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(7) ABSTRACT

In a 3D interactive computer graphics system such as a video
game display system, polygon vertex data is fed to a 3D
graphics processor/display engine via a vertex cache used to
cache and organize indexed primitive vertex data streams.
The vertex cache may be a small, low-latency cache memory
local to the display engine hardware. Polygons can be
represented as indexed arrays, e.g., indexed linear lists of
data components representing some feature of a vertex (for
example, positions, colors, surface normals, or texture
coordinates). The vertex cache can fetch the relevant blocks
of indexed vertex attribute data on an as-needed basis to
make it available to the display processor—providing spatial
locality for display processing without requiring the vertex
data to be prestored in display order. Efficiency can be
increased by customizing and optimizing the vertex cache
and associated tags for the purpose of delivering vertices to
the graphics engine—allowing more efficient prefetching
and assembling of vertices than might be possible using a
general-purpose cache and tag structure.
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VERTEX CACHE FOR 3D COMPUTER
GRAPHICS

This application claims the benefit of Provisional appli-
cation Ser. No. 60/161,915, filed Oct. 28, 1999.

FIELD OF THE INVENTION

The present invention relates to 3D interactive computer
graphics, and more specifically, to arrangements and tech-
niques for efficiently representing and storing vertex infor-
mation for animation and display processing. Still more
particularly, the invention relates to a 3D graphics integrated
circuit including a vertex cache for more efficient imaging of
3D polygon data.

BACKGROUND AND SUMMARY OF THE
INVENTION

Modem 3D computer graphics systems construct ani-
mated displays from display primitives, i.e., polygons. Each
display object (e.g., a tree, a car, or a person or other
character) is typically constructed from a number of indi-
vidual polygons. Each polygon is represented by its
vertices—which together specify the location, orientation
and size of the polygon in three-dimensional space—along
with other characteristics (e.g., color, surface normals for
shading, textures, etc.). Computer techniques can efficiently
construct rich animated 3D graphical scenes using these
techniques.

Low cost, high speed interactive 3D graphics systems
such as video game systems are constrained in terms of
memory and processing resources. Therefore, in such sys-
tems it is important to be able to efficiently represent and
process the various polygons representing a display object.
For example, it is desirable to make the data representing the
display object compact, and to present the data to the 3D
graphics system in a way so that all of the data needed for
a particular task is conveniently available.

One can characterize data in terms of temporal locality
and spatial locality. Temporal locality means the same data
is being referenced frequently in a small amount of time. In
general, the polygon-representing data for typical 3D inter-
active graphics applications has a large degree of temporal
locality. Spatial locality means that the next data item
referenced is stored close in memory to the last one refer-
enced. Efficiency improvements can be realized by increas-
ing the data’s spatial locality. In a practical memory system
that does not allow unlimited low-latency random access to
an unlimited amount of data, performance is increased if all
data needed to perform a given task is stored close together
in low-latency memory.

To increase the spatial locality of the data, one can sort the
polygon data based on the order of processing—assuring
that all of the data needed to perform a particular task will
be presented at close to the same time so it can be stored
together. For example, polygon data making up animations
can be sorted in a way that is preferential to the type of
animation being performed. As one example, typical com-
plex interactive real-time animation such as surface defor-
mation requires manipulation of all the vertices at the
surfaces. To perform such animation efficiently, it is desir-
able to sort the vertex data in a certain way.

Typical 3D graphical systems perform animation process-
ing and display processing separately, and these separate
steps process the data differently. Unfortunately, the optimal
order to sort the vertex data for animation processing is
generally different from the optimal sort order for display
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processing. Sorting for animation may tend to add random-
ness to display ordering. By sorting a data stream to simplify
animation processing, we make it harder to efficiently dis-
play the data.

Thus, for various reasons, it may not be possible to
assume that spatial locality exists when accessing data for
display. Difficulty arises from the need to efficiently access
an arbitrarily large display object. In addition, for the
reasons explained above, there will typically be some
amount of randomness—at least for display purposes—in
the order the vertex data is presented to the display engine.
Furthermore, there may be other data locality above the
vertex level that would be useful to implement (e.g., group-
ing together all polygons that share a certain texture).

