
(12) United States Patent
Hollis et al.

US006580430B1

(10) Patent N0.:
(45) Date of Patent:

US 6,580,430 B1
Jun. 17, 2003

(54) METHOD AND APPARATUS FOR
PROVIDING IMPROVED FOG EFFECTS IN
A GRAPHICS SYSTEM

(75) Inventors: Martin Hollis, Cambridge (GB);
Patrick Y. Law, Milpitas, CA (US)

(73) Assignee: Nintendo Co., Ltd., Kyoto (JP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(*) Notice:

(21) Appl. No.: 09/726,225

(22) Filed: Nov. 28, 2000

Related US. Application Data
(60) Provisional application No. 60/227,032, ?led on Aug. 23,

2000.

(51) Int. Cl.7 G06T 15/70

(52) US. Cl. 345/473; 345/419; 345/426

(58) Field of Search 345/419, 420,

345/426, 473

(56) References Cited

U.S. PATENT DOCUMENTS

4,388,620 A 6/1983 Sherman
4,425,559 A 1/1984 Sherman
4,463,380 A 7/1984 Hooks, Jr.
4,570,233 A 2/1986 Yan et al.
4,658,247 A 4/1987 Gharachorloo

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

CA 2070934 12/1993
EP 1 074 945 2/2001
EP 1 075 146 2/2001
EP 1 081 649 3/2001
JP 11053580 2/1999
JP 11076614 3/1999
JP 11161819 6/1999
JP 11203500 7/1999
JP 11226257 8/1999

502

m z_nllset

JP 11259671 9/1999
JP 11259678 9/1999
JP 2000-66985 3/2000
JP 2000-92390 3/2000
JP 2000-132704 5/2000
JP 2000-132706 5/2000
JP 2000-149053 5/2000
JP 2000-156875 6/2000
JP 2000-182077 6/2000
JP 2000-207582 7/2000
JP 2000-215325 8/2000
W0 WO 94/10641 5/1994

OTHER PUBLICATIONS

Photograph of Sony PlayStation II System.
Photograph of Sega Dreamcast System.
Photograph of Nintendo 64 System.
Whitepaper: 3D Graphics Demysti?ed, Nov. 11, 1999,
WWW.nvidia.com.

(List continued on next page.)

Primary Examiner—Mark Zimmerman
Assistant Examiner—Enrique L Santiago
(74) Attorney, Agent, or Firm—Nixon & Vanderbye PC.

(57) ABSTRACT

A graphics system including a custom graphics and audio
processor produces exciting 2D and 3D graphics and sur
round sound. The system includes a graphics and audio
processor including a 3D graphics pipeline and an audio
digital signal processor. Improved fog simulation is pro
vided by enabling backwards exponential and backwards
exponential squared fog density functions to be used in the
fog calculation. Improved exponential and exponential
squared fog density functions are also provided Which
provide the ability to program a fog start value. A range
adjustment function is used to adjust fog based on the X
position of the pixels being rendered, thereby preventing
range error as the line of sight moves aWay from the Z axis.
An exemplary Fog Calculation Unit, as Well as exemplary
fog control functions and fog related registers, are also
disclosed.

20 Claims, 11 Drawing Sheets

/ 60011
_ _ _ _ scveen lo eye space Z conversion

51198 L; 504
l

15c

.B

6140

Fog calculation unit

US 6,580,430 B1
Page 2

US. PATENT DOCUMENTS OTHER PUBLICATIONS

4,725,831 A 2/1988 Coleman Whitepaper: “Z Buffering, Interpolation and More
4,829,295 A 5/1989 Hiroyuki W—Buffering”, Doug Rogers, Jan. 31, 2000, WWW.nvidi
4,862,392 A 8/1989 Steiner Mom

478667637 A 9/1989 G°nZ_a1eZ'L°PeZ et al' Whitepaper: Using GLiNVivertexiarray and GLiNVi
4,901,064 A 2/1990 Deem_lg 1 fence, posted Aug. 1, 2000, WWW.nvidia.com.
4’914’729 A 4/1990 OmO_n et a‘ Whitepaper: Anisotropic Texture Filtering in OpenGL,
4,945,500 A 7/1990 Deering - - posted Jul. 17, 2000, WWW.nvidia.com.
5,136,664 A 8/1992 Bersack et al.
5,170,468 A 12/1992 Shah et a1‘ Whitepaper: Mapping Texels to Pixels in D3D, posted Apr.
5,268,996 A 12/1993 Steiner et al. 5’ 2_000> wwwnvldla-com- _ _
5,357,579 A 1O/1994 Buchner et aL Whitepaper: Guard Band Clipping, posted Jan. 31, 2000,
5,363,475 A 11/1994 Baker et al. WWW-HVIdIa-COIH
5,392,385 A 2/1995 Evangelisti et al. Whitepaper: Cube Environment Mapping, posted Jan. 14,
5,392,393 A 2/1995 Deering 2000, WWW.nvidia.com.
5,412,796 A 5/1995 Olive Whitepaper: Color Key in D3D, posted Jan. 11, 2000,
5,415,549 A 5/1995 LOgg WWW.nvidia.com.
574217028 A 5/1995 Swanson Whitepaper: Vertex Blending Under DX7 for the GeForce
574327895 A 7/1995 Myers 256, Jan. 5, 2000, WWW.nvidia.com.
5’457’775 A 10/1995 JOhn_S°n’ Jr‘ et a1‘ Whitepaper: Optimizing Direct3D for the GeForce 256, Jan.
5,504,917 A 4/1996 Austin - - . 3, 2000, WWW.nvidia.com.
5,535,374 A 7/1996 Olive Wm _ D tP d tT t B1 01. D 3 1999
5,573,402 A 11/1996 Gray 1 epapgzr. o ro uc ex ure en ing, ec. , ,

