include one or more matrix memories 300b for 
storing matrices used in transformation processing 300a. 
Transform unit 300 transforms incoming geometry per vertex 
from object space to screen space; and transforms incoming 
texture coordinates and computes projective texture coordi 
nates (300c). Transform unit 300 may also perform polygon 
clipping/culling 300d. Lighting processing 300e also per 
formed by transform unit 300b provides per vertex lighting 
computations for up to eight independent lights in one 
example embodiment. Transform unit 300 can also perform 
texture coordinate generation (300c) for embossed type bump 
mapping effects, as well as polygon clipping/culling opera 
tions (300d). 

Setup/rasterizer 400 includes a setup unit which receives 
vertex data from transform unit 300 and sends triangle setup 
information to one or more rasterizer units (400b) performing 
edge rasterization, texture coordinate rasterization and color 
rasterization. 
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Texture unit 500 (which may include an on-chip texture 
memory (TMEM) 502) performs various tasks related to 
texturing including for example: 

retrieving textures 504 from main memory 112, 
texture processing (500a) including, for example, multi 

texture handling, post-cache texture decompression, 
texture filtering, embossing, shadows and lighting 
through the use of projective textures, and BLIT with 
alpha transparency and depth, 

bump map processing for computing texture coordinate 
displacements for bump mapping, pseudo texture and 
texture tiling effects (500b), and 

indirect texture processing (500c). 
Texture unit 500 outputs filtered texture values to the tex 

ture environment unit 600 for texture environment processing 
(600a). Texture environment unit 600 blends polygon and 
texture color/alpha/depth, and can also perform texture fog 
processing (600b) to achieve inverse range based fog effects. 
Texture environment unit 600 can provide multiple stages to 
perform a variety of other interesting environment-related 
functions based for example on color/alpha modulation, 
embossing, detail texturing, texture Swapping, clamping, and 
depth blending. 

Pixel engine 700 performs depth (z) compare (700a) and 
pixel blending (700b). In this example, pixel engine 700 
stores data into an embedded (on-chip) frame buffer memory 
702. Graphics pipeline 180 may include one or more embed 
ded DRAM memories 702 to store frame buffer and/or tex 
ture information locally. Z compares 700a' can also be per 
formed at an earlier stage in the graphics pipeline 180 
depending on the rendering mode currently in effect (e.g., Z 
compares can be performed earlier if alpha blending is not 
required). The pixel engine 700 includes a copy operation 
700c that periodically writes on-chip frame buffer 702 to 
main memory 112 for access by display/video interface unit 
164. This copy operation 700c can also be used to copy 
embedded frame buffer 702 contents to textures in the main 
memory 112 for dynamic texture synthesis effects. Anti 
aliasing and other filtering can be performed during the copy 
out operation. The frame buffer output of graphics pipeline 
180 (which is ultimately stored in main memory 112) is read 
each frame by display/video interface unit 164. Display con 
troller/video interface 164 provides digital RGB pixel values 
for display on display 56. 

FIGS. 6A and 6B are illustrative block diagrams depicting 
memory controller 152 (FIGS. 3 and 4) and various resources 
coupled thereto which compete for access to main memory 
112. Main memory 112 may, for example, comprise an 
SRAM, such as a 1TSRAM, manufactured by Mosys Corpo 
ration, which automatically performs internal refresh opera 
tions. Memory interface controller 152 provides a data and 
control interface between main processor 110, graphics and 
audio processor 114 and main memory 112. Although 
memory controller 152 and graphics memory request arbitra 
tion 130 are depicted as separate components in FIG. 4, in the 
illustrative implementation described below, memory con 
troller 152 also includes graphics memory request arbitration 
130. 
As shown in FIGS. 6A and 6B, memory controller 152 is 

coupled to various competing resources seeking to access 
main memory 12. Such competing resources include proces 
sor interface (PI) 150 (which is coupled to main processor 
110), audio DSP (DSP) 156, input/output interface (IO) 802, 
video interface (VI) 164, cache/command processor (CP) 
200, texture unit (TC)500, and pixel engine (PE) 700. In this 
exemplary embodiment, of these resources, processor inter 
face 150, audio DSP 156 and IO interface 802 are operable to 
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8 
both read information from and write information to main 
memory 112. IO interface 802 is operable to itself arbitrate 
and interface with a wide range of input/output devices Such 
as modem, DVD interface and has relatively low memory 
bandwidth requirements. In the present illustrative embodi 
ment, video interface 164, cache/command processor 200, 
and texture unit 500 are operable to only read information 
from main memory 112, and pixel engine 700 is operable to 
only write information to main memory 112. 
Memory controller 152 performs various memory control 

ler tasks including: 1) arbitrating among, for example, the 7 
ports depicted in FIGS. 6A and 6B for access to main memory 
112, 2) granting memory access taking into account memory 
latency and bandwidth requirements of the resources request 
ing memory access, 3) buffering writes to reduce access turn 
around, 4) refreshing main memory 112 when necessary, and 
5) protecting main memory 112 using programmable regis 
ters. Although the illustrative embodiment shown in FIGS. 
6A and 6B, depicts 7 ports seeking memory access, as will be 
appreciated by those skilled in the art, there may be greater or 
fewer than 7 ports in any given implementation. Moreover, 
the bus/signal line widths shown in FIG. 6B and other Figures 
(as well as other implementation details) are presented for 
illustrative purposes only and should in no way be construed 
as limiting the scope of the present invention. Memory con 
troller 152 performs arbitration among the identified ports 
and sends requests to the main memory 112. In the illustrative 
embodiment, memory controller 152 and all of its inputs and 
outputs run at 200 MHz. A 128 bit 200 MHz data path is up 
clocked at up to 400 MHz through the 4-channel Memory 
Access Control (MAC) block to permit communication with 
a 400 MHZ external 1TSRAM memory. The MAC stores data 
received over respective 32bit paths and clocks out the data at 
the appropriate clock rate. The address and control signals 
shown in FIG. 6B are directly connected to the IO pins. The 
particular signaling used to communicate with main memory 
112 is not a part of this invention. 

In accordance with one exemplary embodiment of the 
memory controller resource arbitration methodology (and as 
further described in co-pending application Ser. No. 60/226, 
886, entitled “Method and Apparatus For Accessing Shared 
Resources’, which application is hereby incorporated herein 
by reference), a bandwidth control is uniquely associated 
with each of the above-identified resources to permit an appli 
cation programmer to control the bandwidth allocation of for 
example, the 3.2 gigabyte’s main memory 112 bandwidth. 
For example, programmable bandwidth control registers are 
respectively associated with command processor 200 and 
texture unit 500, which may be utilized to allocate more of the 
available main memory bandwidth to the command processor 
200 than to texture unit 500. In this fashion, sophisticated 
users are able to tune the above-identified competing inter 
face drivers to their particular application needs to get better 
overall performance. Accordingly, for each of the above 
identified competing interfaces, a register is utilized to con 
trol its allocation of memory bandwidth to ensure that for 
every n number of clock cycles, a request for memory arbi 
tration will be granted. Thus, for each interface, a filter is 
utilized which will, for example, slow down a request for 
main memory access if a particular interface is generating a 
large number of requests at a time when other interfaces are 
likewise generating requests. Alternatively, if main memory 
112 is idle, and no other unit is contending for memory 
access, then Such a request for access may be granted. The 
filter may define the speed at which requests for a given 
interface may be granted when other requests from different 
interfaces are being simultaneously entertained. 
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Memory controller 152 controls a wide range of graphics 
data related requests for main memory 112 involving for 
example: 
3D graphics processor 154 (specifically, command proces 

sor 200, texture unit 500 and pixel engine 700), 
main processor 110 via processor interface 150, 
audio DSP 156, 
display controller 164, and 
peripheral controller 162 for various I/O units (e.g., mass 

storage access device 106) 
FIG. 7 illustrates some of the typical operations involved in 

these “requestors' competing for access to main memory. 
The arrows in FIG. 7 represent the following operations: 

1. Loading texture images from mass storage device 62 
(e.g., DVD) to main memory 112 for a new image, game 
sector or level, or other application sequence 

2. Loading geometry vertex arrays from mass storage 
device 62 to main memory for a new image, game sector or 
level, or other application sequence 

3. Dynamic rendering of texture maps by main processor 
110 or graphics processor 154 

4. Dynamic generation or modification of vertex arrays by 
main processor 110 

5. Main processor 110 animating lights and transformation 
matrices for consumption by graphics processor 154 

6. Main processor 110 generating display lists for con 
Sumption by graphics processor 154 

7. Main processor 110 generating graphics command 
Streams 

8. 3D graphics processor 154 reading graphics command 
Stream 

9. 3D graphics processor 154 reading display lists 
10. 3D graphics processor 154 accessing vertices for ren 

dering 
11. 3D graphics processor 154 accessing textures for ren 

dering 
In the illustrative implementation, the graphics processor 

114 has several data memory requirements including align 
ment requirements for the following types of data: texture and 
texture lookup table images, display lists, graphics FIFO and 
the external frame buffer. These data objects should be 
aligned because the graphics processor 114 is very fast; data 
from the main memory 112 is transferred in 32-byte chunks. 
Data alignment allows for simple and fast hardware. 
On other data objects, such as vertex, matrix and light 

arrays, in an exemplary embodiment additional hardware 
Support eliminates the need for coarse alignment (these are 
4-byte aligned). There are a large number of these data 
objects, and the memory consumption of each object is poten 
tially low, so relaxing alignment restrictions helps to conserve 
memory. 

