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(7) ABSTRACT

A graphics system including a custom graphics and audio
processor produces exciting 2D and 3D graphics and sur-
round sound. The system includes a graphics and audio
processor including a 3D graphics pipeline and an audio
digital signal processor. Improved fog simulation is pro-
vided by enabling backwards exponential and backwards
exponential squared fog density functions to be used in the
fog calculation. Improved exponential and exponential
squared fog density functions are also provided which
provide the ability to program a fog start value. A range
adjustment function is used to adjust fog based on the X
position of the pixels being rendered, thereby preventing
range error as the line of sight moves away from the Z axis.
An exemplary Fog Calculation Unit, as well as exemplary
fog control functions and fog related registers, are also
disclosed.

20 Claims, 11 Drawing Sheets
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METHOD AND APPARATUS FOR
PROVIDING IMPROVED FOG EFFECTS IN
A GRAPHICS SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is filed in accordance with 35 U.S.C.
§119(e)(1) and claims the benefit of the provisional appli-
cation Ser. No. 60/227,032 filed on Aug. 23, 2000, entitled
“Method And Apparatus For Providing Improved Fog
Effects In A Graphics System.”

This application is related to the following applications
identified below, which focus on various aspects of the
graphics system described herein. Each of the following
applications are hereby incorporated herein by reference.

provisional Application No. 60/161,915, filed Oct. 28,

1999 and its corresponding utility application Ser. No.
09/465,754, filed Dec. 17, 1999, both entitled “Vertex
Cache For 3D Computer Graphics”,

provisional Application No. 60/226,912, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/726,215, filed Nov. 28, 2000, both entitled “Method
and Apparatus for Buffering Graphics Data in a Graph-
ics System”,

provisional Application No. 60/226,889, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/722,419, filed Nov. 28, 2000, both entitled “Graph-
ics Pipeline Token Synchronization”,

provisional Application No. 60/226,891, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/722,382, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Direct and Indirect Texture Pro-
cessing In A Graphics System”,

provisional Application No. 60/226,888, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/722,367, filed Nov. 28, 2000, both entitled “Recir-
culating Shade Tree Blender For A Graphics System”,
provisional Application No. 60/226,892, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,218, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Efficient Generation Of Texture
Coordinate Displacements For Implementing Emboss-
Style Bump Mapping In A Graphics Rendering
System”,

provisional Application No. 60/226,893, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,381, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Environment-Mapped Bump-
Mapping In A Graphics System”,

provisional Application No. 60/227,007, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,216, filed Nov. 28, 2000, both entitled “Achro-
matic Lighting in a Graphics System and Method”,
provisional Application No. 60/226,900, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,226, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Anti-Aliasing In A Graphics
System”,

provisional Application No. 60/226,910, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,380, filed Nov. 28, 2000, both entitled “Graph-
ics System With Embedded Frame Buffer Having
Reconfigurable Pixel Formats”,

utility application Ser. No. 09/585,329, filed Jun. 2, 2000,

entitled “Variable Bit Field Color Encoding”,
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provisional Application No. 60/226,890, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,227, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Dynamically Reconfiguring The
Order Of Hidden Surface Processing Based On Ren-
dering Mode”,

provisional Application No. 60/226,915, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,210, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Providing Non-Photorealistic Car-
toon Outlining Within A Graphics System”,

provisional Application No. 60/226,885, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,664, filed Nov. 28, 2000, both entitled “Con-
troller Interface For A Graphics System”,

provisional Application No. 60/227,033, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,221, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Texture Tiling In A Graphics
System”,

provisional Application No. 60/226,899, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,667, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Pre-Caching Data In Audio
Memory”,

provisional Application No. 60/226,913, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,378, filed Nov. 28, 2000, both entitled
“Z-Texturing”,

provisional Application No. 60/227,031, filed Aug. 23,
2000 entitled “Application Program Interface for a
Graphics System”,

provisional Application No. 60/227,030, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,663, filed Nov. 28, 2000, both entitled “Graph-
ics System With Copy Out Conversions Between
Embedded Frame Buffer And Main Memory”,

provisional Application No. 60/226,886, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,665, filed Nov. 28, 2000, both entitled “Method
and Apparatus for Accessing Shared Resources”,

provisional Application No. 60/226,884, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/723,335, filed Nov. 28, 2000, both entitled “External
Interfaces For A 3D Graphics and Audio Coprocessor”,

provisional Application No. 60/226,894, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,220, filed Nov. 28, 2000, both entitled “Graph-
ics Processing System With Enhanced Memory
Controller”,

provisional Application No. 60/226,914, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,390, filed Nov. 28, 2000, both entitled “Low
Cost Graphics System With Stitching Hardware Sup-
port For Skeletal Animation”, and

provisional Application No. 60/227,0006, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,421, filed Nov. 28, 2000, both entitled “Shadow
Mapping In A Low Cost Graphics System”.