5,594,854 A 1/1997 Baldwin et al. WW1“ 1a~C°m~ _ _ _ _

5,608,424 A 3/1997 Takahashi et a1_ Whitepaper: Technical Brief: AGP 4X With Fast Writes,
5,616,031 A 4/1997 Logg Nov. 10, 1999, WWW.nvidia.com.
5,687,357 A 11/1997 Priem Technical Brief: Transform and Lighting, Nov. 10, 1999,
5,701,444 A 12/1997 Baldwin WWW.nvidia.com.
5,721,947 A 2/1998 Priem et al. Technical Brief: What’s NeW With Microsoft DirectX7,
5,724,561 A 3/1998 Tarolli et 91- posted Nov. 10, 1999, WWW.nvidia.com.
5,727,192 A 3/1998 Baldwin Mitchell et al., “Multitexturing in DirectX6”, Game Devel
5,758,182 A 5/1998 Rosenthal et al. Oper, Sen 1998, WWW_gdmag_COm_
5,764,243 A 6/1998 Baldwm VisionTek, “GeForce2 GS Graphics Processing Unit”,
5,768,626 A 6/1998 Munson et al. @2000 WWWViSiOntek Com

5’768’629 A 6/1998 Wlse et al' Jim Bushnell et al. “Advanced Multitexture Effects With
5,774,133 A 6/1998 Neave et al. . ,, . .
5,777,629 A 7/1998 Baldwin Direct3D and OpenGL , Pyramid Peak Design & ATI
5,798,770 A 8/1998 Baldwin Research, Inc.,' GameDevelopers Conferencem @1999.
5,801,706 A 9/1998 Fujita et a1_ Sony PlayStation II Instruction Manual, Sony Computer
5,801,716 A 9/1998 Silverbrook Entertainment Inc., @2000.
5,805,868 A 9/1998 Murphy Stand and Be Judged, Next Generation, May 2000.
578157166 A 9/1998 Ba1d‘_”m PlayStation II: HardWare Heaven or Hell‘), Next Generation,
5,821,949 A 10/1998 Deering Jan 2000
5,874,969 A 2/1999 Storm etal. '. ' “ . _ ,,
5,917,496 A 6/1999 Fujita et a1‘ Chris Charla, Play Station II. The Latest NeWs , Next
5,920,326 A 7/1999 Rentschler et al. Géneranom 56? 1999
5,940,086 A 8/1999 Rentschler et a1, “First PlayStation II Gameplay Screens Revealedl”, Next
5,949,424 A 9/1999 Cabral et al. Generation, Sep. 1999.
5,949,440 A 9/1999 Kfech, Jf- et 81- Game Enthusiast Online Highlights, Mar. 18, 1999.
59697726 A 10/1999 Rents?ller et ‘11' Game Enthusiast Online Highlights, Mar. 19, 1999.
5977984 A 11/1999 Omon Game Enthusiast Online Highlights, Mar. 17, 1999.
5,990,903 A 11/1999 Donovan h . 1. . hl. h
5,999,196 A 12/1999 Storm et a1_ Game Ent usiast On ine Hig ig ts, Oct. 20, 1999.
6,002,409 A 12/1999 Harkin Joel Easley, “PlayStation II Revealed”, Game Week, Sep.
6,005,582 A 12/1999 Gabriel et al. 29, 1999.
6,023,738 A 2/2000 Priem et 91- Inside Sony’s Next Generation Playstation, @1999.
6,025,853 A 2/2000 Baldwin Press Release Mar. 18 1999.
6,028,611 A 2/2000 Anderson et al. . ’ “ ’ . ,,
6,037,949 A 30000 DeROSe et a1‘ Chris Johnston, PlayStation Part Deux , Press Start,
6,057,852 A 5/2000 Krech, Jr. @1999
6,064,392 A 5/2000 Rohner Nikkei Shimbun, “Sony Making SME, Chemical and SPT
6,092,124 A 7/2000 Priem et al. into Wholly—OWned Subsidiaries”, Mar. 9, 1999.
6,173,367 B1 1/2001 Aleksic ct a1~ AM NeWs: Japanese Developers Not All Sold on PS2, Next

6,181,352 B1 1/2001 61 al. Generation Mar 6,198,488 B1 3/2001 Lindholm et al. ’ i ’ . i .

6,226,012 B1 50001 Priem et a1‘ Sony To Turn PlayStation Maker Into Wholly OWned Unit—
6,268,861 B1 * 7/2001 SanZ-Pastor et al. 345/426 Nlkkeh DOW Jones News Servlce> Mar- 8> 1999
6,342,892 B1 * 1/2002 Van Hook et al. 345/503 Yurniko Ono, Sony Antes Up Its Chips In Bet On New Game
6,437,781 B1 * 8/2002 Tucker et al. 345/426 System, DoW Jones NeWs Service, Mar. 4, 1999.

US 6,580,430 B1
Page 3

MacWeek.Com Gets Inside Story on Connectix VGS for
Windows; Controversial Emulator of Sony PlayStation
Games Cureently Available for Macs Only, Business Wire,
Mar. 12, 1999.
“DexDrive Bridges Gap”, The Tampa Tribune, Mar. 12,
1999.
A Microprocessor With a 128b CPU, 10 Floating—Point
MAC’s, 4 Floating—Point Dividers, and an MPEG2
Decoder, 1999 IEEE International Solid—State Circuits Con
ference, Feb. 16, 1999.
Dreamcast Instruction Manual, Sega Enterprises, Ltd.,
©1998.
“Sega To Launch Video Camera for Dreamcast”, Reuters
Business NeWs, Feb. 16, 2000.
David PescovitZ, “Dream On”, Wired, Aug. 1999.
Randy Nelson, “Dreamcast 101: Everything You Ever
Wanted To KnoW About Sega’s Powerful NeW Console”,
Of?cial Sega Dreamcast MagaZine, Jun. 1999.
2D/3D Graphics Card User Manual, Guillemot @1999.
Nintendo 64 Instruction Booklet, Nintendo of America,
1998.
Steven Levy, “Here Comes PlayStaytion II”, NeWsWeek,
Mar. 6, 2000.
David Sheff, “Sony Smackage: Test Driving The PlayStation
II”, Wired, Nov. 1999.
Introducing The Next Generation PlayStation, Sony Com
puter Entertainment Inc., ©1999.
Leadtek GTS, Aug. 3, 2000, WWW.hexus.net.
Voodoo 5 5500 RevieW, Jul. 26, 2000, WWW.hexus.net.
ATI Radeon 64 Meg DDR OEM, Aug, 19, 2000, WWW.hex
us.net.