In accordance with the illustrative implementation, mul 
tiple processors and hardware blocks can update main 
memory. In addition, the CPU 110 and graphics processor 
114 contain various data caches. Since the hardware does not 
maintain coherency of the data in main memory and various 
associated caches, there are various potential sources of 
coherency problems including when the CPU modifies or 
generates data destined for the graphics processor 114, when 
the CPU writes data through its write-gather buffer to cached 
memory, and when loading new data destined for the graphics 
processor 114 from the DVD into main memory. Coherency 
problems may occur if the main memory used to store the data 
in these two latter cases were used for other graphics data. 
When the DVD loads data, the DVD API automatically 

invalidates the loaded main memory portion that resides in the 
CPU data cache. This feature provides a safe method for 
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10 
programmers to modify the DVD loaded data without wor 
rying about CPU data cache coherency. This DVD API fea 
ture activates by default; it can be deactivated by the program 
C. 

The graphical data loaded by DVD may contain textures 
and vertices that have been already formatted for the graphics 
processor 114 to render. Therefore, invalidation of the vertex 
cache and texture cache regions may be necessary. 
The CPU 110 has two means of writing to main memory: 

the write-gather buffer and the CPU cache hierarchy. The 
write-gather buffer is normally used to “blast graphics com 
mands into memory without affecting the cache. As a result, 
information sent through the write-gather buffer is not cache 
coherent. Care must be taken when using the write-gather 
buffer to avoid writing to areas of memory that maybe found 
in the CPU cache. The cache flushing instructions shown 
below maybe used to force data areas out of the CPU cache. 

If the CPU generates or modifies graphics data through its 
cache, the following memory types may end up containing 
stale data: 
Main memory. 
graphics processor 114 vertex cache and texture cache 

regions. 
To send the correct data to the graphics processor 114, in 
accordance with the exemplary embodiment, there is a need 
to flush the CPU data cache as well as invalidate the graphics 
processor 114 vertex or texture cache. The CPU typically 
animates data one frame ahead of the graphics processor 114, 
So efficient techniques to maintain data coherency include: 

Grouping all the CPU-modified graphics data in main 
memory sequentially, so that the block data cache flush 
is efficient. 

Invalidating the vertex cache, as well as the entire texture 
cache, at the beginning of each graphics frame. 

These operations are mentioned by way of illustrating 
Some of the many operations involving reading and writing to 
main memory 112. Among other things, memory controller 
152 arbitrates among the ports involved in main memory 
reading and writing operations. 

FIG. 8 is a more detailed block diagram of memory con 
troller 152. As shown in FIG. 8, memory controller 152 
includes individual “local interfaces associated with each of 
the competing resources shown in FIGS. 6A and 6B. A con 
troller pi interface 150I interfaces with processor interface 
150, controller DSP interface 156I interfaces with audio DSP 
156, controller io interface 802I interfaces with input output 
interface 802, controller video interface 164I interfaces with 
video interface 164, controller cp interface 200I interfaces 
with command processor 200, controller tc interface 500I 
interfaces with texture unit 500, and interface pe 700I inter 
faces with pixel engine 700. Memory controller 152 is 
coupled to main memory via external memory control 829, 
which is shown in further detail in FIG. 16 described below. 
External memory control as shown in FIG. 16 generates a 
read/write control signal which switches the bidirectional 
memory bus between read and write states. 

Focusing, for illustration purposes on the texture coordi 
nate interface 500I, this interface is coupled to the read only 
texture unit 500 shown in FIGS. 6A and 6B.TC interface 500I 
(like each of the local interfaces coupled to resources which 
read from main memory) includes a read queue (RQ2 shown 
in FIG.9) for queuing read requests and associated memory 
addresses received from its associated resource, texture unit 
500. Memory controller interfaces pe, disp, io, and pi also 
respectively include a local write queue WQ0-4 as shown in 
FIG. 9 for queuing write requests. 



US 8,098,255 B2 
11 

Turning back to FIG. 8, arbitration control 825 includes the 
control logic for implementing the arbitration methodology, 
which is described in further detail below and in the above 
identified co-pending application entitled “Method and 
Apparatus for Accessing Shared Resources’ which has been 
incorporated herein by reference. Arbitration control 825 is 
alerted to the presence of, for example, the receipt of a read 
request in texture interface 500I. Similarly, interfaces 200I, 
700I, 150I, 156I, 164I, 802I and 829 are operatively coupled 
to arbitration control 825 for arbitration of competing 
memory access requests. As will be explained further below, 
arbitration control 825 upon receipt of read requests from, for 
example, memory TC interface 500I and DSP interface 156I 
(if, for example, 500I and 156I were the only competing 
resources) may award a first memory cycle to texture unit TC 
and the next memory cycle to DSP 156, etc. Thus, the read 
requests may be granted on a round robin basis. Arbitration 
controller 825 is aware of all pending requests and grants as 
described in the above-identified co-pending patent applica 
tion and as set forth further below. 
As suggested by the read data path illustrated in FIG. 10, 

texture unit TC has a high bandwidth requirement (e.g., see 
the 128bit GFX data path which is the same width as the main 
memory data path). The texture unit thus may be granted a 
request without wasting memory bandwidth. DSP, as shown 
in FIG. 10, has a 64 bit bandwidth and will be awarded 
priority by the arbitration control 825 in a manner designed 
not to waste memory cycles. 
The arbitration control 825 may, for example, be a state 

machine which sequences through states that implement the 
arbitration methodology described below. As explained in 
detail in the above-identified copending patent application, 
the arbitration control 825 is controlled in part by bandwidth 
dial registers such that when (for example) there is a request 
for memory access from texture unit 500, the request may be 
effectively Suppressed. Thus, in a video game in which there 
is a large amount of texture data, the system may be tuned to 
adjust the bandwidth to optimize it for that particular game's 
memory access needs. 
More specifically, as stated above, each of the read “mas 

ters' (i.e., a resource seeking to access main memory 112) is 
associated with a respective corresponding one of read 
queues RQ1 to RQ6 for queuing read addresses for reading 
from main memory 112. Each of the write masters seeking to 
access main memory 112 is associated with a respective cor 
responding one of write queues WQ1 to WQ4 for queuing 
write addresses and corresponding data for writing to main 
memory 112. Arbitration control 825 uses a predetermined 
arbitration process to allocate main memory access among 
the read queues RQ1 to RQ6 and to control which write 
requests among the write queues WQ1 to WQ4 are provided 
to global write buffer WQ0. The rate at which at least some of 
the requests are fed into this arbitration process is controllable 
in accordance with the settings of programmable bandwidth 
dial registers. By appropriately setting the dial registers for a 
particular operation, Sophisticated users can tune the flow of 
requests to the arbitration process to improve system perfor 
mance for that operation. 
By collecting the write requests into the global write buffer 

WQ0, read to write and write to read switching may be 
reduced, thereby minimizing the dead memory cycles that 
result when the main memory is changed from one type of 
operation to the other. While write requests are supplied to 
global write buffer WQ0, read requests are processed in 
accordance with the arbitration process. The main memory 
data path is generally Switched from a read to a write state 
when the global write buffer queue WQ0 is filled to a certain 
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level or if a main processor read request matches an entry in 
the global write buffer. This switchover results in a flushing of 
the global write buffer WQ0 to write data to specified 
addresses of main memory 112. 
As mentioned above, the dial registers control the memory 

bandwidth for the corresponding master. For example, if an 
accumulator to which the contents of command processor 
dial register are added every memory cycle is less than 1.00, 
even if there is a pending command processor request, the 
arbitration scheme grants memory access to another master 
until enough cycles elapse so that the contents of the accu 
mulator is equals to or greater than 1.00, or until there is no 
pending request from any other masters. Memory controller 
152 preferably does not permit the main memory 112 to be in 
an idle State because of dial register settings. The dial registers 
affect the arbitration scheme by masking requests from mas 
ters until the accumulator corresponding to the dial register of 
that master equals 1.00. 

Thus, bandwidth dial registers influence the memory usage 
by some of the major memory “hogs”. The read dials control 
the frequency with which the masters participate in the arbi 
tration process and access memory. The write dials are for 
control flow and can slow down the writing device by throt 
tling the writes into global write buffer WQ0. As noted, arbi 
tration preferably does not allow the memory to be idle if 
there are outstanding read requests that not being allowed due 
to the settings of the bandwidth dials. In this case, a round 
robin scheme is used among the requesters that are being 
throttled. 