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more particularly to interactive graphics systems such as
home video game platforms. Still more particularly this
invention relates to a system and method for providing
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improved fog effects in interactive three dimensional (3D)
graphics systems.

BACKGROUND AND SUMMARY OF THE
INVENTION

Many of us have seen films containing remarkably real-
istic dinosaurs, aliens, animated toys and other fanciful
creatures. Such animations are made possible by computer
graphics. Using such techniques, a computer graphics artist
can specify how each object should look and how it should
change in appearance over time, and a computer then models
the objects and displays them on a display such as your
television or a computer screen. The computer takes care of
performing the many tasks required to make sure that each
part of the displayed image is colored and shaped just right
based on the position and orientation of each object in a
scene, the direction in which light seems to strike each
object, the surface texture of each object, and other factors.

Because computer graphics generation is complex,
computer-generated three-dimensional graphics just a few
years ago were mostly limited to expensive specialized flight
simulators, high-end graphics workstations and supercom-
puters. The public saw some of the images generated by
these computer systems in movies and expensive television
advertisements, but most of us couldn’t actually interact
with the computers doing the graphics generation. All this
has changed with the availability of relatively inexpensive
3D graphics platforms such as, for example, the Nintendo
64® and various 3D graphics cards now available for
personal computers. It is now possible to interact with
exciting 3D animations and simulations on relatively inex-
pensive computer graphics systems in your home or office.

A problem graphics system designers confronted in the
past was to improve realism of the graphic system by closer
modeling of the 3D virtual world in the graphics system to
the real world. One problem with graphics systems is that
they do not automatically take into account the effect that
fog and other similar atmospheric conditions create in the
real world. In other words, computer graphics images having
a distinctive crystal clear quality throughout the image can
appear unrealistic as compared to the real world. In the real
world, far away objects look less clear to the viewer than do
close objects. This difference in clarity results from the fact
that fog, smog, mist, smoke, pollution and/or haze (hereafter
simply “fog”) can exist in the atmosphere between the
viewer and the object being viewed. As a result, the mol-
ecules making up the fog deflect light, thereby causing
clarity of an object to be reduced as the distance from the
viewer to the object increases. For example, in the real
world, fog causes a tree that is close to a person to look
clearer to that person than will a tree that is far away from
that same person.

In contrast, in the virtual world of a computer graphics
system, objects will all have the same clarity unless a
mechanism is employed in the graphics system to simulate
the effects of fog. Various solutions to this problem were
offered. For example, many graphics systems have provided
functions and techniques for incorporating atmospheric
effects, such as fog, into a rendered scene in order to provide
a more realistic view of the virtual world. For instance, the
OpenGL graphics system, which provides a commonly used
software interface to graphics hardware, enables a program-
mer to render atmospheric fog effects. OpenGL implements
fogging by blending fog color with incoming fragments
using a fog blending factor (f), as follows:

C=fC (1) Crog
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This blending factor is computer using one of the follow-
ing three equations:

Exponential (GL_EXP): f=e (@emsiy*2) 1)
Exponential-squared (GI.__EXP2): fee~(densiy's) 2 2)
Linear (GL_ LINEAR): f=(end-z)/(end-start) 3)

where z is the eye-coordinate distance between the view-
point and the fragment center. The values for density, start
and end are all specified the programmer using a particular
function (i.e. glfog*( )).

Linear fog is frequently used to, for example, implement
intensity depth-cuing in which objects closer to the viewer
are drawn at a higher intensity. The effect of intensity as a
function of distance is achieved by blending the incoming
fragments with a black fog color. The exponential fog
equation has some physical basis; it is the result of integrat-
ing a uniform attenuation between the object and the viewer.
The exponential function can be used to, for example,
represent a number of atmospheric effects using different
combinations of fog colors and fog density values. By using
fog, the obscured visibility of objects near the far plane can
be exploited to overcome various problems such as drawing
time overruns, level-of-detail transition, and database pag-
ing. However, in practice it has been found that the expo-
nential function does not attenuate distant fragments rapidly
enough. Thus, the exponential-squared fog was introduced
in OpenGlL to provide a sharper fall-off in visibility. The
Direct3D (DirectX) interface to graphics hardware also
provides linear, exponential and exponential squared for
density equations.

As explained above, various fog mechanisms have been
employed in the past in order to make a 3D graphics image
appear more natural and realistic. However, while signifi-
cant work has been done in the past, further improvements
in connection with fog simulation are desirable.