Microsoft Xbox—The Future of Gaming, Microsoft Xbox
Performance Sheet, WWW.xbox.com.
Robert L. Cook, “Shade Trees”, Computer Graphics, vol. 18,
No. 3, Jul. 1984.
Wang et al., “Second—Depth ShadoW Mapping”, Depart
ment of Computer Science, Univ. N.C, Chapel Hill, NC. pp.
1—7.
Peercy et al., “Ef?cient Bump Mapping HardWare”, Com
puter Graphics Proceedings, Annual Conference Series,
1997.
Gustavo Oliveira, “Refractive Texture Mappig, Part One”,
WWW.gamasutra.com, Nov., 10, 2000.
John Schlag, Fast Embossing Effects on Raster Image Data,
Graphics Gems IV, Edited by Paul S. Heckbert, Computer
Science Department, Carnegie Mellon University, Academic
Press, Inc., 1994,pp. 433—437.
James F. Blinn, “Simulationof Wrinkled Surfaces,” Caltech/
JPL, pp. 286—292, SIGGRAPH 78 (1978).
Tomas Moller and Eric Haines “Real—Time Rendering”, AK
Peters, Ltd., @1999, pp. 127—142.
Technical Presentation: Vertex Buffers, posted Jun. 12,
2000, WWW.nvidia.com.
Technical Presentation: HardWare Transform and Lighting,
WWW.nvidia.com, posted Jun. 12, 2000.
Technical Presentation: HardWare Bump—mapping Choices
and Concepts, Jun. 7, 2000, WWW.nvidia.com.
Technical Presentation: HoW to Bump Map a Skinned
Polygonal Model, Jun. 7, 2000, WWW.nvidia.com.
Technical Presentation: Computations for HardWare Light
ing and Shading, Mar. 17, 2000, WWW.nvidia.com.
Technical Presentation: Practical Bump—mapping for
Today’s GPUs, Mar. 17, 2000, WWW.nvidia.com.

Technical Presentation: ShadoWs, Transparency, & Fog,
Mar. 17, 2000 WWW.nvidia.com.
Technical Presentation: GeForce 256 Register Combiners,
Mar. 17, 2000,WWW.nvidia.com.
Technical Presentation: TexGen & The Texture Matrix, Mar.
15, 2000 WWW.nvidia.com.
Technical Presentation: Toon Shading, Mar. 15, 2000,
WWW.nvidia.com.
Technical Presnetation: D3D 7 Vertex Lighting, Mar. 15,
2000. WWW.nvidia.com.
Technical Presentation: Per—Pixel Lighting (by S. Dietrich)
Mar. 14, 2000 WWW.nvidia.com.
Technical Presentation: GeForce 256 and RIVA TNT Com
biners, Dec. 8, 1999, WWW.nvidia.com.
Technical Presentation: Vertex Cache OptimiZation, Nov.
12, 1999, WWW.nvidia.com.
Technical Presentation: Vertex Blending, Nov. 12, 1999,
WWW.nvidia.com.
Technical Presentation: HardWare Transform and Lighting,
Nov. 12, 1999, WWW.nvidia.com.
Technical Presentation: GeForce 256 OvervieW, Nov. 12,
1999, WWW.nvidia.com.
Technical Presentation: DirectX 7 and Texture Management,
Nov. 12, 1999 WWW.nvidia.com.
Technical Presentation: Dot Product Lighting, Nov. 12,
1999, WWW.nvidia.com.
Technical Presentation: Texture Coordinate Generation,
Nov. 3, 1999, WWW.nvidia.com.
Technical Presentation: Phong Shading and Lightmaps, Nov.
3, 1999, WWW.nvidia.com.
Technical Presentation: The ARBimultitexture Extension,
Nov. 3, 1999, WWW.nvidia.com.
Technical Presentation: Multitexture Combiners, Nov. 3,
1999, WWW.nvidia.com.
Technical Presentation: Emboss Bump Mapping, Nov. 3,
1999, WWW.nvidia.com.
Technical Presentation: HardWare Accelerated Anisotropic
Lighting, Nov. 3, 1999, WWW.nvidia.com.
Technical Presentation: Guard Band Clipping, Nov. 3, 1999,
WWW.nvidia.com.
The RenderMan Interface, Stephan R. Keith, Version 3.1,
Pixar Animation Studios, Sep. 1989.
The RenderMan Interface, Version 3.2, Pixar Animation
Studios, Jul. 2000, WWW.pixar.com.
NVIDIA Product OvervieW, “GeForce2Ultra”, NVIDIA
Corporation, Aug. 21, 2000, WWW.nvidia.com.
Duke, “Dreamcast Technical Specs”, Sega Dreamcast
RevieW, Sega, 2/99, WWW.game—revolution.com
Marlin RoWley, “GeForce 1& 2 GPU Speed Tests”, May 11,
2000, WWW.g256.com.
“Dreamcast: The Full Story”, Next Generation, Sep. 1998.
DirectX 7.0 Programmer’s Reference, Microsoft Corpora
tion, 1995—1999 (as part of the DirectX 7.0 SDK on the
Conpanion CD included With “Inside Direct3D”, Microsoft
Programming Series, Peter J. Kovach, Microsoft Press,
1999).
“Inside Direct3D”, Microsoft Programming Series, Peter J.
Kovach, Microsoft Press, 1999.
“OpenGL Programming Guide, The Of?cial Guide to Learn
ing OpenGL, Release 1”, Jackie Nieder, Tom David, Mason
Woo, Addison—Wesley Publishing Co., 1993.
“Procedural Elements for Computer Graphics,” Second Edi
tion, David F. Rogers, McGraW Hill, 1998.

US 6,580,430 B1
Page 4

“Real—Time Rendering,” Tomas Molleir, Eric Haines, AK “Principles of Three—Dimensional Computer Animation”,
Peters, 1999. Revised Edition, Michael O’Rourke, W.W. Norton & Com
“Computer Graphics, Principles and Practices,” Second Edi- pany, 1998.
tion, The Systems Programming Series, Foley, van Dam,
Fiener, Hughes, Addison Wesley, 1990. * cited by examiner

U.S. Patent Jun. 17, 2003 Sheet 1 0f 11 US 6,580,430 B1

56

59 g

/ ummmumuuu
(

U.S. Patent Jun. 17, 2003 Sheet 4 0f 11 US 6,580,430 B1

8 .