One approach to achieving higher efficiency is to provide
additional low-latency memory (e.g., the lowest latency
memory system affordable). It might al so be possible to fit
a display object in fast local memory to achieve random
access. However, objects can be quite large, and may need
to be double-buffered. Therefore, the buffers required for
such an approach could be very large. It might also be
possible to use a main CPU’s data cache to assemble and
sort the polygon data in an optimal order for the display
engine. However, to do this effectively, there would have to
be some way to prevent the polygon data from thrashing the
rest of the data cache. In addition, there would be a need to
prefetch the data to hide memory latency—since there will
probably be some randomness in the way even data sorted
for display order is accessed. Additionally, this approach
would place additional loading on the CPU—especially
since there might be a need in certain implementations to
assemble the data in a binary format the display engine can
interpret. Using this approach, the main CPU and the display
engine would become serial, with the CPU feeding the data
directly to the graphics engine. Parallelizing the processing
(e.g., to feed the display engine through a DRAM FIFO
buffer) would require substantial additional memory access
bandwidth as compared to immediate-mode feeding.

Thus, there exists a need for more efficient techniques that
can be used to represent, store and deliver polygon data for
a 3D graphics display process.

The present invention solves this problem by providing a
vertex cache to organize indexed primitive vertex data
streams.

In accordance with one aspect provided by the present
invention, polygon vertex data is fed to the 3D graphics
processor/display engine via a vertex cache. The vertex
cache may be a small, low-latency memory that is local to
(e.g., part of) the 3D graphics processor/display engine
hardware. Flexibility and efficiency results from the cache
providing a virtual memory view much larger than the actual
cache contents.

The vertex cache may be used to build up the vertex data
needed for display processing on the fly on an as-needed
basis. Thus, rather than pre-sorting the vertex data for
display purposes, the vertex cache can simply fetch the
relevant blocks of data on an as-needed basis to make it
available to the display processor. Based on the high degree
of temporal locality exhibited by the vertex data for inter-
active video game display and the use of particularly optimal
indexed-array data structures (see below), most of the vertex
data needed at any given time will be available in even a
small set-associative vertex cache having a number of cache
lines proportional to the number of vertex data streams. One
example optimum arrangement provides a 512x128-bit dual
ported RAM to form an 8 set-associative vertex cache.
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Efficiency can be increased by customizing and optimiz-
ing the vertex cache and associated tags for the purpose of
delivering vertices to the 3D graphics processor/display
engine—allowing more efficient prefetching and assembling
of vertices than might be possible using a general-purpose
cache and tag structure. Because the vertex cache allows
data to be fed directly to the display engine, the cost of
additional memory access bandwidth is avoided. Direct
memory access may be used to efficiently transfer vertex
data into the vertex cache.

To further increase the efficiencies afforded by the vertex
cache, it is desirable to reduce the need to completely
re-specify a particular polygon or set of polygons each time
it is (they are) used. In accordance with a further aspect
provided by the present invention, polygons can be repre-
sented as arrays, e.g., linear lists of data components repre-
senting some feature of a vertex (for example, positions,
colors, surface normals, or texture coordinates). Each dis-
play object may be represented as a collection of such arrays
along with various sets of indices. The indices reference the
arrays for a particular animation or display purpose. By
representing polygon data as indexed component lists, dis-
continuities are allowed between mappings. Further, sepa-
rating out individual components allows data to be stored
more compactly (e.g., in a fully compressed format). The
vertex cache provided by the present invention can accom-
modate streams of such indexed data up to the index size.

Through use of an indexed vertex representation in con-
junction with the vertex cache, there is no need to provide
any resorting for display purposes. For example, the vertex
data may be presented to the display engine in a order
presorted for animation as opposed to display—making
animation a more efficient process. The vertex cache uses the
indexed vertex data structure representation to efficiently
make the vertex data available to the display engine without
any need for explicit resorting.

Any vertex component can be index-referenced or
directly inlined in the command stream. This enables effi-
cient data processing by the main processor without requir-
ing the main processor’s output to conform to the graphics
display data structure. For example, lighting operations
performed by the main processor may generate only a color
array from a list of normals and positions by loop-processing
a list of lighting parameters to generate the color array. There
is no need for the animation process to follow a triangle list
display data structure, nor does the animation process need
to reformat the data for display. The display process can
naturally consume the data provided by the animation pro-
cess without adding substantial data reformatting overhead
to the animation process.