The present invention solves this problem by providing
improved techniques and arrangements that further enhance
the use of fog in graphics systems. The instant invention
provides improved fog functions that enable new, interesting
and visually enjoyable effects to be achieved in a graphics
system. Additionally, the instant invention provides the
ability to provide a horizontal range adjustment for the fog,
thereby increasing the fog density towards the edges of the
screen in order to make the effect more realistic. The
invention further provides a method of sampling fog or
screen space z for a normal quad and z blit is quad, when
only one fog value is defined per quad. An exemplary fog
calculation unit is also provided for implementing fog in
accordance with the instant invention.

In accordance with one aspect provided by the invention,
a method and system for simulating fog in a graphics system
is provided which includes, obtaining a pixel color for a
pixel, and blending a fog color with the pixel color, wherein
the percentage of fog color blended with the pixel color is
determined based on one of the following two fog density
functions:

F0g=278‘(25720)/21720) (Backwards Exponential)

F0g=2—8 (Ze-20)/Z1-Z0)* *2 (Backwards Exponential Squared)

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.
A-range adjustment is preferably made to the eye-space z
value (Ze) prior to applying the fog density function in order
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to compensate for the change in range as the viewing angle
increases in the x direction away from the Z axis.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention will be better and more completely understood by
referring to the following detailed description of presently
preferred embodiments in conjunction with the drawings, of
which:

FIG. 1 is an overall view of an example interactive
computer graphics system;

FIG. 2 is a block diagram of the FIG. 1 example computer
graphics system;

FIG. 3 is a block diagram of the example graphics and
audio processor shown in FIG. 2;

FIG. 4 is a block diagram of the example 3D graphics
processor shown in FIG. 3;

FIG. § is an example logical flow diagram of the FIG. 4
graphics and audio processor;

FIG. 6a shows a conventional linear fog curve;

FIGS. 6b—6¢ show exemplary exponential, exponential
squared, reverse exponential and reverse exponential
squared fog curves, respectively, in accordance with the
instant invention;

FIG. 7 is a graph demonstrating the increasing fog error
that results when no horizontal range adjustment is used;

FIG. 8 is an exemplary fog compensation function that
can be used to correct the error shown in FIG. 7,

FIG. 9, is an exemplary embodiment of a fog calculation
unit for calculating fog in accordance with the instant
invention; and

FIGS. 10A and 10B show example alternative compatible
implementations.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS OF THE INVENTION

FIG. 1 shows an example interactive 3D computer graph-
ics system 50. System 50 can be used to play interactive 3D
video games with interesting stereo sound. It can also be
used for a variety of other applications.

In this example, system 50 is capable of processing,
interactively in real time, a digital representation or model of
a three-dimensional world. System 50 can display some or
all of the world from any arbitrary viewpoint. For example,
system 50 can interactively change the viewpoint in
response to real time inputs from handheld controllers 524,
52b or other input devices. This allows the game player to
see the world through the eyes of someone within or outside
of the world. System 50 can be used for applications that do
not require real time 3D interactive display (e.g., 2D display
generation and/or non-interactive display), but the capability
of displaying quality 3D images very quickly can be used to
create very realistic and exciting game play or other graphi-
cal interactions.

To play a video game or other application using system
50, the user first connects a main unit 54 to his or her color
television set 56 or other display device by connecting a
cable 58 between the two. Main unit 54 produces both video
signals and audio signals for controlling color television set
56. The video signals are what controls the images displayed
on the television screen 59, and the audio signals are played
back as sound through television stereo loudspeakers 61L,
61R.

The user also needs to connect main unit 54 to a power
source. This power source may be a conventional AC
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adapter (not shown) that plugs into a standard home elec-
trical wall socket and converts the house current into a lower
DC voltage signal suitable for powering the main unit 54.
Batteries could be used in other implementations.

The user may use hand controllers 52a, 52b to control
main unit 54. Controls 60 can be used, for example, to
specify the direction (up or down, left or right, closer or
further away) that a character displayed on television 56
should move within a 3D world. Controls 60 also provide
input for other applications (e.g., menu selection, pointer/
cursor control, etc.). Controllers 52 can take a variety of
forms. In this example, controllers 52 shown each include
controls 60 such as joysticks, push buttons and/or directional
switches. Controllers 52 may be connected to main unit 54
by cables or wirelessly via electromagnetic (e.g., radio or
infrared) waves.