5&5 _ ‘

‘r u u

I I I i i I I I I l I I I I I I I I _ _

_ m: \+ E n _ n .5 n

a: _ _

N:

88E; 82> a
a 52:8 _ “E52

‘v _ 1111111 FFT

m2

5 :25: 5 258 E25 1 v 5:228
n I: m _>_ 8:395 \momtmzs

1 I - I ,_ - I 2252
_ _ R2 @ - in = >

SN 96 _ <
235 =5 2%? 8» 8m “ 8m

:21 A1 55535 .T E: A 552% A] E5 ‘.1 A 7 5
EM. 225 2:5 5% .5222 u :55 32:55

- -AW - -~__.__§m_m_@§ - - n 285

NE 0

I I I I I I I l I I I l I I I IlllMlllll-IIIIIIIIIILII

w:

@365
\ E525

3 5

E
/ 5E5 sag .255 228 21

Q: 6380i 5%

U.S. Patent Jun. 17, 2003 Sheet 5 0f 11 US 6,580,430 B1

112
f 114

Main Memory
/275 200a position [300a position’ __

GXHFO __ FIFO ft normal Transform normal posrtion
270 L color
—- Command color ‘1 L- h- channeis_

From Pmcessmg 300D lg mg 7
Display Lists Caii Matrix K
gg '“ FIFO \ Memory 3006

\ a i

278 " position, normal ‘- tex’
Vertex Arrays Vertex tex coords Texture coordsl
QT Cache ' Coordinate

/ 3000A‘ Generation
; 1 220

: : ~ Csuiiing -» Rasterize -~ Zcompare

713 External Frame / emp 1:
\ Buffer or 300” Fra‘me 702

Texture I Ctgpy <- Buffer /
n I A

504 ' ' 502 Texture 7 00c
\ Textures ‘ Mem/ / "

Cache

[5001) ‘7 [500a [6001) ‘V ‘V
— Bump — Texture ~ Texture _,_ __

Environment Fog Z Sompare Eiend
Indirect 500C
Texture / K 7

“500a

Fig. 5 EXAMPLE GRAPHICS PROCESSOR FLOW

U.S. Patent Jun. 17, 2003 Sheet 6 0f 11 US 6,580,430 B1

1

GX_FOG__LIN —
0.8 - -

0.6 - .

Fog Density
0.4 — -

0.2 - _

0 | I | |

0 20 40 60 80 100
-‘ Range

F lg. Linear fog curve

1
GX_FOG_EXP —

0.8 - .

0.6 - -

Fog Density
0.4 - -

0.2 - -

0 ! l l l

0 20 40 60 80 100
Range

Flg . Exponential fog curve

1
GX_FOG_EXP2 ——

0.8 - —

0.6 - ~

Fog Density
0.4 - -

0.2 - -

0 1 1 a v

0 20 40 60 80 100
Range

F Exponential squared fog curve

U.S. Patent Jun. 17, 2003 Sheet 7 0f 11 US 6,580,430 B1

GX_FOG_REVEXP -—

0.8 -

0.6 -

Fog Density
0.4 -

0.2 -

o 4 l

0 20 40 60 80 100

F Backward exponential fog curve

GX_FOG__REVEXP2 —
0.8 - -

0.6 - .

Fog Density ,
0.4 - ; -

0.2 - _

O l I f L 1

0 20 40 60 80 100
Range

. Backward exponential squared fog curve

U.S. Patent Jun. 17, 2003 Sheet 8 0f 11 US 6,580,430 B1

lllllllll IIIIIII" ‘PI 0 -\

V
F 7 Fog range adjustment

8 Fog Compensation function

U.S. Patent Jun. 17, 2003 Sheet 10 0f 11 US 6,580,430 B1

mm

T
2.0.5 .2230 E 555 wazzow

£289 wEQEES Enigma

<2 .mm

=28 $288 . 5626s =23
82

55:5

@098 @8358 202.56 is: 6326265

US 6,580,430 B1
1

METHOD AND APPARATUS FOR
PROVIDING IMPROVED FOG EFFECTS IN

A GRAPHICS SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is ?led in accordance With 35 U.S.C.
§119(e)(1) and claims the bene?t of the provisional appli
cation Ser. No. 60/227,032 ?led on Aug. 23, 2000, entitled
“Method And Apparatus For Providing Improved Fog
Effects In A Graphics System.”

This application is related to the following applications
identi?ed beloW, Which focus on various aspects of the
graphics system described herein. Each of the folloWing
applications are hereby incorporated herein by reference.

provisional Application No. 60/161,915, ?led Oct. 28,
1999 and its corresponding utility application Ser. No.
09/465,754, ?led Dec. 17, 1999, both entitled “Vertex
Cache For 3D Computer Graphics”,

provisional Application No. 60/226,912, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,215, ?led Nov. 28, 2000, both entitled “Method
and Apparatus for Buffering Graphics Data in a Graph
ics System”,

provisional Application No. 60/226,889, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,419, ?led Nov. 28, 2000, both entitled “Graph
ics Pipeline Token Synchronization”,

provisional Application No. 60/226,891, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,382, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Direct and Indirect Texture Pro
cessing In A Graphics System”,

provisional Application No. 60/226,888, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,367, ?led Nov. 28, 2000, both entitled “Recir
culating Shade Tree Blender For A Graphics System”,

provisional Application No. 60/226,892, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,218, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Ef?cient Generation Of Texture
Coordinate Displacements For Implementing Emboss
Style Bump Mapping In A Graphics Rendering
System”,

provisional Application No. 60/226,893, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,381, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Environment-Mapped Bump
Mapping In A Graphics System”,

provisional Application No. 60/227,007, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,216, ?led Nov. 28, 2000, both entitled “Achro
matic Lighting in a Graphics System and Method”,

provisional Application No. 60/226,900, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,226, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Anti-Aliasing In A Graphics
System”,

provisional Application No. 60/226,910, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,380, ?led Nov. 28, 2000, both entitled “Graph
ics System With Embedded Frame Buffer Having
Recon?gurable Pixel Formats”,

utility application Ser. No. 09/585,329, ?led Jun. 2, 2000,
entitled “Variable Bit Field Color Encoding”,