In the example system, all reads are single cache-line (32 
bytes). Thus, it takes two cycles of 200 MHz to read the cache 
line and a new read can be performed every 10 nanoseconds. 
Reads from main processor 110 have the highest priority, with 
round robin arbitration among the rest of the requestors. 
Memory ownership is changed every 10 nanoseconds among 
the read requestors and refresh, but the write queue is always 
written in its entirety. The write queue initiates a request when 
it is filled to or above a certain level orifa main processor read 
request matches an entry in the write-buffer. 
As shown in FIG. 8, bandwidth dial registers and other 

registers identified specifically below are embodied in the 
memory controller's programmable memory registers 823. 
These registers, which are identified in detail below, are pro 
grammable by main CPU 110 to control a wide range of 
memory controller functions. Among the registers included in 
memory controller 152 are memory access performance 
related registers. For example, performance counter registers 
identify how many requests are received from particular com 
peting resources. The performance counters are utilized to 
keep track of wasted memory cycles so that a determination 
may be made as to how effectively memory bandwidth has 
been allocated based upon an analysis of the performance 
counter registers. The performance counters may be utilized 
to differentiate between cycles which are necessarily lost in 
Switching between read and write operations and idle time. As 
previously mentioned, cycles are wasted upon Switching 
from a read to write, e.g., two idle cycles may result from Such 
Switching. The performance counters may be utilized to 
determine how well a particular application program is uti 
lizing memory bandwidth by Subtracting from performance 
statistics memory cycles which must necessarily be utilized 
for read/write switching and refresh operations. By monitor 
ing such performance, application programmers are advanta 
geously enabled to design more efficient programs that make 
better use of memory. 

Turning back to FIG. 9, as stated above, each of the read 
queues RQ1 to RQ6, is resident in an associated interface in 
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FIG. 8. Thus, read RQ1, as suggested by the signal line 
designation in FIG. 9 is resident in CP interface 200I. Simi 
larly, write queue WQ1 (which in the illustrative embodiment 
queues eight requests) is resident only in PE interface 700I 
and is referred to herein as a “local write queue buffer. 
Similarly, WQ2 through WQ4 are resident in the DSPIO and 
PI interfaces respectively and are local write queue buffers. 
WQ0 shown in FIG. 9 is the multiple resource or “global 
write buffer and is resident in the FIG. 8 component wrbuf 
827. The inputs to write buffer 827 shown in FIG. 8 corre 
spond to the inputs to WQ0 shown in FIG. 9. 

If, for example, multiple write requests are received in 
write buffer 827 at the same time, in accordance with an 
exemplary embodiment of the present invention, memory 
write buffer 827 may arbitrate among such write requests. 
Additionally, a dial register may be utilized in association 
with the global write buffer embodied in write buffer 827. In 
this fashion, a write request from PE or PI, through the use of 
a dial register, may be designated as a lower priority request 
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depth addr, data, mask Queue interface 

RQ1 CP (read) 16 
RQ2 TC (read) 16 
RQ3 VI (read) 1 
RQ4 DSP (read) 1 
RQ5 IO (read) 1 
RQ6 PI (read) 6 

WQ1 PE (write) 8 
WQ2 DSP (write) 4. 
WQ3 IO (write) 4 
WQ4 PI (write) 8 
WQ0 Global Write buffer 16 

by an application programmer. The global write buffer 827 is 
operatively coupled to the arbitration control 825 for arbitra- 40 
tion of write requests. 

The FIG. 8 read requests from the respective read queues 
are directly coupled to arbitrator control 825 for arbitrating 
between received read requests. A request bus (which identi 
fies whether a read from or write to main memory 112 is to 4s 
take place at an associated address) is associated with each of 
the resources which are seeking access to main memory 112. 
Memory controller 152 queues up received memory access 
requests and sends the request result to the requesting 
SOUC. 

In the case of write requests, flow control is accomplished 
in part using the local write buffers, e.g., WQ1 to WQ4, such 
that a signal is sent to the associated resource writing data to 
main memory 112 when the local write buffer is full (or nearly 
full) to inform the resource to stop sending data. 
Memory controller 152 is advantageously designed to 

minimize read to write Switching, since lost memory cycles 
result from such switching due to the need to place the bus in 
the proper read or write state. Memory controller 152 mini 
mizes Such read or write Switching by gathering the required 
writes into a global write buffer WQ0 resident in wrbuf 827. 
While write requests are buffered, read requests are processed 
by arbitration control 825 from different resources. When the 
write buffer WQ0 begins to get full, it will arbitrate with the 
read requests in round robin fashion. Thereafter, multiple 
writes are processed at essentially the same time from global 
write buffer WQ0, which is filled from multiple resources, 
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e.g., WQ1-WQ4. When the global write buffer WQ0 reaches 
a state where it is, for example, 75-80% full, memory con 
troller 115 switches to a write state to initiate the flushing of 
the write buffer WQ0 to main memory 112 resulting in writ 
ing to the identified address locations. 
Memory controller 152 utilizes three levels of write arbi 

tration. The first level of arbitration occurs whereby write 
buffer control logic arbitrates with sources seeking to read 
information from memory. Another level of write arbitration 
occurs when the write buffers are not full. A third level of 
arbitration occurs when coherency processing is required, 
whereby write buffers are flushed to resolve the coherency 
issue. 

With respect to processing read requests, in accordance 
with an illustrative embodiment, a round robin read is per 
formed among resources based upon resource request arbi 
tration processing in light of for example, the dial register 
contents for each resource as explained above. 
The following table lists illustrative sizes for each of the 

read and write queues shown in FIG. 9: 

Width 
explanation 

21 Match the max latency of a single access. 
21 Match the max latency of a single access. 
21 Single outstanding read request 
21 Single outstanding read request 
21 Single outstanding read request 
23 Multiple outstanding read request + skid 

2 extra address bits to transfer critical oct-byte first. 
21 - 128 Max transfer from WQ1 to WQ0 + skid 
21 + 128 + 4 Single outstanding write, no skid 
21 - 128 Single outstanding write, no skid 
21 + 128 + 4 Max transfer from WQ4 to WQ0 + skid 
24 + 128 + 4 Deep enough to amortize memory data path read/write 

mode Switch turn around . . . 

FIG.10 shows the read data path from main memory 112 to 
the identified resource via memory access controllers 804, 
806, 808. Even though there are 6 read requesters, there are 
only 3 read data paths going back to the devices, the 128 bit 
GFX path, the 64 bit system path, and the 64 bit CPU path. 
The exemplary implementation does not use a unique data 
path for each device, since data is not transferred on all data 
paths at the same time. The exemplary implementation does 
not use a single 128-bit data path, since 64bit devices, which 
take 4 cycles to receive data, are utilized. In-order to reduce 
the latency for CPU accesses, the CPU port was given its own 
path, and therefore two 64-bit paths and a 128-bit path have 
been utilized. The paths are connected as follows: 

the GFX path, 128 bits (a) 200 MHz is connected to CP 200 
and TC 500. The bus bandwidth (BW) is equal to 
memory BW. 

the CPU path, 64 bits (a) 200 MHz is connected to the pi 
only. The bandwidth of this path is /2 of the bandwidth 
of memory 112. 

the system bus, 64 bits (a) 200 MHz is connected to IO, DSP 
and VI. All these devices are low BW and can only issue 
single outstanding transactions. The bus BW is /2 of 
memory BW. 

The number and BW of these buses have direct impact on 
the memory arbitration. For example, GFX path can 
continuously request data from memory, whereas CPU 
can request data only every other cache-line cycle (100 
Mhz). And the same is true for system bus. 

Data read from main memory 112 is sent back to a request 
ing resource in order. Accordingly, if a first request is fol 
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lowed by a second and other multiple outstanding requests, 
after arbitration of these requests, the requests are fulfilled in 
the order requested. Thus, data requested by requesting 
resource number 1 is routed followed by the data requested by 
requesting resource number 2, etc. Reads are expected by the 
CPU to be processed in order. The present design eliminates 
the need for hardware or software to perform reordering 
operations. 
The memory controller advantageous is designed to effi 

ciently respond to access requests in order to take full advan 
tage of the main memory 112 use of a static RAM (SRAM) 
type of memory. As explained above, the example embodi 
ment has a 1TSTRAM that provides near static RAM type 
access in the context of a high density DRAM. The use of near 
SRAM access permits, for example, writing data to main 
memory 112 in the order desired because writing to one 
location in the SRAM takes the same time as writing to any 
other location no matter where in SRAM the data is to be 
stored. In contrast, when using DRAM, writes to memory 
must be scheduled in accordance with the memory refresh 
schedule to maximize speed preference. The use of an SRAM 
permits efficiently fulfilling requests in order at the price of 
having to maintain data coherency. 