To play an application such as a game, the user selects an
appropriate storage medium 62 storing the video game or
other application he or she wants to play, and inserts that
storage medium into a slot 64 in main unit 54. Storage
medium 62 may, for example, be a specially encoded and/or
encrypted optical and/or magnetic disk. The user may oper-
ate a power switch 66 to turn on main unit 54 and cause the
main unit to begin running the video game or other appli-
cation based on the software stored in the storage medium
62. The user may operate controllers 52 to provide inputs to
main unit 54. For example, operating a control 60 may cause
the game or other application to start. Moving other controls
60 can cause animated characters to move in different
directions or change the user’s point of view in a 3D world.
Depending upon the particular software stored within the
storage medium 62, the various controls 60 on the controller
52 can perform different functions at different times.

Example Electronics of Overall System

FIG. 2 shows a block diagram of example components of
system 50. The primary components include:

a main processor (CPU) 110,

a main memory 112, and

a graphics and audio processor 114.

In this example, main processor 110 (e.g., an enhanced
IBM Power PC 750) receives inputs from handheld control-
lers 108 (and/or other input devices) via graphics and audio
processor 114. Main processor 110 interactively responds to
user inputs, and executes a video game or other program
supplied, for example, by external storage media 62 via a
mass storage access device 106 such as an optical disk drive.
As one example, in the context of video game play, main
processor 110 can perform collision detection and animation
processing in addition to a variety of interactive and control
functions.

In this example, main processor 110 generates 3D graph-
ics and audio commands and sends them to graphics and
audio processor 114. The graphics and audio processor 114
processes these commands to generate interesting visual
images on display 59 and interesting stereo sound on stereo
loudspeakers 61R, 61L or other suitable sound-generating
devices.

Example system 50 includes a video encoder 120 that
receives image signals from graphics and audio processor
114 and converts the image signals into analog and/or digital
video signals suitable for display on a standard display
device such as a computer monitor or home color television
set 56. System 50 also includes an audio codec (compressor/
decompressor) 122 that compresses and decompresses digi-
tized audio signals and may also convert between digital and
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analog audio signaling formats as needed. Audio codec 122
can receive audio inputs via a buffer 124 and provide them
to graphics and audio processor 114 for processing (e.g.,
mixing with other audio signals the processor generates
and/or receives via a streaming audio output of mass storage
access device 106). Graphics and audio processor 114 in this
example can store audio related information in an audio
memory 126 that is available for audio tasks. Graphics and
audio processor 114 provides the resulting audio output
signals to audio codec 122 for decompression and conver-
sion to analog signals (e.g., via buffer amplifiers 128L,
128R) so they can be reproduced by loudspeakers 61L, 61R.

Graphics and audio processor 114 has the ability to
communicate with various additional devices that may be
present within system 50. For example, a parallel digital bus
130 may be used to communicate with mass storage access
device 106 and/or other components. A serial peripheral bus
132 may communicate with a variety of peripheral or other
devices including, for example:

a programmable read-only memory and/or real time clock
134,

a modem 136 or other networking interface (which may
in turn connect system 50 to a telecommunications
network 138 such as the Internet or other digital
network from/to which program instructions and/or
data can be downloaded or uploaded), and

flash memory 140.

A further external serial bus 142 may be used to communi-
cate with additional expansion memory 144 (e.g., a memory
card) or other devices. Connectors may be used to connect
various devices to busses 130, 132, 142.

Example Graphics and Audio Processor

FIG. 3 is a block diagram of an example graphics and
audio processor 114. Graphics and audio processor 114 in
one example may be a single-chip ASIC (application spe-
cific integrated circuit). In this example, graphics and audio
processor 114 includes:

a processor interface 150,

a memory interface/controller 152,

a 3D graphics processor 154,

an audio digital signal processor (DSP) 156,

an audio memory interface 158,

an audio interface and mixer 160,

a peripheral controller 162, and

a display controller 164.

3D graphics processor 154 performs graphics processing
tasks. Audio digital signal processor 156 performs audio
processing tasks. Display controller 164 accesses image
information from main memory 112 and provides it to video
encoder 120 for display on display device 56. Audio inter-
face and mixer 160 interfaces with audio codec 122, and can
also mix audio from different sources (e.g., streaming audio
from mass storage access device 106, the output of audio
DSP 156, and external audio input received via audio codec
122). Processor interface 150 provides a data and control
interface between main processor 110 and graphics and
audio processor 114.

Memory interface 152 provides a data and control inter-
face between graphics and audio processor 114 and memory
112. In this example, main processor 110 accesses main
memory 112 via processor interface 150 and memory inter-
face 152 that are part of graphics and audio processor 114.
Peripheral controller 162 provides a data and control inter-
face between graphics and audio processor 114 and the
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various peripherals mentioned above. Audio memory inter-
face 158 provides an interface with audio memory 126.