On the other hand, there is no penalty for sorting the
vertex data in display order; the vertex data is efficiently
presented to the display engine in either case, without the
vertex cache significantly degrading performance vis-a-vis a
vertex presentation structure optimized for presenting data
presorted for display.

In accordance with a further aspect provided by this
invention, the vertex data includes quantized, compressed
data streams in any of several different formats (e.g., 8-bit
fixed point, 16-bit fixed point, or floating point). This data
can be indexed (i.e., referenced by the vertex data stream) or
direct (i.e., contained within the stream itself). These various
data formats can all be stored in the common vertex cache,
and subsequently decompressed and converted into a com-
mon format for the graphics display pipeline. Such hardware
support of flexible types, formats and numbers of attributes

10

15

20

25

40

45

50

55

60

65

4

as either immediate or indexed input data avoids complex
and time-consuming software data conversion.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
present invention will be better and more completely under-
stood by referring to the following detailed description of
preferred embodiments in conjunction with the drawings of
which:

FIG. 1 is a block diagram of an example interactive 3D
graphics system;

FIG. 1A is a block diagram of the example graphics and
audio coprocessor shown in FIG. 1;

FIG. 1B is a more detailed schematic diagram of portions
of the FIG. 1A graphics and audio coprocessor showing an
example 3D pipeline graphics processing arrangement;

FIG. 2 shows an example command processor including
a vertex cache provided with vertex index array data;

FIG. 2A shows an example display list processor includ-
ing a vertex cache provided in accordance with the present
invention;

FIG. 2B shows an example dual FIFO arrangement;

FIG. 3 is a schematic diagram of an example indexed
vertex data structure;

FIG. 3A shows an example vertex descriptor block;

FIG. 4 is a block diagram of an example vertex cache
implementation;

FIG. 5 shows an example vertex cache memory address
format; and

FIG. 6 shows an example vertex cache tag status register
format.

DETAILED DESCRIPTION OF PRESENTLY
PREFERRED EXAMPLE EMBODIMENTS

FIG. 1 is a schematic diagram of an overall example
interactive 3D computer graphics system 100 in which the
present invention may be practiced. System 100 can be used
to play interactive 3D video games accompanied by inter-
esting stereo sound. Different games can be played by
inserting appropriate storage media such as optical disks into
an optical disk player 134. A game player can interact with
system 100 in real time by manipulating input devices such
as handheld controllers 132, which may include a variety of
controls such as joysticks, buttons, switches, keyboards or
keypads, etc.

System 100 includes a main processor (CPU) 102, a main
memory 104, and a graphics and audio coprocessor 106. In
this example, main processor 102 receives inputs from
handheld controllers 132 (and/or other input devices) via
coprocessor 100. Main processor 102 interactively responds
to such user inputs, and executes a video game or other
graphics program supplied, for example, by external storage
134. For example, main processor 102 can perform collision
detection and animation processing in addition to a variety
of real time interactive control functions.

Main processor 102 generates 3D graphics and audio
commands and sends them to graphics and audio coproces-
sor 106. The graphics and audio coprocessor 106 processes
these commands to generate interesting visual images on a
display 136 and stereo sounds on stereo loudspeakers 137R,
137L or other suitable sound-generating devices.

System 100 includes a TV encoder 140 that receives
image signals from coprocessor 100 and converts the image
signals into composite video signals suitable for display on
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a standard display device 136 (e.g., a computer monitor or
home color television set). System 100 also includes an
audio codec (compressor/decompressor) 138 that com-
presses and decompresses digitized audio signals (and may
also convert between digital and analog audio signalling
formats). Audio codec 138 can receive audio inputs via a
buffer 140 and provide them to coprocessor 106 for pro-
cessing (e.g., mixing with other audio signals the coproces-
sor generates and/or receives via a streaming audio output of
optical disk device 134). Coprocessor 106 stores audio
related information in a memory 144 that is dedicated to
audio tasks. Coprocessor 106 provides the resulting audio
output signals to audio codec 138 for decompression and
conversion to analog signals (e.g., via buffer amplifiers
1421, 142R) so they can be played by speakers 137L, 137R.