With respect to maintaining coherency (processor coher 
ency in the preferred illustrative embodiment, since other 
resources may rely on flushes to guarantee read/write coher 
ency), if a resource writes to an associated write buffer for 
thereafter writing data to main memory 112, and almost 
immediately thereafter an attempt is made to read such data 
from main memory 112, a coherency problem results due to 
the potential of reading Stale data from main memory 112 
instead of the updated data sought. The memory controller 
152 addresses the coherency issue by ensuring that, for every 
read request, a check is made of the address to be read to 
ensure that such address does not appear in the write buffer. If 
the address is in the write buffer, then the write buffer needs to 
be flushed, i.e., copied to main memory, before the read 
operation is performed. 

Certain of the resources such as, for example, the command 
processor CP 200 is a unidirectional resource such that it only 
performs read operations from main memory 112 and does 
not write to main memory 112. In the exemplary implemen 
tation, pixel engine PE only writes to main memory 112. 
Coherency issues particularly need to be addressed with CPU 
110, since CPU 110 both reads and writes from and to main 
memory 112. Thus, with regard to CPU reads, the address to 
be read is compared to write buffer addresses and, as 
explained above, if the address is in the write buffer, the write 
buffer is flushed, and then the read operation is performed. 
For example, if writes are performed by a particular resource 
to locations 0, 1, and 2, which addresses are residentina write 
buffer, and an attempt is made to read from location 0, since 
location 0 is in the write buffer, the system should flush the 
write buffer contents before reading from location 0. Accord 
ingly, in order to ensure against coherency errors within a 
device, such errors will only occur if the resource has both 
read and write capability. 

However, it is also desirable for the memory controller 152, 
to ensure against coherency errors among different resources. 
Thus, if pixel engine 700 receives a command to copy infor 
mation to main memory 112, the local write buffer associated 
with pixel engine 700 will contain both the data to be copied 
and an address location at which to write to main memory 
112. If, for example, the video interface 164 as the texture unit 
500 thereafter seeks to read data from the same address to 
which the pixel engine 700 is writing data, the illustrative 
memory controller 152 synchronizes these operations. Thus, 
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16 
in accordance with an exemplary embodiment of the present 
invention, any device/resource that is writing to main 
memory 112 sends a flush signal to memory controller 152 
which indicates to memory controller 152 to empty the 
respective resource's write buffer. Memory controller 152 
generates a signal indicating that Such operation has been 
completed to thereby inform CPU 110 to enable, for example, 
display unit 164 to read data from Such a memory location. 
The indication from memory controller 152 that data written 
to main memory 112 is actually stored in main memory 112 
and not in a buffer gives any competing resource the oppor 
tunity to access such data. In accordance with this exemplary 
embodiment, coherency among devices is guaranteed by the 
device writing to memory by virtue of the receipt from 
memory controller 152 of a flush acknowledge handshake 
signal. 

In accordance with an exemplary embodiment of the 
present invention, since writes are delayed, there are various 
types of coherency protocols which are performed, several of 
which have been briefly described above. Such coherency 
protocols, which are described and summarized below 
include: 

Coherency between writes and reads from the same unit. 
Coherency between writes and reads for CPU. 
Coherency between writes by CPU and reads by CP in CP 

FIFO. 
Coherency between writes and reads from two different 

units. 
RW Coherency from the Same Unit 

In the exemplary implementation, DSP, IO and PI can 
perform writes and reads. There is no hardware RW coher 
ency for DSP or IO in accordance with an exemplary imple 
mentation. If each device needs to readback the data it wrote 
to main memory 112, it needs to explicitly flush the write 
buffer. This is done by issuing a flush write buffer command 
and waiting for an acknowledge signal. The PI read requests 
on the other hand are checked against the write-buffer 
addresses. If there is a match, the write-buffer is flushed. Then 
the read will proceed. The write-buffer includes the indi 
vidual write-buffer for the unit and the global write-buffer. 
RW Coherency from CPU 

In order to handle CPU 110 write and read coherency, 
bypassing logic and write buffer flushing mechanism is used. 
For a read request from CPU, the read address is sent imme 
diately to main memory 112 and there’s not enough time for 
RW coherency checking until one cycle later. If there’s a 
match, since the read request has already been sent, the read 
data from the memory is aborted, then it will flush the write 
buffer, bypass and merge the write data and read data back to 
the CPU 110 at the end of the write buffer flush. 

In the case that a read is followed by a write for the same 
address location, these two requests are dispatched into the 
read queue and write queue separately and memory controller 
152 can not distinguish the order of these two requests. There 
fore, read data may end up with the new write data instead of 
the original one as expected. CPU 110 configuration should 
be set accordingly to guarantee not to issue the write before 
the read data comes back. 
RW Coherency Between Other Units. 

In the exemplary implementation, there are 4 units that can 
write to memory: DSP, IO, PE and PI. Any time a device 
writes to memory, it needs to flush its write buffers explicitly, 
before signaling another device for reading the data. Each of 
these 4 interfaces has a 2-wire flush/acknowledge protocol to 
accomplish this. DSP, IO or PE will issue a flush at the end of 
a DMA write, before interrupting the CPU 110. This will 
guarantee that CPU 110 will access the desired data, upon 
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read. CPU 110 also needs to perform an explicit flush when it 
sets up a buffer in main memory 112 and wants to initiate 
another device for a read DMA. Before starting the DMA, 
CPU 110 needs to perform a “sync’ instruction. This instruc 
tion causes a sync bus cycle, which causes the memory con 
troller 152 to flush the write buffer. Upon completion of the 
flush, the sync instruction is completed and CPU can start up 
a read DMA operation. 
RW Coherency Between CPU/CP for CP FIFO 
The memory controller also handles RW coherency 

between CPU writes and CP read for a command related 
buffer CPFIFO which is associated with external memory. PI 
will indicate whether the write request is for CP FIFO and 
memory controller will send CP the write request when the 
write data for CP FIFO has actually been committed to the 
main memory. 

Turning back to FIG. 8, memory controller 152 includes a 
set of memory registers 823 through which the memory con 
troller may be programmably controlled to perform a wide 
range of memory control and arbitration functions. In the 
exemplary implementation of the present invention, all reg 
isters are written through the processor interface 150. 
Although a table of a illustrative memory controller registers 
is set forth below, the following registers may be categorized 
into groups as follows. 
Memory Protection/Interrupt Enable Registers 
Four set of registers can be used for memory read, write or 

read/write protection by setting the read enable and/or write 
enable bits in MEM MARR CONTROL register shown in 
the illustrative register table below. For example, if a read 
address is within the range of MEM MARRO START and 
MEM MARRO END with MARRO read disabled, it will set 
the MARRO interrupt bit in MEM INT STAT register and 
MEM INT ADDRL, MEMINT ADDRH will have the 
read address that caused the interrupt. It can also cause an 
interrupt to the CPU if MARRO interrupt enable bit is set in 
MEM INT ENBL register. Note that memory controller 152 
is not going to terminate the read/write transaction to main 
memory 112 that causes the interrupt. 

There is also an address interrupt that is generated if the 
request address is outside the current memory configuration 
range and within 64 Mbytes address space. If the request 
address is beyond 64Mbytes, PI should generate the address 
interrupt and not send the request to memory controller. 

Register 
address Register name 

0x0 (r, w) MEM MARRO START 

OX2 (r, w) MEM MARRO END 

Ox4 (r, w) MEM MARR1 START 

Ox6 (r, w) MEM MARR1 END 

Ox8 (r, w) MEM MARR2. START 

Oxa (r, w) MEM MARR2 END 

Oxc (r, w) MEM MARR3 START 

Oxe (r, w) MEM MARR3 END 
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Bandwidth Dial Registers 
In the exemplary embodiment, there are dial registers for 

CP, TC, PE, CPU read and CPU write masters. These dial 
registers are used to lower the memory bandwidth for the 
associated master. For example, if the CP dial register con 
tents when added to an associated accumulator is less than 
one, even if there’s a pending CP request, the illustrative 
arbitration methodology will grant memory access to another 
master until CP dial register when added to the accumulator 
equals one orthere's no other pending request from any other 
master. In other words, memory controller 152 never lets 
memory 112 be in an idle state because of the dial register 
settings. These dial registers indirectly affect the arbitration 
scheme by masking the request from that master if the dial 
register plus accumulator contents does not equal to 1.00. For 
further details, refer to the methodology described below and 
in more detail in the copending application entitled “Method 
and Apparatus For Accessing Shared Resources', which has 
been incorporated herein by reference. 

Performance Counter Registers 
There is a request counter per master except CPU, which 

has separate read and write request counters. These counters 
are mainly used for collecting statistics about memory usage 
and bandwidth for different masters. There are two additional 
counters: MEM FIREQCOUNT for counting number of 
idle cycles due to read/write bus turnaround overhead and 
MEM RF REQCOUNT for counting number of refresh 
cycles. All these counters will be clamped to max values when 
reached. 
Data for Turnaround Registers 

There are 3 registers used for setting number of idle cycles 
for the data path turnaround: one for RD to RD from a differ 
ent memory bank, one for RD to WR switching and one for 
WR to RD switching. 
Memory Refresh and Threshold Registers 
When the number of clocks reached the refresh count in 

refresh counter, a refresh request will be generated. If the 
memory is idle, memory will be granted to refresh cycles. 
However, if memory is non-idle, it will be granted only if the 
total number of refresh requests reaches the threshold value 
set in the memory refresh threshold register. 