Example Graphics Pipeline

FIG. 4 shows a more detailed view of an example 3D
graphics processor 154. 3D graphics processor 154 includes,
among other things, a command processor 200 and a 3D
graphics pipeline 180. Main processor 110 communicates
streams of data (e.g., graphics command streams and display
lists) to command processor 200. Main processor 110 has a
two-level cache 115 to minimize memory latency, and also
has a write-gathering buffer 111 for uncached data streams
targeted for the graphics and audio processor 114. The
write-gathering buffer 111 collects partial cache lines into
full cache lines and sends the data out to the graphics and
audio processor 114 one cache line at a time for maximum
bus usage.

Command processor 200 receives display commands
from main processor 110 and parses them—obtaining any
additional data necessary to process them from shared
memory 112. The command processor 200 provides a stream
of vertex commands to graphics pipeline 180 for 2D and/or
3D processing and rendering. Graphics pipeline 180 gener-
ates images based on these commands. The resulting image
information may be transferred to main memory 112 for
access by display controller/video interface unit 164—
which displays the frame buffer output of pipeline 180 on
display 56.

FIG. § is a logical flow diagram of graphics processor
154. Main processor 110 may store graphics command
streams 210, display lists 212 and vertex arrays 214 in main
memory 112, and pass pointers to command processor 200
via bus interface 150. The main processor 110 stores graph-
ics commands in one or more graphics first-in-first-out
(FIFO) buffers 210 it allocates in main memory 110. The
command processor 200 fetches:

command streams from main memory 112 via an on-chip
FIFO memory buffer 216 that receives and buffers the
graphics commands for synchronization/flow control
and load balancing,

display lists 212 from main memory 112 via an on-chip

call FIFO memory buffer 218, and

vertex attributes from the command stream and/or from

vertex arrays 214 in main memory 112 via a vertex
cache 220.

Command processor 200 performs command processing
operations 2004 that convert attribute types to floating point
format, and pass the resulting complete vertex polygon data
to graphics pipeline 180 for rendering/rasterization. A pro-
grammable memory arbitration circuitry 130 (see FIG. 4)
arbitrates access to shared main memory 112 between graph-
ics pipeline 180, command processor 200 and display
controller/video interface unit 164.

FIG. 4 shows that graphics pipeline 180 may include:

a transform unit 300,

a setup/rasterizer 400,

a texture unit 500,

a texture environment unit 600, and

a pixel engine 700.

Transform unit 300 performs a variety of 2D and 3D
transform and other operations 300a (see FIG. 5). Transform
unit 300 may include one or more matrix memories 3005 for
storing matrices used in transformation processing 300a.
Transform unit 300 transforms incoming geometry per ver-
tex from object space to screen space; and transforms
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incoming texture coordinates and computes projective tex-
ture coordinates (300¢). Transform unit 300 may also per-
form polygon clipping/culling 300d. Lighting processing
300e also performed by transform unit 3005 provides per
vertex lighting computations for up to eight independent
lights in one example embodiment. Transform unit 300 can
also perform texture coordinate generation (300c¢) for
embossed type bump mapping effects, as well as polygon
clipping/culling operations (300d).

Setup/rasterizer 400 includes a setup unit which receives
vertex data from transform unit 300 and sends triangle setup
information to one or more rasterizer units (400b) perform-
ing edge rasterization, texture coordinate rasterization and
color rasterization.

Texture unit 500 (which may include an on-chip texture
memory (TMEM) 502) performs various tasks related to
texturing including for example:

retrieving textures 504 from main memory 112,

texture processing (5004) including, for example, multi-

texture handling, post-cache texture decompression,
texture filtering, embossing, shadows and lighting
through the use of projective textures, and BLIT with
alpha transparency and depth,

bump map processing for computing texture coordinate

displacements for bump mapping, pseudo texture and
texture tiling effects (500b), and

indirect texture processing (500c).

Texture unit 500 outputs filtered texture values to the
texture environment unit 600 for texture environment pro-
cessing (600a). Texture environment unit 600 blends poly-
gon and texture color/alpha/depth, and can also perform
texture fog processing (600b) to achieve inverse range based
fog effects. Texture environment unit 600 can provide mul-
tiple stages to perform a variety of other interesting
environment-related functions based for example on color/
alpha modulation, embossing, detail texturing, texture
swapping, clamping, and depth blending.