10

15

20

25

30

35

40

45

55

60

65

2
provisional Application No. 60/226,890, ?led Aug. 23,

2000 and its corresponding utility application Ser. No.
09/726,227, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Dynamically Recon?guring The
Order Of Hidden Surface Processing Based On Ren
dering Mode”,

provisional Application No. 60/226,915, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,210, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Providing Non-Photorealistic Car
toon Outlining Within A Graphics System”,

provisional Application No. 60/226,885, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,664, ?led Nov. 28, 2000, both entitled “Con
troller Interface For A Graphics System”,

provisional Application No. 60/227,033, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,221, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Texture Tiling In A Graphics
System”,

provisional Application No. 60/226,899, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,667, ?led Nov. 28, 2000, both entitled “Method
And Apparatus For Pre-Caching Data In Audio
Memory”,

provisional Application No. 60/226,913, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,378, ?led Nov. 28, 2000, both entitled
“Z-Texturing”,

provisional Application No. 60/227,031, ?led Aug. 23,
2000 entitled “Application Program Interface for a
Graphics System”,

provisional Application No. 60/227,030, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,663, ?led Nov. 28, 2000, both entitled “Graph
ics System With Copy Out Conversions BetWeen
Embedded Frame Buffer And Main Memory”,

provisional Application No. 60/226,886, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,665, ?led Nov. 28, 2000, both entitled “Method
and Apparatus for Accessing Shared Resources”,

provisional Application No. 60/226,884, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/723,335, ?led Nov. 28, 2000, both entitled “External
Interfaces ForA3D Graphics and Audio Coprocessor”,

provisional Application No. 60/226,894, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,220, ?led Nov. 28, 2000, both entitled “Graph
ics Processing System With Enhanced Memory
Controller”,

provisional Application No. 60/226,914, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,390, ?led Nov. 28, 2000, both entitled “LoW
Cost Graphics System With Stitching HardWare Sup
port For Skeletal Animation”, and

provisional Application No. 60/227,006, ?led Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,421, ?led Nov. 28, 2000, both entitled “ShadoW
Mapping In A LoW Cost Graphics System”.

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more particularly to interactive graphics systems such as
home video game platforms. Still more particularly this
invention relates to a system and method for providing

US 6,580,430 B1
3

improved fog effects in interactive three dimensional (3D)
graphics systems.

BACKGROUND AND SUMMARY OF THE
INVENTION

Many of us have seen ?lms containing remarkably real
istic dinosaurs, aliens, animated toys and other fanciful
creatures. Such animations are made possible by computer
graphics. Using such techniques, a computer graphics artist
can specify hoW each object should look and hoW it should
change in appearance over time, and a computer then models
the objects and displays them on a display such as your
television or a computer screen. The computer takes care of
performing the many tasks required to make sure that each
part of the displayed image is colored and shaped just right
based on the position and orientation of each object in a
scene, the direction in Which light seems to strike each
object, the surface texture of each object, and other factors.

Because computer graphics generation is complex,
computer-generated three-dimensional graphics just a feW
years ago Were mostly limited to expensive specialiZed ?ight
simulators, high-end graphics Workstations and supercom
puters. The public saW some of the images generated by
these computer systems in movies and expensive television
advertisements, but most of us couldn’t actually interact
With the computers doing the graphics generation. All this
has changed With the availability of relatively inexpensive
3D graphics platforms such as, for example, the Nintendo
64® and various 3D graphics cards noW available for
personal computers. It is noW possible to interact With
exciting 3D animations and simulations on relatively inex
pensive computer graphics systems in your home or of?ce.
A problem graphics system designers confronted in the

past Was to improve realism of the graphic system by closer
modeling of the 3D virtual World in the graphics system to
the real World. One problem With graphics systems is that
they do not automatically take into account the effect that
fog and other similar atmospheric conditions create in the
real World. In other Words, computer graphics images having
a distinctive crystal clear quality throughout the image can
appear unrealistic as compared to the real World. In the real
World, far aWay objects look less clear to the vieWer than do
close objects. This difference in clarity results from the fact
that fog, smog, mist, smoke, pollution and/or haZe (hereafter
simply “fog”) can exist in the atmosphere betWeen the
vieWer and the object being vieWed. As a result, the mol
ecules making up the fog de?ect light, thereby causing
clarity of an object to be reduced as the distance from the
vieWer to the object increases. For example, in the real
World, fog causes a tree that is close to a person to look
clearer to that person than Will a tree that is far aWay from
that same person.

In contrast, in the virtual World of a computer graphics
system, objects Will all have the same clarity unless a
mechanism is employed in the graphics system to simulate
the effects of fog. Various solutions to this problem Were
offered. For example, many graphics systems have provided
functions and techniques for incorporating atmospheric
effects, such as fog, into a rendered scene in order to provide
a more realistic vieW of the virtual World. For instance, the
OpenGL graphics system, Which provides a commonly used
softWare interface to graphics hardWare, enables a program
mer to render atmospheric fog effects. OpenGL implements
fogging by blending fog color With incoming fragments
using a fog blending factor (f), as folloWs:

15

25

35

4
This blending factor is computer using one of the folloW

ing three equations:

Exponential (GLiEXP): f=e’(dE”S”y‘Z) 1)

Exponential-squared (GLiEXPZ): f=ei(d?”s”y'z)‘ '2 2)

Linear (GLiLINEAR): f=(end—z)/(end—start) 3)

Where Z is the eye-coordinate distance betWeen the vieW
point and the fragment center. The values for density, start
and end are all speci?ed the programmer using a particular
function (i.e. glfog*(