For purposes of illustrating an exemplary memory control 
ler 152 register set, the following table shows example 
memory controller 152 registers. 

Field description 

5:0 Starting address of memory address range register O 
ress (25:10) 

ress of memory address range register O 
ress (25:10) 

Starting address of memory address range register 1 
ress (25:10) 

ress of memory address range register 1 
ress (25:10) 

Starting address of memory address range register 2 
ress (25:10) 

ress of memory address range register 2 
ress (25:10) 

Starting address of memory address range register 3 
ress (25:10) 

ress of memory address range register 3 
ress (25:10) 

memory a 

Ending ad 
memory a 

5:0 

5:0 

memory a 

Ending ad 
memory a 

5:0 

5:0 

memory a 

Ending ad 
memory a 

5:0 

5:0 

memory a 

Ending ad 
memory a 

5:0 



Register 
address 

OX10 (r, w) 

0x12 (w) 

Ox14 (w) 

0x16 (w) 

Ox18 (w) 

Ox1a (w) 

Oxle (r) 

0x20 (w) 
Ox22 (r) 
0x24 (r) 
Ox26 (r, w) 

Ox30 (r, w) 
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Register name 

MEM MARR CONTROL 

MEM CP BW DIAL 

MEM TC BW DIAL 

MEM PE BW DIAL 

MEM CPUR BW DIAL 

MEM CPUW BW DIAL 

MEM INT ENBL 

MEM INT STAT 

MEM INT CLR 
MEM INT ADDRL 
MEM INT ADDREH 
MEM REFRESH 

MEM RDTORD 

MEM RDTOWR 

MEM WRTORD 
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Field 

7:0 

8:0 

8:0 

8:0 

8:0 

8:0 

4:0 

4:0 

O 

O 

O 

description 

Control register for the MAR registers 3 to 0 
O: MARRO read enable (OK to read between MARRO START 
and MARRO END) 
ie MARRO START <= Address <MARRO END 
1: MARRO write enable(OK to write between MARRO START 
and MARRO END) 
ie MARRO START <= Address <MARRO END 
2: MARR1 read enable 
3: MARR1 write enable 
4: MARR2 read enable 
5: MARR2 write enable 
6: MARR3 read enable 
7: MARR3 write enable 
Default value: Oxff (okay to write or read) 
Format is 1.8. Every cycle this number is added to an 
accumulator that is initialized to O. When bit 8, is set, then CP 
request is enabled and CP is allowed in arbitration. When set to 
Ox1.00, CP request is always enabled 
Default value: Ox1.00 
Format is 1.8. Every cycle this number is added to an 
accumulator that is initialized to O. When bit 8, is set, then TC 
request is enabled and TC is allowed in arbitration. When set to 
Ox1.00, TC request is always enabled 
Default value: Ox1.00 
Format is 1.8. Every cycle this number is added to an 
accumulator that is initialized to O. When bit 8, is set, then PE 
write request is enabled and PE write can be transferred from the 
first queue to the WQ0. When set to Ox1.00, PE write is always 
enabled 
Default value: Ox1.00 
Format is 1.8. Every cycle this number is added to an 
accumulator that is initialized to O. When bit 8, is set, then CPU 
request is enabled and CPU read is allowed in arbitration. When 
set to Ox1.00, CPU read request is always enabled 
Default value: Ox1.00 
Format is 1.8. Every cycle this number is added to an 
accumulator that is initialized to O. When bit 8, is set, then CPU 
write data is written into the write-buffer. When set to Ox1.00, 
CPU write data is accepted immediately 
Default value: Ox1.00 
interrupt enable register for MARRs and address out of range 

0: MARRO interrupt enable O for disabled, 1: enabled 
: MARR1 interrupt enable 

2: MARR2 interrupt enable 
3: MARR3 interrupt enable 
4: Address Error interrupt enable 
Default value: 0x00 (disable) 
interrupt status register 
O: MARRO interrupt 

: MARR1 interrupt 
2: MARR2 interrupt 
3: MARR3 interrupt 
4: Address Error interrupt 
Reset value: 0x00 
interrupt clear. Writing to register clears all interrupts. 
Bits 15:0 of the memory address that caused the interrupt. 
Bits 25:16 of the memory address that caused the interrupt. 
Number of cycles between memory refresh 
Default value: 0x80 (128 cycles) 
fit is Zero, it is a special case for not generating any refresh 
cycles. This must be used with mem refresh thhdA to have a 
minimum value of 1. 
For back to back read in the memory development system: 
O: One idle cycle asserted when Switching between the two. 

: Two idle cycles asserted when Switching between the two. 
Default value: O 
For a read followed by a write: 
0: Two idle cycles asserted for turn around. 

: Three idle cycles asserted for turn around. 
Default value: O 
For a write followed by a read: 
0: No idle cycle asserted. 

: One idle cycle asserted. 
Default value: O 
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Register 
address Register name Field description 

0x32(r, w) MEM CP REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for CP memory requests 
processed (31:16). Write 0 to clear counter. 

Ox34(r, w) MEM CP REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for CP memory requests 
processed (15:0). Write 0 to clear counter. 

Ox36(r, w) MEM TC REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for TC memory requests 
processed (31:16). Write 0 to clear counter. 

Ox38(r, w) MEM TC REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for TC memory requests 
processed (15:0). Write 0 to clear counter. 

Ox3a(r, w) MEM CPUR REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for CPU read requests 
processed (31:16). Write 0 to clear counter 

Ox3c(r, w) MEM CPUR REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for CPU read requests 
processed (15:0). Write 0 to clear counter 

Ox3e(r, w) MEM CPUW REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for CPU write requests 
processed (31:16). Write 0 to clear counter. 

Ox40(r, w) MEM CPUW REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for CPU write requests 
processed (15:0). Write 0 to clear counter. 

Ox42(r, w) MEM DSP REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for DSP write/read requests 
processed (31:16). Write 0 to clear counter. 

Ox44(r, w) MEM DSP REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for DSP write/read requests 
processed (15:0). Write 0 to clear counter. 

Ox46(r, w) MEM IO REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for IO write/read requests 
processed (31:16). Write 0 to clear counter. 

0x48(r, w) MEM IO REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for IO Write/read requests 
processed (15:0). Write 0 to clear counter. 

OX4a (r, w) MEM VI REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for VI memory requests 
processed (31:16). Write 0 to clear counter. 

Ox4c(r, w) MEM VI REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for VI memory requests 
processed (15:0). Write 0 to clear counter. 

Ox4e(r, w) MEM PE REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for PE memory requests 
processed (31:16). Write 0 to clear counter. 

Ox50(r, w) MEM PE REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for PE memory requests 
processed (15:0). Write 0 to clear counter. 

0x52(r, w) MEM RF REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for memory refresh requests 
processed (31:16). Write 0 to clear counter. 

Ox54(r, w) MEM RF REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for memory refresh requests 
processed (15:0). Write 0 to clear counter. 

Ox56(r, w) MEM FI REQCOUNTH 5:0. Upper 16 bits of the 33 bits counter for memory forced idle 
requests processed (32:17). Write 0 to clear counter. Increment 
by one every idle cycle. 

0x58(r, w) MEM FI REQCOUNTL 5:0 Lower 16 bits of the 33 bits counter for memory forced idle 
requests processed (16:1). Write 0 to clear counter. Increment by 
one every idle cycle. 

Ox5a (r, w) MEM DRV STRENGTH O: O Drive Strength 
Ox5c (r, w) MEM REFRSH THHD 2:0. Threshold for generating the refresh request when the total 

number of outstanding refresh requests exists. 
Default value: Ox2 
in order to generate Zero refresh cycles, this register must be set 
o be non-zero together with mem refresh set to 0x0. 