Pixel engine 700 performs depth (z) compare (7004) and
pixel blending (7005). In this example, pixel engine 700
stores data into an embedded (on-chip) frame buffer memory
702. Graphics pipeline 180 may include one or more embed-
ded DRAM memories 702 to store frame buffer and/or
texture information locally. Z compares 7004’ can also be
performed at an earlier stage in the graphics pipeline 180
depending on the rendering mode currently in effect (e.g., z
compares can be performed earlier if alpha blending is not
required). The pixel engine 700 includes a copy operation
700c¢ that periodically writes on-chip frame buffer 702 to
main memory 112 for access by display/video interface unit
164. This copy operation 700c can also be used to copy
embedded frame buffer 702 contents to textures in the main
memory 112 for dynamic texture synthesis effects. Anti-
aliasing and other filtering can be performed during the
copy-out operation. The frame buffer output of graphics
pipeline 180 (which is ultimately stored in main memory
112) is read each frame by display/video interface unit 164.
Display controller/video interface 164 provides digital RGB
pixel values for display on display 102.

Fog Simultaion

When fog is enabled, a constant fog color is blended with
the pixel color output from the last active Texture Environ-
ment (TEV) stage. The percentage of fog color blended
depends on the fog density, which is a function of the
distance from a viewpoint to a quad (2x2 pixels). In this
example, the graphics processor 114 preferably supports five
types of fog each of which provides a different fog density
function.
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The first fog type is the conventional linear fog as shown
in FIG. 6a, wherein the fog equation provides a constant
increase in fog density between a starting point where the
linear fog begins and an ending point where the fog reaches
its maximum value. For this conventional linear fog, the fog
equation is:

Fog=(Ze-Z0)/(Z1-Z0)

where Ze is the eye space z of the pixel, Z0 is the “fog
start” value and is the eye-space z value at which linear
fog begins or “kicks in”, and Z1 is the “fog end” value
and is the eye-space z value at which the fog density
reaches its maximum value. FIG. 6a shows an example
graph of the linear fog equation with “fog start”=50 and
“fog end”=100.

The second and third types of fog are exponential fog and
exponential squared fog. In contrast to the OpenGL and
DirectX fog types, the instant invention incorporates a “fog
start” value into the fog equations, thereby enhancing the
functionality thereof. For exponential and exponential
squared fog, the respective fog equations are:

Fo g=1_278‘(2f3720)/21720)

Fog=1-2"%" (Ze-20)/Z1-Z0)*+2

where Z1 is the eye-space z value at which the fog density
almost reaches 1. FIGS. 6b and 6c show example
graphs of the exponential and exponential squared fog
equations, respectively, with Z0=50 and Z1=100.

The fourth and fifth types of fog are entirely new and are
not based on previous fog equations, such as those provided
in OpenGL. These two new fog types are backwards expo-
nential fog and backwards exponential squared fog. The
respective fog equations for these two fog types are:

Fog=2"%" (Ze-20)/Z1-Z0)

Fo g=278‘(Zele)/Zlle)‘ 2

where Z1 is the eye-space z value at which the fog density
almost reaches 1. FIGS. 6d and 6e show example
graphs of these two fog equations, respectively, with
Z0=50 and Z1=100. Unlike the exponential fog and
exponential squared fog, the backwards exponential
fog and backwards exponential squared fog have more
gentle slopes at first and steep slopes near the end.
These two entirely new fog types enable new and
interesting fog effects to be achieved, thereby further
improving use of fog in 3D graphics systems. For
example, these two fog types can be used to provide an
improved curtain-type fog effect, wherein an object
suddenly passes therethrough, which provides an inter-
esting visual effect superior to that of the other known
fog types for certain applications. It is noted that a near
(start) and far (end) z for the fog function can be
programmed independently of the clipping near and far
z.

The eye-space z used for fog calculations, in the manner
described above, does not represent the correct range unless
the viewer is facing the same direction as the Z axis.
Specifically, as shown in FIG. 7, if only the eye-space z is
used for determining the range, and increasing error will
result as the line of sight moves away from the Z axis. As
shown in FIG. 7, the range error, represented by shaded
portions 610a and 6105, increases as the angle o increases
away from the Z axis. However, in accordance with a
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preferred embodiment of the instant invention, a range
adjustment factor based upon the x value is used to com-
pensate for this inaccuracy. The range adjustment or fog
compensation function effectively increases the fog density
towards the edges of the screen in order to make the fog
effect more accurate and realistic.

In accordance with the preferred embodiment, and as
shown in FIG. 8, the fog compensation function is:

sqrt((x-center)*+k%)/k

where the value “center” is programmable so as to support
split screen multiplayer games. The center is preferably
set to half the width of the screen plus the x offset of the
window with respect to the coordinate system. The
value k determines how fast the fog density increases as
x changes. The adjustment is computed by linearly
interpolating two samples of the function. The samples
(r0-r9) of the range adjustment function are stored for
use in the range adjustment calculation. It is noted that
only half of the function needs to be stored due to the
fact that the function is symmetrical at the center.