Coprocessor 106 has the ability to communicate with
various peripherals that may be present within system 100.
For example, a parallel digital bus 146 may be used to
communicate with optical disk device 134. A serial periph-
eral bus 148 may communicate with a variety of peripherals
including, for example, a ROM and/or real time clock 150,
a modem 152, and flash memory 154. A further external
serial bus 156 may be used to communicate with additional
expansion memory 158 (e.g., a memory card).

Graphics And Audio Coprocessor

FIG. 1A is a block diagram of components within copro-
cessor 106. Coprocessor 106 may be a single integrated
circuit. In this example, coprocessor 106 includes a 3D
graphics processor/display engine 107, a processor interface
108, a memory interface 110, an audio digital signal pro-
cessor (DSP) 162, an audio memory interface (I/F) 164, an
audio interface and mixer 166, a peripheral controller 168,
and a display controller 128.

3D graphics processor/display engine 107 performs
graphics processing tasks, and audio digital signal processor
162 performs audio processing tasks. Display controller 128
accesses image information from memory 104 and provides
it to TV encoder 140 for display on display device 136.
Audio interface and mixer 166 interfaces with audio codec
138, and can also mix audio from different sources (e.g., a
streaming audio input from disk 134, the output of audio
DSP 162, and external audio input received via audio codec
138). Processor interface 108 provides a data and control
interface between main processor 102 and coprocessor 106.
Memory interface 110 provides a data and control interface
between coprocessor 106 and memory 104. In this example,
main processor 102 accesses main memory 104 via proces-
sor interface 108 and memory controller 110 that are part of
coprocessor 106. Peripheral controller 168 provides a data
and control interface between coprocessor 106 and the
various peripherals mentioned above (e.g., optical disk
device 134, controllers 132, ROM and/or real time clock
150, modem 152, flash memory 154, and memory card 158).
Audio memory interface 164 provides an interface with
audio memory 144.

FIG. 1B shows a more detailed view of 3D graphics
processor/display engine 107 and associated components
within coprocessor 106. 3D graphics processor/display
engine 107 includes a command processor 114 and a 3D
graphics pipeline 116. Main processor 102 communicates
streams of graphics data (i.c., display lists) to command
processor 114. Command processor 114 receives these dis-
play commands and parses them (obtaining any additional
data necessary to process them from memory 104), and
provides a stream of vertex commands to graphics pipeline
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116 for 3D processing and rendering. Graphics pipeline 116
generates a 3D image based on these commands. The
resulting image information may be transferred to main
memory 104 for access by display controller 128—which
displays the frame buffer output of pipeline 116 on display
136.

In more detail, main processor 102 may store display lists
in main memory 104, and pass pointers to command pro-
cessor 114 via bus interface 108. The command processor
114 (which includes a vertex cache 212 discussed in detail
below) fetches the command stream from CPU 102, fetches
vertex attributes from the command stream and/or from
vertex arrays in memory, converts attribute types to floating
point format, and passes the resulting complete vertex
polygon data to the graphics pipeline 116 for rendering/
rasterization. As explained in more detail below, vertex data
can come directly from the command stream, and/or from a
vertex array in memory where each attribute is stored in its
own linear array. A memory arbitration circuitry 130 arbi-
trates memory access between graphics pipeline 116, com-
mand processor 114 and display unit 128. As explained
below, an on-chip 8-way set-associative vertex cache 212 is
used to reduce vertex attribute access latency.

As shown in FIG. 1B, graphics pipeline 116 may include
transform unit 118, a setup/rasterizer 120, a texture unit 122,
a texture environment unit 124 and a pixel engine 126. In
graphics pipeline 116, transform unit 118 performs a variety
of 3D transform operations, and may also perform lighting
and texture effects. For example, transform unit 118 trans-
forms incoming geometry per vertex from object space to
screen space; transforms incoming texture coordinates and
computes projective texture coordinates; performs polygon
clipping; performs per vertex lighting computations; and
performs bump mapping texture coordinate generation. Set
up/rasterizer 120 includes a set up unit which receives vertex
data from the transform unit 118 and sends triangle set up
information to rasterizers performing edge rasterization,
texture coordinate rasterization and color rasterization. Tex-
ture unit 122 performs various tasks related to texturing,
including multi-texture handling, post-cache texture
decompression, texture filtering, embossed bump mapping,
shadows and lighting through the use of projective textures,
and BLIT with alpha transparency and depth. Texture unit
122 outputs filtered texture values to the texture environ-
ment unit 124. Texture environment unit 124 blends the
polygon color and texture color together, performing texture
fog and other environment-related functions. Pixel engine
126 performs z buffering and blending, and stores data into
an on-chip frame buffer memory.