Turning back to the FIG. 8 memory controller block dia 
gram, as set forth above, memory controller 152 includes 
arbitration control 825 which operates to arbitrate memory 
access requests between the competing resources identified 
above. For further details regarding the arbitration control, 
reference should be made to copending application Ser. No. 
60/226,886, entitled “Method and Apparatus For Accessing 
Shared Resources’, which has been incorporated herein by 
reference. All reads are single cache-line (32 bytes). It takes 2 
cycles of 200 Mhz. to read the cache-line. Thus a new read can 
be performed every 10 nsec. CPU reads will have the highest 
priority, with round robin arbitration among the rest of the 
requestors. Memory ownership is changed every 10 nsec 
among the read requestors and refresh, but the write queue is 
always written in its entirety. Write queue initiates a request 
when it gets above a certain level or if a CPU read request 
address matches an entry in the write-buffer. In accordance 
with the illustrative embodiment, there are the following 
restrictions as to the frequency of requests: 
Two CPU reads can not occur back to back 
Two System reads can not occur back to back. 
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During a 10-nsec refresh cycle, 2 rows are refreshed. One 
every 5 nsec. 
BW Dials 

As described above, BW dials are provided via the BW 
registers referenced above to influence the memory usage by 
some of the major memory users. There are dials for the 
following devices: 
CPU read 
CP read 
TC read 
CPU write 
PE write 
The read dials control the frequency of the units to partici 

pate in arbitration and access memory. The write dials are for 
control flow and can slow down the writing device by throt 
tling the writes into the main write buffer. 
The arbitration methodology will not allow the memory 

112 to be idle if there are outstanding read requests that are 
not being allowed due to the BW dial. In this case a round 
robin scheme is used among the requestors that are being 
throttled. 



US 8,098,255 B2 
23 

Read Queues Arbitration 
CPU read has the highest priority except the following 

conditions: 
CPU was the master for the previous access 

24 
Write Queues Arbitration 
CPU, PE, DSP and IO are the four masters in the write 

queue. CPU writes has the highest priority and the other three 
masters arbitrate in the round-robin fashion except the fol 
lowing condition: 

CPU read dial knob does not equal to 1.00 and there are 5 CPU write dial knob does not equal to 1.00 and there are 
other requests by other masters with dial knob equals 1.00 - - - other write masters with dial knob equals to 1.00 

Write Buffer is completely full and it is in the middle of the All these together will form the write buffer queue arbitrat 
write cycles ing the memory bandwidth with the read masters. 

Previous CPU read address matches a valid CPU write Each of the interfaces depicted in FIG. 6A with memory 
address in the PI local write buffer or global write buffer " controller 152 will now be described in further detail. FIG. 11 
which will cause a write buffer flush is a block diagram showing an exemplary set of communica 
CP (or TC) read has the same priority as any other system tion signals exchanged between memory controller 152 and 

masters (DSP, IO and VI) and hence arbitrates the memory in processor interface (PI) 150. The interface shown in FIG. 11 
the round robin fashion with the system masters except the 15 allows reads and writes to main memory 112 from CPU 110. 
following conditions: This interface Supports multiple outstanding read requests. 

DSP. IO or VI was the master for the previous access which In the illustrative embodiment, a new read request can be 
then cannot arbitrate again, issued every cycle and a new write request can be issued every 
CP (or TC) read dial knob does not equal to 1.00 and there 4 clocks (4 cycles to transfer the cache-line on the bus). The 

are other requests by other masters with dial knob equals to memory controller 152 performs flow control by asserting 
1.00, it will then have a lowest priority mem pi reqfull. Write data are not acknowledged. Read data 
DSP (or IO or VI) read has the same priority as any other are acknowledged with the transfer of the first oct-byte of the 

GFX masters (CP and TC) and hence arbitrates the memory in cache. If the request address is not 32B aligned, critical 
the round robin fashion with the GFX masters except the double word will be returned first. All read data are processed 
following conditions: 25 in-order. Write data are buffered and delayed to increase 
DSP (or IO or VI) was the master for the previous access memory efficiency. pi mem flush is asserted for one cycle to 

which then cannot arbitrate again. flush the write buffer. mem pi flush ack is issued for one 
Write Buffer has lower priority then CPU, GFX or system cycle to signal that the write buffer is flushed. 

masters except the following conditions: All interface control signals should be registered to any 
Write Buffer is completely full and it will arbitrate with 30 avoid timing problem due to long wire. For example, memory 

others in the round-robin fashion controller 152 should register the pi mem req signal first, 
CPU read address matches a write address in write buffer and the generated mem. piack signal should also be regis 

and it will have the highest priority tered on both the memory controller 152 side and the Module 
Any other masters with higher priority have the dial knob 150 side. 

less than 1.00 35 However, due to the memory bandwidth and CPU perfor 
Refresh has the lowest priority except the following con- mance reasons, pi mem addr will not be registered and will 

ditions: be sent immediately to the main memory, this will reduce one 
Number of total refresh requests reaches the threshold cycle of latency. 

value, its priority will be bumped up to just below CPU read. The signals exchanged in the illustrative embodiment 
Any other masters with higher priority have the dial knob between the memory controller 152 and the processor inter 

less than 1.00 face 150 are shown in the table below. 

signal description 

pi mem addr25:1 

pi men req 

pi men rd 
pi men reg 

pi mem fifoWr 
mem pi reqfull 
mem pi ack 

mem pi data 63:0 

pi mem data 63:0 

Address of cache-line for read/write. Read is always double word aligned (critical 
double word first). Write is always 32 byte aligned. For main memory read, 
pi mem addr25:3 will be used. For main memory write, pi mem addr25:5) 
will be used. For memory register read/write, pi mem addr8:1 will be used. 
Asserted for one cycle to issue a cache-line read/write request. pi mem addr, 
pi mem fifoWr and pi mem rd are valid for that cycle. For a write request, the 
first Oct-byte of the data is also valid on the pi mem data bus in this cycle. 
O is write: 1 is read 
O: memory access: 1: register access 
During register writes the lower 8 bits of the address holds the register address and 
pi mem data 63:48 hold the register value. 

: Memory writes for CPFIFO, valid only during pi mem req cycle. 
When this signal is asserted to 1, two more read and writes requests can be issued. 
Asserted for one cycle to signal return of data from memory during read. Bytes Oto 
7 of the cache-line are sent in that cycle. Bytes 8-15, 16-23 and 24-31 are sent in 
he following cycles on the mem pi data bus. If the read address is not 32B 

aligned, critical double word will be returned first. No acknowledge signal will be 
asserted for memory writes. All read requests are processed in-order. 
8 byte bus to transfer data from memory. A cache-line is transferred on this bus in 4 
back-to-back clocks. Critical double word will come first. 

8 byte bus to transfer data to memory. A cache-line is transferred on this bus in 4 
back-to-back clocks. The pi mem msk1:0 bits determine validity of the two 32 
bit words. 



US 8,098,255 B2 
25 26 

-continued 

signal description 

pi mem msk1:O 32-bit word write mask bits for pi mem data 63:O. pi mem msk1 is write mask 
for pi mem data 63:32.pi mem msk O is write mask for pi mem data31:O. 
Mask equals 0 for write enable. 

pi mem flush Asserted by the PI for one cycle to flush the write buffer in memory controller. 
mem pi flush ack Asserted by mem for one cycle, when the write buffer is flushed. 
mem pi int Interrupt from mem to pi. 
pi mem memrstb Pi mem memrstb caused by power-on-reset or software-reset. Disabled by 

software writing to memrstb register in PI. 

Turning next to the audio DSP 156/memory controller 
interface 152, the following table illustrates exemplary sig 
nals exchanged between these two components together with 15 
a signal description. 

Signal Name description 

dsp memAddr25:5) address of cache-line for read/write. Bits (4:0) are 0 and are not transmitted. 
disp memReq Asserted for one cycle to issue a cache-line read/write request. disp memAddr is 

valid for that cycle. 
disp memRod O is write: 1 is read 
mem dispAck Asserted for one cycle to signal return of data from memory during read. Bytes 7 

to 0 of the cache-line are sent in that cycle. Bytes 15-8, 23-16 and 31-24 are sent 
in the following cycles on the mem displata bus. 

mem dspData 63:0) 8 byte bus to transfer data from memory. A cache-line is transferred on this bus 
in 4 back-to-back clocks. 

dsp memData 63:0) 8 byte bus to transfer data to memory. A cache-line is transferred on this bus in 4 
back-to-back clocks. The dsp memMsk1:Obits determine validity of the two 
32-bit words. Write enable when mask bit equals zero. 

dsp memMsk1:0 32-bit word write mask bits for dsp memData 63:O. dsp memMsk1 is write 
mask for dsp memData 63:32. dsp memMask O is write mask for 
dsp meml)ata31:0. Mask equals zero means write enable. 

dsp memFlushWrBuf At the end of a write burst. This signal is asserted for one cycle, and causes the 
memory controller to flush the write buffer. 

mem dspFlushWrack This signal is asserted for one cycle when the memory controller has completed 
flushing the write buffer in response to the assertion of dsp memFlushWrBuf. 

In the exemplary implementation, with respect to the DSP/ troller 152 should register the dsp memReq signal first, and 
memory controller 152 interface, at most one outstanding the generated mem_dspAck signal should also be registered 
transfer is permitted, i.e., the next transfer cannot start until on both the memory controller side and the Module 156 side. 
the previous transfer completes (with endspAck signal). Accordingly, there is a minimum of one clock delay between 
There are at least two levels of write buffering on the memory 
controller 152 side to buffer the write data. That is, the inter- dsp memReq and mem dispAck and between mem dispAck 

and the next dsp memReq. face should be able to buffer the write data from the Module 
156 and delay issuing the ack signal if the buffer is full. 45 Turning next to the input-output interface 802/memory 

All interface control signals should be registered to avoid controller interface 152, the following table illustrates exem 
timing problem due to long wire. For example, memory con- plary signals exchanged. 