In this example, there is only one fog value for each quad.
Thus, the position where fog or screen space z (Zs) is
sampled is very important. The following rules can be used
for a regular quad:

If only one pixel is covered, that pixel is selected.

If two pixels are covered, a pixel is selected in the
following order: upper left, upper right, lower left, and
lower right.

If three pixels are covered, the pixel that touches two
neighboring pixels are selected.

within the selected pixel, the subsample position is
selected in the following order: multisample 0 (MS0),
MS1, MS2.

If all four pixels are covered, the center of the quad is

used.

For a zblit quad, as opposed to a regular quad, the
minimum of the four pixels’ z after z blending is used as the
sample location.

After the sampling position is determined, Zs is computed
as Z0+zx*dx+zy*dy in s2.24. The upper three bits are used
for detecting overflow or underflow. Zs is then clamped to
U0.24 as follows:

000 No overflow/underflow

01X Overflow, Zs is clamped to 1.0 (OxFFFFFF)
0X1 Overflow, Zs is clamped to 1.0 (OxFFFFFF)
1XX Underflow, Zs is clamped to 0.0 (0x000000)

When using a perspective projection, the fog types can be
programmed into a couple of equations. The first equation
computes eye-space z from the screen-space z:

Ze=f*n/(f-(f-n)*Zs)
Ze=|nf] and Zs=[0,1].

As a result, Ze=n when Zs=0, Ze=f when Zs=1 (the sense of
Ze is reversed). The next step compensates Ze by multiply-
ing Ze with a factor which is a function of the current quad
x location.

Ze'=Ze*r(x)

The second equation normalizes Ze to Zn where Zn=0
when Ze=Z0 (fog start), Zn=1 when Ze=Z1.
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Zn=(Ze"-20)/(Z1-Z0)
By combining the two equations, we get
Zn=A*r(x)/(B-Z5)-C
Where:
A=frnf((f-n)*(Z1-Z0))
B=f/(f-n)

C=20/(Z1-20)
In order to simplify hardware, Ze can be written as:

Ze=A[(B-Zs)=A/(B_mant/2—(Zs>>B__expn+1))*2—=#+D)—(4/
2B—expnrDV/(B_ mant/2—(Zs>>B__expn+1))=a/(b—(zs>>b__shf))

Then:
a=A/2B—PD
b_mag=B__mant/2
b__shf=B_ expn+1

On the other hand, for orthographic projection, the fol-
lowing equations apply:

Zn=a*¥(x)*Zs-c
a=1(Z1-20)

c=70/(Z1-20)

Z0 and Z1 are specified in screen space rather than eye

space.

After Zn is computed, as explained above, is can be used
for computing fog density according to the fog type selected,
ie. linear, exponential, exponential squared, backwards
exponential, or backwards exponential squared.

Example Implementation Details

FIG. 9 shows an exemplary Fog Calculation Unit 6005
which can be used to calculate fog in accordance with the
instant invention. As explained in connection with FIG. §,
the Fog Calculation Unit 6005 receives input from the last
active stage of the Texture Environment Unit (TEV) 600a.
The Fog Calculation Unit then blends a constant fog color
with the pixel color output from the last active TEV stage.
The percentage of fog color blended depends on the fog
density, which is a function of the distance from the view-
point to a quad.

As shown in FIG. 9, upon receiving the appropriate input,
the z_offset block 602 of the Fog Calculation Unit com-
putes the value of the centroid of the current quad, which is
determined by using the coverage of the pixels within the
quad, as explained above. The screen-to-eye-space-z section
604 then converts the value from screen space z to eye space
z, and multiplies (via multiplier 616) the result by a constant
“a” related to the required fog density. As explained in
greater detail below, the “b” parameter, introduced at sub-
tracter 618, for the screen to eye space z conversion function
is provided by the tev_fog param 1 register. The “a”
parameter of the screen to eye space conversion function is
provided by the tev__fog param_ 0 register. The dotted line
in FIG. 9 shows the alternative method of doing this
operation in the case of an orthographic projection, rather
than a perspective projection.

The range__adj block 606 computes a range adjustment
based on the x location of the current quad. The screen z is
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then multiplied by the range adjustment at multiplier 608.
Parameter “c”, provided by the tev_ fog param_ 3 register,
is then introduced at subtracter 610 to specify the amount to
subtract from eye-space Z after range adjustment. A clamp-
ing operation is then performed at block 612 to provide Zn.