Thus, graphics pipeline 116 may include one or more
embedded DRAM memories (not shown) to store-frame
buffer and/or texture information locally. The on-chip frame
buffer is periodically written to main memory 104 for access
by display unit 128. The frame buffer output of graphics
pipeline 116 (which is ultimately stored in main memory
104) is read each frame by display unit 128. Display unit 128
provides digital RGB pixel values for display on display
136.

Vertex Cache And Vertex Index Array

FIG. 2 is a schematic illustration of command processor
114 including a vertex cache 212 and a display list processor
213. Command processor 114 handles a wide range of vertex
and primitive data structures, from a single stream of vertex
data containing position, normal, texture coordinates and
colors to fully indexed arrays. Any vertex component can be
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index-referenced or directly in-lined in the command
stream. Command processor 114 thus supports flexible
types, formats and numbers of attributes as either immediate
or indexed data.

Display list processor 213 within command processor 114
processes display list commands provided by CPU 102—
typically via a buffer allocated within main memory 104.
Vertex cache 212 caches indexed polygon vertex data struc-
tures such as the example data structure 300 shown in FIG.
2. Example indexed polygon vertex data structure 300 may
include a vertex index array 304 which references a number
of vertex component data arrays (e.g., a color data array
3064, a texture vertex data array 306b, a surface normal data
array 306¢, a position vertex data array 306d, and so on).
Vertex cache 212 accesses the vertex data from these arrays
306 in main memory 104, and caches them for fast access
and use by display list processor 213.

Display List Processor

FIG. 2A shows example display list processor 213 per-
formed by command processor 114. In this FIG. 2A
example, display list processor 213 provides several stages
of parsing. Display list commands received from main
processor 102 are interpreted by a display list stream parser
200. Display list stream parser 200 may use an address stack
202 to provide nesting of instructions—or dual FIFOS may
be used to store a stream of vertex commands from a FIFO
in main memory 106 to allow subroutine branching in
instancing (see FIG. 2B) without need for reloading
prefetched vertex command data. Using the FIG. 2B
approach, the display list commands may thus provide for a
one-level-deep display list—where the top level command
stream can call the display list one level deep. This “call”
capability is useful for pre-computed commands and
instancing in geometry.

Display list stream parser 200 routes commands that
affect the state of graphics pipeline 116 to the graphics
pipeline. The remaining primitive command stream is
parsed by a primitive stream parser 204 based on a primitive
descriptor obtained from memory 104 (see below).

The indices to vertices are de-referenced and parsed by a
vertex stream parser 208 based on a vertex descriptor 306
which may be provided in a table in hardware. The vertex
stream provided to vertex stream parser 208 may include
such indices to vertex data stored within main memory 104.
Vertex stream parser 208 can access this vertex data from
main memory 104 via vertex cache 212—thus separately
providing the vertex commands and associated referenced
vertex attributes via different paths in the case of indexed as
opposed to direct data. In one example, vertex stream parser
208 addresses vertex cache 212 as if it were the entirety of
main memory 104. Vertex cache 212, in turn, retrieves (and
often times, may prefetch) vertex data from main memory
104, and caches it temporarily for use by vertex stream
parser 208. Caching the vertex data in vertex cache 212
reduces the number of accesses to main memory 104—and
thus the main memory bandwidth required by command
processor 114.