Signal name Description 

io memAddr25:5) Address of cache-line for read/write. Bits (4:0) are O and are not transmitted. 
io memReq Asserted for one cycle to issue a cache-line read/write request. io memAddr is 

valid for that cycle. 
io memRod O is write: 1 is read 
mem ioAck Asserted for one cycle to signal return of data from memory during read. Bytes 7 to 

O of the cache-line are sent in that cycle. Bytes 15-8, 23-16 and 31-24 are sent in 
the following cycles on the mem iodata bus. 

mem ioData 63:0 8 byte bus to transfer data from memory. A cache-line is transferred on this bus in 4 
back-to-back clocks. 

io memData 63:0 8 byte bus to transfer data to memory. A cache-line is transferred on this bus in 4 
back-to-back clocks. 

io memFlushWrBuf At the end of a write burst. This signal is asserted for one cycle, and causes the 
memory controller to flush the write buffer. 

mem ioFlushWrack This signal is asserted for one cycle when the memory controller has completed 
flushing the write buffer in response to the assertion of io memFlushWrBuf. 
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With respect to the I/O interface 802/memory controller 
152 signals, at most one outstanding transfer is permitted in 
the exemplary embodiment, i.e., the next transfer cannot start 
until the previous transfer completes (with mem ioAck sig 
nal). There are at least two levels of write buffering on the 
memory controller side to buffer the write data. That is, the 
interface should be able to buffer the write data from the 
Module 802 and delay issuing the acknowledge signal if the 
buffer is full. 

FIG. 12 is a block diagram showing an exemplary set of 
communication signals exchanged between memory control 
ler 152 and video interface 164. The interface signals are 
described in the table below. 

This interface allows reads from main memory from the 
video interface. All reads are cache-line sized (32 bytes) and 
are transferred over a 64-bit bus. 

signal description 

Address of cache-line for read. 
Asserted for one cycle to issue a cache-line 
read request. Pi mem addr is valid for that 
cycle. 
Asserted for one cycle to signal return of data 
from memory. Bytes 7 to 0 of the cache-line are 
sent in that cycle. Bytes 15-8, 23-16 and 31-24 
are sent in the following cycles on the 
mem pi data bus. All read requests are 
processed in-order 
8 byte bus to transfer data from memory. A 
cache-line is transferred on this bus in 4 back-to 
back clocks. 

vi mem addr25:5) 
vi men req 

mem. Vi ack 

mem. Vi data 63:0 

This memory controller 152/video interface 164 supports 
single outstanding read requests. A new read request can be 
issued after the acknowledge for the last one is received. 

All interface control signals should be registered to avoid 
timing problem due to long wire. For example, memory con 
troller 152 should register the vi mem req signal first, and 
the generated mem. Vi ack signal should also be registered 
on both the memory controller side and the Module 164 side. 

Byte ordering of data on the read and write buses is shown 
below. 

cycleO the IRIBIBIBIBIB, 
cycle1 B8 B9|B10B11B12B13B14B15 

cycle2 

cycle3 

FIG. 13 is a block diagram showing an exemplary set of 
communication signals exchanged between memory control 
ler 152 and cache/command processor 200. The table below 
illustrates exemplary signals exchanged between these com 
ponents. 

Name: Description 

pe mem addr (25:5) 
pe men req 
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Name: Description 

cp mem addr (25:5). Address of cache-line for read. Bits (4:0) are O 
and are not transmitted. 

cp men req Asserted for one cycle to issue a cache-line read 
request. cp mem addr is valid for that cycle. 

mem cp reqFull When asserted, the read request queue is almost 
full. Only 2 more requests can be sent. 

mem cp ack Asserted for one cycle to signal return of data 
from memory. Bytes 15 to 0 of the cache-line 
are sent in the next cycle. Bytes 31-16 are sent 
after two cycles. 

mem cp fifoWr Asserted for one cycle indicating a new data has 
been written to CP FIFO in the main memory by 
the CPU for CP to access. 

mem cp data (127:0) 16 byte bus to transfer data from memory. 
A cache-line is transferred on this bus in 2 

back-to-back clocks. 

FIG. 14 is a block diagram showing an exemplary set of 
communication signals exchanged between memory control 
ler 152 and the texture unit 500. The table below illustrates 
exemplary signals exchanged between these components. 

l8le: format: description: 

mem to reqFull | When asserted, the read request queue 
is almost full. Only 2 more requests can 
be sent. 

mem to ack 1 Asserted for one cycle to signal return 
of requested data from memory. Bytes 
O to 15 of the cache-line are sent in the 

next cycle. Bytes 16 to 31 are sent the 
cycle after that. 
16-byte bus to transfer data from 
memory. A cache-line is transferred on 
this bus in 2 back-to-back clocks. 

Asserted for one cycle to issue a 

mem to data 128 

tC men req 1 
cache-line read request to mem addr 
is valid for that cycle. 
Address of cache-line for read. 21 bits 

maps 32 B into 64 MB address space. 
to mem addr25:5) 21 

FIG. 15 is a block diagram showing an exemplary set of 
communication signals exchanged between memory control 
ler 152 and the pixel engine (PE) 700. It is used to transfer 
filtered frame buffer images to main memory for display. It 
also converts frame buffer format to texture format and writes 
it into main memory 112. The table below illustrates exem 
plary signals exchanged between these components. 

Address of the cache-line for write, bit 4 to bit 0 are always zero. 
Asserted for one cycle to issue a cache-line write request.pe mem addr is valid for that cycle. The 
first /2 of the cache-line is on the data bus in this cycle. 
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Name: Description 

pe mem data (127:0) 

30 

Data bus. The first /3 of the cache-line is transferred when pe mem req is asserted. The second /2 
will be transferred in the next cycle. The 2/3 cache-lines are always transferred in back to back 
cycles 

pe mem flush 
flush the write buffer. 

mem pe flushAck 
flushing the write buffer. 

mem pe reqFull 

At the end of a write burst. This signal is asserted for one cycle, so that the memory controller will 

Memory controller will asserted this signal for one cycle after receiving pe mem flush and 

When asserted, the write queue is almost full. If the signal is asserted in the same cycle as request, 
no more requests will come until the signal is de-asserted. When the signal is asserted in the cycle 
after request, one more request can be issued. 

The memory controller 152 sends address and control sig 
nals directly to external memory. Among the control signals 
shown are the control signals for Switching the bus between a 
read to a write state. The following table illustrates exemplary 
signals exchanged between these components. Included 
among the signals are the read/write signals which are needed 
to switch the bidirectional memory bus from a read to write 
State. 

Name Direction Bits Description 

Mema topad O 22 Memory address, bit 0 is always 
Zero 

Memrw topad O 1 O: Write 1: Read 
Memadsb topad O 2 Bit 1 selects development memory, 

bit O Selects main memory, active 
low 

Memrfsh topad O 1 Refresh cycle 
memdrvctl topad O 3 Drive strength control for address 

pads 
memateb topad O 1 Active Terminator Enable, active 

low 

Other Example Compatible Implementations 

Certain of the above-described system components 50 
could be implemented as other than the home video game 
console configuration described above. For example, one 
could run graphics application or other Software written for 
system 50 on a platform with a different configuration that 
emulates system 50 or is otherwise compatible with it. If the 
other platform can Successfully emulate, simulate and/or pro 
vide some or all of the hardware and software resources of 
system 50, then the other platform will be able to successfully 
execute the software. 
As one example, an emulator may provide a hardware 

and/or software configuration (platform) that is different 
from the hardware and/or software configuration (platform) 
of system 50. The emulator system might include software 
and/or hardware components that emulate or simulate some 
or all of hardware and/or software components of the system 
for which the application software was written. For example, 
the emulator system could comprise a general purpose digital 
computer Such as a personal computer, which executes a 
Software emulator program that simulates the hardware and/ 
or firmware of system 50. 
Some general purpose digital computers (e.g., IBM or 

MacIntosh personal computers and compatibles) are now 
equipped with 3D graphics cards that provide 3D graphics 
pipelines compliant with DirectX or other standard 3D graph 
ics command APIs. They may also be equipped with stereo 
phonic Sound cards that provide high quality Stereophonic 
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Sound based on a standard set of Sound commands. Such 
multimedia-hardware-equipped personal computers running 
emulator Software may have sufficient performance to 
approximate the graphics and Sound performance of system 
50. Emulator software controls the hardware resources on the 
personal computer platform to simulate the processing, 3D 
graphics, Sound, peripheral and other capabilities of the home 
Video game console platform for which the game program 
mer wrote the game software. 