Linear fog is frequently used to, for example, implement
intensity depth-cuing in Which objects closer to the vieWer
are draWn at a higher intensity. The effect of intensity as a
function of distance is achieved by blending the incoming
fragments With a black fog color. The exponential fog
equation has some physical basis; it is the result of integrat
ing a uniform attenuation betWeen the object and the vieWer.
The exponential function can be used to, for example,
represent a number of atmospheric effects using different
combinations of fog colors and fog density values. By using
fog, the obscured visibility of objects near the far plane can
be exploited to overcome various problems such as draWing
time overruns, level-of-detail transition, and database pag
ing. HoWever, in practice it has been found that the expo
nential function does not attenuate distant fragments rapidly
enough. Thus, the exponential-squared fog Was introduced
in OpenGlL to provide a sharper fall-off in visibility. The
Direct3D (DirectX) interface to graphics hardWare also
provides linear, exponential and exponential squared for
density equations.
As explained above, various fog mechanisms have been

employed in the past in order to make a 3D graphics image
appear more natural and realistic. HoWever, While signi?
cant Work has been done in the past, further improvements
in connection With fog simulation are desirable.
The present invention solves this problem by providing

improved techniques and arrangements that further enhance
the use of fog in graphics systems. The instant invention
provides improved fog functions that enable neW, interesting
and visually enjoyable effects to be achieved in a graphics
system. Additionally, the instant invention provides the
ability to provide a horiZontal range adjustment for the fog,
thereby increasing the fog density toWards the edges of the
screen in order to make the effect more realistic. The
invention further provides a method of sampling fog or
screen space Z for a normal quad and Z blit is quad, When
only one fog value is de?ned per quad. An exemplary fog
calculation unit is also provided for implementing fog in
accordance With the instant invention.

In accordance With one aspect provided by the invention,
a method and system for simulating fog in a graphics system
is provided Which includes, obtaining a pixel color for a
pixel, and blending a fog color With the pixel color, Wherein
the percentage of fog color blended With the pixel color is
determined based on one of the folloWing tWo fog density
functions:

FOg=2is~(zEiz0)/z1iz0) (Backwards Exponential)

FOg=2is (Ze*ZU)/Z1*ZD) 2 (Backwards ExponentmlSquared)

Wherein Ze is an eye-space Z value of the pixel, Z0 is an
eye-space Z value at Which fog begins, and Z1 is an
eye-space Z value at Which fog density substantially
reaches a maximum value.

A range adjustment is preferably made to the eye-space Z
value (Ze) prior to applying the fog density function in order

US 6,580,430 B1
5

to compensate for the change in range as the viewing angle
increases in the X direction aWay from the Z axis.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention Will be better and more completely understood by
referring to the folloWing detailed description of presently
preferred embodiments in conjunction With the draWings, of
Which:

FIG. 1 is an overall vieW of an example interactive
computer graphics system;

FIG. 2 is a block diagram of the FIG. 1 example computer
graphics system;

FIG. 3 is a block diagram of the example graphics and
audio processor shoWn in FIG. 2;

FIG. 4 is a block diagram of the example 3D graphics
processor shoWn in FIG. 3;

FIG. 5 is an example logical flow diagram of the FIG. 4
graphics and audio processor;

FIG. 6a shoWs a conventional linear fog curve;
FIGS. 6b—6e shoW exemplary exponential, exponential

squared, reverse exponential and reverse exponential
squared fog curves, respectively, in accordance With the
instant invention;

FIG. 7 is a graph demonstrating the increasing fog error
that results When no horiZontal range adjustment is used;

FIG. 8 is an exemplary fog compensation function that
can be used to correct the error shoWn in FIG. 7;

FIG. 9, is an exemplary embodiment of a fog calculation
unit for calculating fog in accordance With the instant
invention; and

FIGS. 10A and 10B shoW example alternative compatible
implementations.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS OF THE INVENTION

FIG. 1 shoWs an example interactive 3D computer graph
ics system 50. System 50 can be used to play interactive 3D
video games With interesting stereo sound. It can also be
used for a variety of other applications.

In this example, system 50 is capable of processing,
interactively in real time, a digital representation or model of
a three-dimensional World. System 50 can display some or
all of the World from any arbitrary vieWpoint. For example,
system 50 can interactively change the vieWpoint in
response to real time inputs from handheld controllers 52a,
52b or other input devices. This alloWs the game player to
see the World through the eyes of someone Within or outside
of the World. System 50 can be used for applications that do
not require real time 3D interactive display (e.g., 2D display
generation and/or non-interactive display), but the capability
of displaying quality 3D images very quickly can be used to
create very realistic and exciting game play or other graphi
cal interactions.

To play a video game or other application using system
50, the user ?rst connects a main unit 54 to his or her color
television set 56 or other display device by connecting a
cable 58 betWeen the tWo. Main unit 54 produces both video
signals and audio signals for controlling color television set
56. The video signals are What controls the images displayed
on the television screen 59, and the audio signals are played
back as sound through television stereo loudspeakers 61L,
61R.

The user also needs to connect main unit 54 to a poWer
source. This poWer source may be a conventional AC

10

15

25

35

45

55

65

6
adapter (not shoWn) that plugs into a standard home elec
trical Wall socket and converts the house current into a loWer
DC voltage signal suitable for poWering the main unit 54.
Batteries could be used in other implementations.
The user may use hand controllers 52a, 52b to control

main unit 54. Controls 60 can be used, for example, to
specify the direction (up or doWn, left or right, closer or
further aWay) that a character displayed on television 56
should move Within a 3D World. Controls 60 also provide
input for other applications (e.g., menu selection, pointer/
cursor control, etc.). Controllers 52 can take a variety of
forms. In this example, controllers 52 shoWn each include
controls 60 such as joysticks, push buttons and/or directional
sWitches. Controllers 52 may be connected to main unit 54
by cables or Wirelessly via electromagnetic (e.g., radio or
infrared) Waves.

To play an application such as a game, the user selects an
appropriate storage medium 62 storing the video game or
other application he or she Wants to play, and inserts that
storage medium into a slot 64 in main unit 54. Storage
medium 62 may, for example, be a specially encoded and/or
encrypted optical and/or magnetic disk. The user may oper
ate a poWer sWitch 66 to turn on main unit 54 and cause the
main unit to begin running the video game or other appli
cation based on the softWare stored in the storage medium
62. The user may operate controllers 52 to provide inputs to
main unit 54. For example, operating a control 60 may cause
the game or other application to start. Moving other controls
60 can cause animated characters to move in different
directions or change the user’s point of vieW in a 3D World.
Depending upon the particular softWare stored Within the
storage medium 62, the various controls 60 on the controller
52 can perform different functions at different times.