Vertex stream parser 208 provides data for each vertex to
be rendered within each triangle (polygon). This per-vertex
data is provided, along with the per-primitive data outputted
by primitive stream parser 204, to a decompression/inverse
quantizer block 214. Inverse quantizer 214 converts differ-
ent vertex representations (e.g., 8-bit and 16-bit fixed point
format data) to a uniform floating-point representation used
by graphics pipeline 116. Inverse quantizer 214 provides
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hardware support for a flexible variety of different types,
formats and numbers of attributes, and such data can be
presented to display list processor 213 as either immediate
or indexed input data. The uniform floating-point represen-
tation output of inverse quantizer 214 is provided to graphics
pipeline 116 for rasterization and further processing. If
desired as an optimization, a further small cache or buffer
may be provided at the output of inverse quantizer 214 to
avoid the need to re-transform vertex strip data.

Vertex Index Array

FIG. 3 shows a more detailed example of an indexed
vertex list 300 of the preferred embodiment used to provide
indirect (i.e., indexed) vertex attribute data via vertex cache
212. This generalization indexed vertex list 300 may be used
to define primitives in the system shown in FIG. 1. Each
primitive is described by a list of indices, each of which
indexes into an array of vertices. Vertices and primitives
each use format descriptors to define the types of their items.
These descriptors associate an attribute with a type. An
attribute is a data item that has a specific meaning to the
rendering hardware. This affords the possibility of program-
ming the hardware with descriptors so it can parse and
convert the vertex/primitive stream as it is loaded. Using the
minimum size type and the minimum number of attributes
per vertex leads to geometry compression. The FIG. 3
arrangement also allows attributes to be associated with the
vertices, the indices, or the primitive, as desired.

Thus, in the FIG. 3 example indexed vertex array 300, a
primitive list 302 defines each of the various primitives (e.g.,
triangles) in the data stream (e.g., prim0, priml, prim2,
prim3, . . .). A primitive descriptor block 308 may provide
attributes common to a primitive (e.g., texture and connec-
tivity data which may be direct or indexed). Each primitive
within primitive list 302 indexes corresponding vertices
within a vertex list 304. A single vertex within vertex list 304
may be used by multiple primitives within primitive list 302.
If desired, primitive list 302 may be implied rather than
explicit—i.e., vertex list 304 can be ordered in such a way
as to define corresponding primitives by implication (e.g.,
using triangle strips).

A vertex descriptor block 306 may be provided for each
vertex within vertex list 304. Vertex descriptor block 306
includes attribute data corresponding to a particular vertex
(e.g., rgb or other color data, alpha data, xyz surface normal
data). As shown in FIG. 2, vertex descriptor block 306 may
comprise a number of different indexed component blocks.
The vertex attribute descriptor block 306 10 defines which
vertex attributes are present, the number and size of the
components, and how the components are referenced (e.g.,
either direct—that is, included within the quantized vertex
data stream—or indexed). In one example, the vertices in a
DRAW command for a particular primitive all have the same
vertex attribute data structure format.

FIG. 3A shows an example list of attributes provided by
vertex attribute block 306. The following attributes may be
provided:

Attribute

Position
Normal
Diffused Color
Specular Color
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-continued

Attribute

(Skinning)

Texture 0 Coordinate
Texture 1 Coordinate
Texture 2 Coordinate
Texture 3 Coordinate
Texture 4 Coordinate
Texture 5 Coordinate
Texture 6 Coordinate
Texture 7 Coordinate

In this example vertex attribute descriptor block 306, the
position attribute is always present, may be either indexed or
direct, and can take a number of different quantized, com-
pressed formats (e.g., floating point, 8-bit, integer, or 16-bit).
All remaining attributes may or may not be present for any
given vertex, and may be either indexed or direct as desired.
The texture coordinate values may, like the position values,
be represented in a variety of different formats (e.g., 8-bit
integer, 16-bit integer or floating point), as can the surface
normal attribute. The diffused and specular color attributes
may provide 3 (rgb) or 4 (rgba) values in a variety of formats
including 16-bit threes-complement, 24-bit threes-
complement, 32-bit threes-complement, or 16-, 24- or 32-bit
fours-complement representations). All vertices for a given
primitive preferably have the same format.

In this example, vertex descriptor 306 references indexed
data using a 16-bit pointer into an array of attributes. A
particular offset used to access a particular attribute within
the array depends upon a number of factors including, e.g.,
the number of components in the attribute; the size of the
components, padding between attributes for alignment pur-
poses; and whether multiple attributes are interleaved in the
same array. A vertex can have direct and indirect attributes
intermixed, and some attributes can be generated by the
hardware (e.g., generating a texture coordinate from a
position). Any attribute can be sent either directly or as an
index into an array. Vertex cache 212 includes sufficient
cache lines to handle the typical number of respective data
component streams (e.g., position, normal, color and
texture) without too many cache misses.