FIG. 16A illustrates an example overall emulation process 
using a host platform 1201, an emulator component 1303, and 
a game software executable binary image provided on a stor 
age medium 62. Host 1201 may be a general or special pur 
pose digital computing device such as, for example, a per 
Sonal computer, a video game console, or any other platform 
with sufficient computing power. Emulator 1303 may be soft 
ware and/or hardware that runs on host platform 1201, and 
provides a real-time conversion of commands, data and other 
information from storage medium 62 into a form that can be 
processed by host 1201. For example, emulator 1303 fetches 
“source' binary-image program instructions intended for 
execution by system 50 from storage medium 62 and converts 
these program instructions to a target format that can be 
executed or otherwise processed by host 1201. 
As one example, in the case where the software is written 

for execution on a platform using an IBM PowerPC or other 
specific processor and the host 1201 is a personal computer 
using a different (e.g., Intel) processor, emulator 1303 fetches 
one or a sequence of binary-image program instructions from 
storage medium 1305 and converts these program instruc 
tions to one or more equivalent Intel binary-image program 
instructions. The emulator 1303 also fetches and/or generates 
graphics commands and audio commands intended for pro 
cessing by the graphics and audio processor 114, and converts 
these commands into a format or formats that can be pro 
cessed by hardware and/or software graphics and audio pro 
cessing resources available on host 1201. As one example, 
emulator 1303 may convert these commands into commands 
that can be processed by specific graphics and/or or Sound 
hardware of the host 1201 (e.g., using standard DirectX. 
OpenGL and/or sound APIs). 
An emulator 1303 used to provide some or all of the fea 

tures of the video game system described above may also be 
provided with a graphic user interface (GUI) that simplifies or 
automates the selection of various options and screen modes 
for games run using the emulator. In one example, such an 
emulator 1303 may further include enhanced functionality as 
compared with the host platform for which the software was 
originally intended. 

FIG. 16B illustrates an emulation host system 1201 Suit 
able for use with emulator 1303. System 1201 includes a 
processing unit 1203 and a system memory 1205. A system 
bus 1207 couples various system components including sys 
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tem memory 1205 to processing unit 1203. System bus 1207 
may be any of several types of bus structures including a 
memory bus or memory controller, a peripheral bus, and a 
local bus using any of a variety of bus architectures. System 
memory 1207 includes read only memory (ROM) 1252 and 
random access memory (RAM) 1254. A basic input/output 
system (BIOS) 1256, containing the basic routines that help 
to transfer information between elements within personal 
computer system 1201, Such as during start-up, is stored in the 
ROM 1252. System 1201 further includes various drives and 
associated computer-readable media. A hard disk drive 1209 
reads from and writes to a (typically fixed) magnetic hard disk 
1211. An additional (possible optional) magnetic disk drive 
1213 reads from and writes to a removable “floppy” or other 
magnetic disk 1215. An optical disk drive 1217 reads from 
and, in Some configurations, writes to a removable optical 
disk 1219 such as a CD ROM or other optical media. Hard 
disk drive 1209 and optical disk drive 1217 are connected to 
system bus 1207 by a hard disk drive interface 1221 and an 
optical drive interface 1225, respectively. The drives and their 
associated computer-readable media provide nonvolatile 
storage of computer-readable instructions, data structures, 
program modules, game programs and other data for personal 
computer system 1201. In other configurations, other types of 
computer-readable media that can store data that is accessible 
by a computer (e.g., magnetic cassettes, flash memory cards, 
digital video disks, Bernoulli cartridges, random access 
memories (RAMs), read only memories (ROMs) and the like) 
may also be used. 
A number of program modules including emulator 1303 

may be stored on the hard disk 1211, removable magnetic 
disk 1215, optical disk 1219 and/or the ROM 1252 and/or the 
RAM 1254 of system memory 1205. Such program modules 
may include an operating system providing graphics and 
Sound APIs, one or more application programs, other pro 
gram modules, program data and game data. A user may enter 
commands and information into personal computer system 
1201 through input devices such as a keyboard 1227, pointing 
device 1229, microphones, joysticks, game controllers, sat 
ellite dishes, scanners, or the like. These and other input 
devices can be connected to processing unit 1203 through a 
serial port interface 1231 that is coupled to system bus 1207, 
but may be connected by other interfaces, such as a parallel 
port, game port Fire wire bus or a universal serial bus (USB). 
A monitor 1233 or other type of display device is also con 
nected to system bus 1207 via an interface, such as a video 
adapter 1235. 

System 1201 may also include a modem 1154 or other 
network interface means for establishing communications 
over a network 1152 such as the Internet. Modem 1154, 
which may be internal or external, is connected to system bus 
123 via serial port interface 1231. A network interface 1156 
may also be provided for allowing system 1201 to communi 
cate with a remote computing device 1150 (e.g., another 
system 1201) via a local area network 1158 (or such commu 
nication may be via wide area network 1152 or other com 
munications path Such as dial-up or other communications 
means). System 1201 will typically include other peripheral 
output devices, such as printers and other standard peripheral 
devices. 

In one example, video adapter 1235 may include a 3D 
graphics pipeline chip set providing fast 3D graphics render 
ing in response to 3D graphics commands issued based on a 
standard 3D graphics application programmer interface Such 
as Microsoft's DirectX 7.0 or other version. A set of stereo 
loudspeakers 1237 is also connected to system bus 1207 via a 
Sound generating interface Such as a conventional “sound 
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card” providing hardware and embedded software support for 
generating high quality stereophonic Sound based on Sound 
commands provided by bus 1207. These hardware capabili 
ties allow system 1201 to provide sufficient graphics and 
Sound speed performance to play Software stored in storage 
medium 62. 
While the invention has been described in connection with 

what is presently considered to be the most practical and 
preferred embodiment, it is to be understood that the inven 
tion is not to be limited to the disclosed embodiment, but on 
the contrary, is intended to cover various modifications and 
equivalent arrangements included within the scope of the 
appended claims. 

We claim: 
1. In a graphics system including a main processor, a 

graphics processing system including a command processor, 
a texture unit and a pixel engine for generating graphics 
images on a display in cooperation with said main processor; 
an audio processor, a video interface; an input/output inter 
face; and a main memory, a memory controller comprising: 

a plurality of main memory read queues each operatively 
coupled to a respective read requester, said plurality of 
main memory read queues including a first main 
memory read queue which is operatively coupled to 
receive read requests from said command processor, a 
second main memory read queue which is operatively 
coupled to receive read requests from said texture unit, a 
third main memory read queue which is operatively 
coupled to receive read requests from said audio proces 
Sor, a fourth main memory read queue which is opera 
tively coupled to receive read requests from said input/ 
output interface, and a fifth main memory read queue 
which is operatively coupled to receive read requests 
from said video interface; 

a plurality of main memory write queues each operatively 
coupled to a respective write requester, said plurality of 
main memory write queues including a first main 
memory write queue which is operatively coupled to 
receive write requests from said pixel engine, a second 
main memory write queue which is operatively coupled 
to receive write requests from said audio processor and 
a third main memory write queue which is operatively 
coupled to receive write requests from said input/output 
interface; 

a global write queue coupled to said plurality of main 
memory write queues for storing write requests for main 
memory access transferred thereto from said plurality of 
main memory write queues; and 

a control circuit for controlling the transfer of write 
requests to said global write queue, wherein said control 
circuit is operable to control the transfer of write 
requests from said plurality of main memory write 
queues to said global write queue to reduce the fre 
quency of Switching from main memory write opera 
tions to main memory read operations, 

wherein said control circuit further comprises an arbitra 
tion circuit for arbitrating access to said main memory 
from among said main processor, said plurality of main 
memory read queues and said global write queue. 

2. A memory controller according to claim 1, wherein said 
arbitration circuitry is operable to control the frequency with 
which one or more of said read and write requesters are 
enabled to participate in the arbitrating for main memory 
aCCCSS, 
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3. A memory controller according to claim 1, further 
including a memory access control register associated with 
one of said read and write requesters, wherein said arbitration 
circuit is responsive to the contents of said memory access 
control register for determining a frequency that said one of 5 
said read and write requesters is permitted to participate in the 
arbitrating for main memory access. 

4. A memory controller according to claim 1, further 
including a set of control registers, said control registers 
being programmable by said main processor. 

5. A memory controller according to claim 4, wherein said 
control registers include a plurality of memory bandwidth 
control registers which are accessed by said arbitration circuit 
in determining which read or write requester will be granted 
main memory access. 
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6. A memory controller according to claim 5, wherein each 

of said memory bandwidth control registers is respectively 
associated with one of said read and write requesters seeking 
main memory access. 

7. A memory controller according to claim 4, wherein said 
control registers include at least one register associated with 
a read or write requester for storing data for said requester 
indicative of at least one of memory usage and memory band 
width for that requester. 

8. A memory controller according to claim 1, wherein a 
write requester that is writing to main memory generates a 
flush signal for initiating the flushing of that write requester's 
main memory write queue. 

k k k k k 