Example Electronics of Overall System

FIG. 2 shoWs a block diagram of example components of
system 50. The primary components include:

a main processor (CPU) 110,
a main memory 112, and
a graphics and audio processor 114.
In this example, main processor 110 (e.g., an enhanced

IBM PoWer PC 750) receives inputs from handheld control
lers 108 (and/or other input devices) via graphics and audio
processor 114. Main processor 110 interactively responds to
user inputs, and executes a video game or other program
supplied, for example, by external storage media 62 via a
mass storage access device 106 such as an optical disk drive.
As one example, in the context of video game play, main
processor 110 can perform collision detection and animation
processing in addition to a variety of interactive and control
functions.

In this example, main processor 110 generates 3D graph
ics and audio commands and sends them to graphics and
audio processor 114. The graphics and audio processor 114
processes these commands to generate interesting visual
images on display 59 and interesting stereo sound on stereo
loudspeakers 61R, 61L or other suitable sound-generating
devices.
Example system 50 includes a video encoder 120 that

receives image signals from graphics and audio processor
114 and converts the image signals into analog and/or digital
video signals suitable for display on a standard display
device such as a computer monitor or home color television
set 56. System 50 also includes an audio codec (compressor/
decompressor) 122 that compresses and decompresses digi
tiZed audio signals and may also convert betWeen digital and

US 6,580,430 B1
7

analog audio signaling formats as needed. Audio codec 122
can receive audio inputs via a buffer 124 and provide them
to graphics and audio processor 114 for processing (e.g.,
mixing With other audio signals the processor generates
and/or receives via a streaming audio output of mass storage
access device 106). Graphics and audio processor 114 in this
example can store audio related information in an audio
memory 126 that is available for audio tasks. Graphics and
audio processor 114 provides the resulting audio output
signals to audio codec 122 for decompression and conver
sion to analog signals (e.g., via buffer ampli?ers 128L,
128R) so they can be reproduced by loudspeakers 61L, 61R.

Graphics and audio processor 114 has the ability to
communicate With various additional devices that may be
present Within system 50. For example, a parallel digital bus
130 may be used to communicate With mass storage access
device 106 and/or other components. A serial peripheral bus
132 may communicate With a variety of peripheral or other
devices including, for example:

a programmable read-only memory and/or real time clock
134,

a modem 136 or other netWorking interface (Which may
in turn connect system 50 to a telecommunications
netWork 138 such as the Internet or other digital
netWork from/to Which program instructions and/or
data can be doWnloaded or uploaded), and

?ash memory 140.
A further external serial bus 142 may be used to communi
cate With additional expansion memory 144 (e.g., a memory
card) or other devices. Connectors may be used to connect
various devices to busses 130, 132, 142.

Example Graphics and Audio Processor

FIG. 3 is a block diagram of an example graphics and
audio processor 114. Graphics and audio processor 114 in
one example may be a single-chip ASIC (application spe
ci?c integrated circuit). In this example, graphics and audio
processor 114 includes:

a processor interface 150,

a memory interface/controller 152,
a 3D graphics processor 154,
an audio digital signal processor (DSP) 156,
an audio memory interface 158,
an audio interface and mixer 160,

a peripheral controller 162, and
a display controller 164.
3D graphics processor 154 performs graphics processing

tasks. Audio digital signal processor 156 performs audio
processing tasks. Display controller 164 accesses image
information from main memory 112 and provides it to video
encoder 120 for display on display device 56. Audio inter
face and mixer 160 interfaces With audio codec 122, and can
also mix audio from different sources (e.g., streaming audio
from mass storage access device 106, the output of audio
DSP 156, and external audio input received via audio codec
122). Processor interface 150 provides a data and control
interface betWeen main processor 110 and graphics and
audio processor 114.
Memory interface 152 provides a data and control inter

face betWeen graphics and audio processor 114 and memory
112. In this example, main processor 110 accesses main
memory 112 via processor interface 150 and memory inter
face 152 that are part of graphics and audio processor 114.
Peripheral controller 162 provides a data and control inter
face betWeen graphics and audio processor 114 and the

10

15

25

35

45

55

65

8
various peripherals mentioned above. Audio memory inter
face 158 provides an interface With audio memory 126.

Example Graphics Pipeline

FIG. 4 shoWs a more detailed vieW of an example 3D
graphics processor 154. 3D graphics processor 154 includes,
among other things, a command processor 200 and a 3D
graphics pipeline 180. Main processor 110 communicates
streams of data (e.g., graphics command streams and display
lists) to command processor 200. Main processor 110 has a
tWo-level cache 115 to minimiZe memory latency, and also
has a Write-gathering buffer 111 for uncached data streams
targeted for the graphics and audio processor 114. The
Write-gathering buffer 111 collects partial cache lines into
full cache lines and sends the data out to the graphics and
audio processor 114 one cache line at a time for maximum
bus usage.
Command processor 200 receives display commands

from main processor 110 and parses them—obtaining any
additional data necessary to process them from shared
memory 112. The command processor 200 provides a stream
of vertex commands to graphics pipeline 180 for 2D and/or
3D processing and rendering. Graphics pipeline 180 gener
ates images based on these commands. The resulting image
information may be transferred to main memory 112 for
access by display controller/video interface unit 164—
Which displays the frame buffer output of pipeline 180 on
display 56.

FIG. 5 is a logical flow diagram of graphics processor
154. Main processor 110 may store graphics command
streams 210, display lists 212 and vertex arrays 214 in main
memory 112, and pass pointers to command processor 200
via bus interface 150. The main processor 110 stores graph
ics commands in one or more graphics ?rst-in-?rst-out
(FIFO) buffers 210 it allocates in main memory 110. The
command processor 200 fetches:

command streams from main memory 112 via an on-chip
FIFO memory buffer 216 that receives and buffers the
graphics commands for synchronization/?ow control
and load balancing,

display lists 212 from main memory 112 via an on-chip
call FIFO memory buffer 218, and

vertex attributes from the command stream and/or from
vertex arrays 214 in main memory 112 via a vertex
cache 220.

Command processor 200 performs command processing
operations 200a that convert attribute types to ?oating point
format, and pass the resulting complete vertex polygon data
to graphics pipeline 180 for rendering/rasteriZation. A pro
grammable memory arbitration circuitry 130 (see FIG. 4)
arbitrates access to shared main memory 112 betWeen graph
ics pipeline 180, command processor 200 and display
controller/video interface unit 164.