Vertex Cache Implementation

FIG. 4 shows an example schematic diagram of vertex
cache 212 and associated logic. Vertex cache 212 in this
example includes an 8-Kilobyte cache memory 400 orga-
nized as a 512x128-bit dual ported RAM. Since there are
multiple attribute streams being looked up in the cache 212,
an eight set-associative cache including eight tag lines 402
is used to reduce thrashing. Each tag line includes a 32x16
bit dual ported tag RAM 404 and associated tag status
register 406. Tag RAMS 404 store the main memory address
of the corresponding data block stored within vertex RAM
400. Address calculation block 408 determines whether
necessary vertex attribute data is already present within
vertex RAM 400—or whether an additional fetch to main
memory is required. Cache lines are prefetched from main
memory 104 to hide memory latency. Data required to
process a particular component is stored within a queue 410
having a depth that is proportional to memory latency.

FIG. 5 shows an example memory address format pro-
vided by vertex stream parser 208 to vertex cache 212. This
memory address 450 includes a field 452 providing a byte
offset into a cache line; a tag RAM address 454; and a main
memory address for comparison with the contents of tag
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RAMs 404. Address calculation block 408 compares the
main memory address 456 with the tag RAM 404 contents
to determine whether the required data is already cached
within vertex RAM 400, or whether it needs to be fetched
from main memory 104.

The tag status registers 406 store data in the format shown
in FIG. 6. A “data valid” field 462 indicates whether the data
in that particular cache line is valid. A counter field 464
keeps track of the number of entries in queue 410 that
depend on the cache line. Counter field 464 is used in the
case that all tag status registers 406 show “data valid” if a
miss occurs. Address calculation block 408 then needs to
throw one of the cache lines out to make room for the new
entry. If counter field 464 is not zero, the cache line is still
in use and cannot be thrown away. Based on a modified
partial LRU algorithm, address calculation block 408 selects
one of the cache lines for replacement. The “data valid” field
462 is set to “invalid”, and the cache line is replaced with a
new contents from main memory 104. If another attribute
index maps to the same cache line, the counter field 464 is
incremented. Once the data arrives from main memory 104,
the “data valid” bit is set and an entry can be processes from
queue 410. Otherwise, the processing of queue 410 will be
stalled until the data gets into the cache RAM 400. Once the
cache RAM 400 is accessed for the queue entry, counter 464
decrements.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the scope
of the appended claims.

We claim:

1. A 3D videographics system including:

a memory storing polygon vertex data, and

a 3D graphics engine including a graphics pipeline having

at least a transform unit, a rasterizer, a texture unit and
a pixel engine, said 3D graphics engine generating and
displaying images at least in part in response to said
polygon vertex data,

said 3D graphics engine comprising a vertex cache
arrangement operatively coupled to said memory, said
vertex cache arrangement caching said polygon vertex
data from said memory prior to use by said 3D graphics
engine transform unit, wherein said polygon vertex
data includes an indexed polygon vertex data structure
and said vertex cache arrangement operates in accor-
dance with said indexed polygon vertex data structure
representation to cache vertex attribute data and make
it available for efficient access by the 3D graphics
engine transform unit without requiring explicit resort-
ing of said polygon vertex data for image display.

2. A vertex cache arrangement as in claim 1 wherein 3D
graphics engine is disposed on an integrated circuit, and said
vertex cache arrangement comprises a memory device dis-
posed on said integrated circuit and operatively coupled to
said 3D graphics engine.

3. A vertex cache arrangement as in claim 2 wherein said
memory device comprises a set-associative cache memory
for caching said vertex data.

4. A vertex cache arrangement as in claim 3 wherein said
set-associative cache memory provides eight cache lines.

5. A vertex cache arrangement as in claim 2 wherein said
memory device comprises an 8 kilobyte low-latency random
access memory.
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6. A vertex cache arrangement as in claim 1 including a
queue and a miss queue.

7. A vertex cache arrangement as in claim 1 wherein said
vertex cache arrangement is coupled to said memory and, in
use, fetches vertex data from said memory as said vertex
data is needed by said 3D graphics engine.

8. A vertex cache arrangement as in claim 1 further
including a hardware-based inverse quantizer operatively
coupled between said vertex cache and said 3D graphics
engine, said inverse quantizer converting plural vertex data
formats into a uniform floating-point format for consump-
tion by said 3D graphics engine.

9. A vertex cache arrangement as in claim 1 wherein said
indexed vertex data representation comprises an indexed
array referencing attribute data.

10. A vertex cache arrangement as in claim 9 wherein said
indexed array directly references said attribute data.

11. Avertex cache arrangement as in claim 1 wherein said
indexed polygon vertex data structure comprises an indexed
array referencing vertex attribute data.

12. A vertex cache arrangement as in claim 11 wherein
said indexed array directly references said attribute data.

13. A vertex cache arrangement as in claim 11 wherein
said indexed array indirectly references said attribute data.

14. In a 3D videographics system including a memory
storing polygon vertex data, and a 3D graphics engine
including a graphics pipeline having at least a transform
unit, a rasterizer, a texture unit and a pixel engine, said 3D
graphics engine generating and displaying images at least in
part in response to said polygon vertex data,

a method for caching polygon vertex data prior to use by
said 3D graphics engine transform unit, said method
including the steps of:

representing said polygon vertex data by an indexed
polygon vertex data structure;

retrieving said polygon vertex data from said memory;
and

caching said polygon vertex data in a low-latency cache
memory device local to said 3D graphics engine to
make said vertex data available for efficient access by
the 3D graphics engine transform unit.

15. A method as in claim 14 further including the step of
fetching vertex data from said memory to said cache
memory device as said vertex data is needed by said 3D
graphics engine.

16. A method as in claim 14 further including the step of
converting plural vertex data formats stored in said cache
memory device into a uniform floating-point format for
consumption by said 3D graphics engine.

17. A 3D videographics system including:

a memory storing polygon vertex data and

a 3D graphics pipeline that renders and displays images at
least in part in response to said polygon vertex data,
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wherein said polygon vertex data includes an indexed
polygon vertex data structure and said videographics
system further comprises a vertex cache operatively
coupled to said memory and to a command stream
processor, said vertex cache retrieving and caching
polygon vertex data from said memory prior to use by
said 3D graphics pipeline according to said indexed
polygon vertex data structure representation, wherein
said vertex data is made available for efficient access by
the 3D graphics pipeline without requiring explicit
resorting of said polygon vertex data for image display.

18. A vertex data caching arrangement for a 3D video-

graphics system comprising:

a memory storing polygon vertex attribute data and an
indexed polygon vertex data structure indexing at least
a portion of said polygon vertex attribute data;

a command stream processor that parses at least indices
corresponding to said indexed polygon vertex data
structure and provides said parsed indices to a low-
latency cache memory device;

a low-latency cache memory device operatively coupled
to the command stream processor and to said memory,
said cache memory device retrieving polygon vertex
attribute data from said memory in response to at least
parsed indices provided by the command stream pro-
cessor and caching the retrieved vertex attribute data;
and

a graphics pipeline coupled to said cache memory device,
said graphics pipeline generating image data for dis-
playing at least in part in response to the vertex attribute
data cached in said low-latency cache memory device.

19. A memory device storing a 3D graphics command
stream for use by a 3D graphics engine of the type including
a graphics pipeline having at least a transform unit, a
rasterizer, a texture unit and a pixel engine, said 3D graphics
engine, in use, generating images for display at least in part
in response to said 3D graphics command stream, said 3D
graphics engine including a vertex cache that caches poly-
gon vertex data from memory prior to use by said transform
unit, said stored graphics command stream including a
vertex stream that references indexed polygon vertex
attribute data cached in the vertex cache for efficient use by
said graphics pipeline without requiring explicit re-ordering
of vertices represented by said vertex stream specially for
image display.

20. The memory device of claim 19 wherein the vertex
stream directly references at least some of the indexed
polygon vertex attribute data.

21. The memory device of claim 19 wherein the vertex
stream references a vertex descriptor array including color
and position attributes.