FIG. 4 shoWs that graphics pipeline 180 may include:
a transform unit 300,

a setup/rasteriZer 400,
a texture unit 500,

a texture environment unit 600, and

a pixel engine 700.
Transform unit 300 performs a variety of 2D and 3D

transform and other operations 300a (see FIG. 5). Transform
unit 300 may include one or more matrix memories 300b for
storing matrices used in transformation processing 300a.
Transform unit 300 transforms incoming geometry per ver
tex from object space to screen space; and transforms

US 6,580,430 B1
9

incoming texture coordinates and computes projective tex
ture coordinates (300C). Transform unit 300 may also per
form polygon clipping/culling 300d. Lighting processing
3006‘ also performed by transform unit 300b provides per
vertex lighting computations for up to eight independent
lights in one example embodiment. Transform unit 300 can
also perform texture coordinate generation (300C) for
embossed type bump mapping effects, as Well as polygon
clipping/culling operations (300a)

Setup/rasteriZer 400 includes a setup unit Which receives
vertex data from transform unit 300 and sends triangle setup
information to one or more rasteriZer units (400b) perform
ing edge rasteriZation, texture coordinate rasteriZation and
color rasteriZation.

Texture unit 500 (Which may include an on-chip texture
memory (TMEM) 502) performs various tasks related to
texturing including for example:

retrieving textures 504 from main memory 112,
texture processing (500a) including, for example, multi

texture handling, post-cache texture decompression,
texture ?ltering, embossing, shadoWs and lighting
through the use of projective textures, and BLIT With
alpha transparency and depth,

bump map processing for computing texture coordinate
displacements for bump mapping, pseudo texture and
texture tiling effects (500b), and

indirect texture processing (500C).
Texture unit 500 outputs ?ltered texture values to the

texture environment unit 600 for texture environment pro
cessing (600a). Texture environment unit 600 blends poly
gon and texture color/alpha/depth, and can also perform
texture fog processing (600b) to achieve inverse range based
fog effects. Texture environment unit 600 can provide mul
tiple stages to perform a variety of other interesting
environment-related functions based for example on color/
alpha modulation, embossing, detail texturing, texture
sWapping, clamping, and depth blending.

Pixel engine 700 performs depth (Z) compare (700a) and
pixel blending (700b). In this example, pixel engine 700
stores data into an embedded (on-chip) frame buffer memory
702. Graphics pipeline 180 may include one or more embed
ded DRAM memories 702 to store frame buffer and/or
texture information locally. Z compares 700a‘ can also be
performed at an earlier stage in the graphics pipeline 180
depending on the rendering mode currently in effect (e.g., Z
compares can be performed earlier if alpha blending is not
required). The pixel engine 700 includes a copy operation
700c that periodically Writes on-chip frame buffer 702 to
main memory 112 for access by display/video interface unit
164. This copy operation 700c can also be used to copy
embedded frame buffer 702 contents to textures in the main
memory 112 for dynamic texture synthesis effects. Anti
aliasing and other ?ltering can be performed during the
copy-out operation. The frame buffer output of graphics
pipeline 180 (Which is ultimately stored in main memory
112) is read each frame by display/video interface unit 164.
Display controller/video interface 164 provides digital RGB
pixel values for display on display 102.

Fog Simultaion
When fog is enabled, a constant fog color is blended With

the pixel color output from the last active Texture Environ
ment (TEV) stage. The percentage of fog color blended
depends on the fog density, Which is a function of the
distance from a vieWpoint to a quad (2x2 pixels). In this
example, the graphics processor 114 preferably supports ?ve
types of fog each of Which provides a different fog density
function.

10

15

25

35

45

55

65

10
The ?rst fog type is the conventional linear fog as shoWn

in FIG. 6a, Wherein the fog equation provides a constant
increase in fog density betWeen a starting point Where the
linear fog begins and an ending point Where the fog reaches
its maximum value. For this conventional linear fog, the fog
equation is:

Where Ze is the eye space Z of the pixel, Z0 is the “fog
start” value and is the eye-space Z value at Which linear
fog begins or “kicks in”, and Z1 is the “fog end” value
and is the eye-space Z value at Which the fog density
reaches its maximum value. FIG. 6a shoWs an example
graph of the linear fog equation With “fog start”=50 and
“fog end”=100.

The second and third types of fog are exponential fog and
exponential squared fog. In contrast to the OpenGL and
DirectX fog types, the instant invention incorporates a “fog
start” value into the fog equations, thereby enhancing the
functionality thereof. For exponential and exponential
squared fog, the respective fog equations are:

Where Z1 is the eye-space Z value at Which the fog density
almost reaches 1. FIGS. 6b and 6c shoW example
graphs of the exponential and exponential squared fog
equations, respectively, With Z0=50 and Z1=100.

The fourth and ?fth types of fog are entirely neW and are
not based on previous fog equations, such as those provided
in OpenGL. These tWo neW fog types are backWards expo
nential fog and backWards exponential squared fog. The
respective fog equations for these tWo fog types are:

Where Z1 is the eye-space Z value at Which the fog density
almost reaches 1. FIGS. 6d and 66 show example
graphs of these tWo fog equations, respectively, With
Z0=50 and Z1=100. Unlike the exponential fog and
exponential squared fog, the backWards exponential
fog and backWards exponential squared fog have more
gentle slopes at ?rst and steep slopes near the end.
These tWo entirely neW fog types enable neW and
interesting fog effects to be achieved, thereby further
improving use of fog in 3D graphics systems. For
example, these tWo fog types can be used to provide an
improved curtain-type fog effect, Wherein an object
suddenly passes therethrough, Which provides an inter
esting visual effect superior to that of the other knoWn
fog types for certain applications. It is noted that a near
(start) and far (end) Z for the fog function can be
programmed independently of the clipping near and far
Z.

The eye-space Z used for fog calculations, in the manner
described above, does not represent the correct range unless
the vieWer is facing the same direction as the Z axis.
Speci?cally, as shoWn in FIG. 7, if only the eye-space Z is
used for determining the range, and increasing error Will
result as the line of sight moves aWay from the Z axis. As
shoWn in FIG. 7, the range error, represented by shaded
portions 610a and 610b, increases as the angle 0t increases
aWay from the Z axis. HoWever, in accordance With a