After Zn is computed, it can be used for computing fog
density according to the particular fog type selected.
Specifically, by selecting the appropriate inputs to multi-
plexors 614a, 614b, 614c and 614b, thereby selectively
applying sections 615a, 615b, 615¢ and 6154, the desired
one of the five available fog types can be selected, i.e. linear,
exponential, exponential squared, backwards exponential or
backwards exponential squared. Thus, the appropriate fog
density is used for determining the percentage of fog color
blended with the pixel color output from the last active TEV
stage. The calculated fog is then output from the last
multiplexor 614d for further processing by the graphic
system.

In the preferred embodiment, fog is controlled using the
following function:

GXSetFog:
Argument:
GXFogTYPES Type; //Type of Fog (none, linear, Exp,

Exp2, Bexp, Bexp2)
GXBool Proj; //Enable screen to eye space conversion
GXBool Range //Enable horizontal range adjustment
£32 StartZ;
£32 EndZ; //Start and End (or near-End) Z values
£32 NearZ;
£32 FarZ; //Near and Far Z values in the scene
£32 SideX; //X value of right side of view frustrum
GXColor Color; //Fog Color (RGBXS)

This function computes the fog parameters required by
the hardware and loads them into the Fog Calculation Unit.
The NearZ and FarZ values should be consistent with the
projection matrix parameters. The StartZ and EndZ values
for fog should be in the same units as the NearZ and FarZ
values. The parameters StartZ and EndZ control where the
fog function starts and ends, respectively. Usually, the EndZ
value is set to the far plane z. The NearZ and FarZ are
needed to convert the rasterized screen Z value into an
eye-space Z for fog computations. The Color parameter is
the color of the pixel when fog density is 1.0.

The horizontal fog range adjustment is turned off by
default in GXInit( ). In order to use this feature, the
following functions may be called:

void GXInitFogAdjTable(

GXFogAdjTable* Table,

ul6 width,

32 projmtx [4] [4] );
void GXSetFogRangeAdj (

GXBool enable,

ulé center,

GXFogAdjTable* table );

The first function above is used to compute the adjustment
table. The user must provide the allocated space for this
table. The width parameter specifies the width of the view-
port. The projmtx parameter is the projection matrix that will
be used to render into the viewport. This parameter is needed
for the function to compute the viewport’s horizontal extent
in eye space.

Once the table has been computed, it can be passed to the
GXSetFogRange Ad;j( )function. The enable parameter indi-
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cates whether horizontal fog range adjustment is enabled or
not. The center parameter should be the X coordinate at the
center of the viewport. As explained above, the range
adjustment function is preferably symmetric about the cen-
ter.

The following table shows exemplary register descrip-
tions and formats:

Register Name  Format Description

tev_range_adj_c center 10 Specifies the screen’s x center
for range adjustment

Enable range adjustment.

0; TEV_ENB_ DISABLE;
Disable range adjustment.

1; TEV_ENB_ ENABLE;
Enable range adjustment.
Specifies the range

adjustment function:

ACER'S

k

enb 1

tev_range_adj_k 12k,

2k +1

adj =

Py

Specifies the “a” parameter of
the screen to eye space
conversion function:

tev_fog param_0 a s1le8

tev_fog param_1 b_mag u0.24  Specifies the “b” parameter of
the z screen to eye space

conversion function:

a

Ze = b_mag— (zs > b_shf)

tev_fog param_2 b_shf 5 Specifies the amount to pre-
shift screen z. This is
equivalent to the value of “b”
parameter’s exponent + 1.
Specifies the fog type as
follows:

0; TEV_FSEL__OFF; No fog
1; reserved

2; TEV_FSEL_1IN;
Exponential Fog

3; reserved

4; TEV_FSEL_EXP;
Exponential Fog

5; TEV_FSEL_EX2;
Exponential Squared Fog

6; TEV_FSEL_BXP;
Backward Exp Fog

7, TEV_FSEL_BX2
Backward Exp Squared Fog
Specifies whether we have a
perspective or orthographic
projection:

0; TEV_FOG_ PERSP;
Perspective projection

1; TEV_FOG_ ORTHO;
Orthographic projection
Specifies the amount to
subtract from eye-space Z
after range adjustment.
Specifies the value of fog
color.

tev_fog param_3 fsel 3

proj 1

c slle8

tev__fog color g b 8

Other Example Compatible Implementations

Certain of the above-described system components 50
could be implemented as other than the home video game
console configuration described above. For example, one
could run graphics application or other software written for
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system 50 on a platform with a different configuration that
emulates system 50 or is otherwise compatible with it. If the
other platform can successfully emulate, simulate and/or
provide some or all of the hardware and software resources
of system 50, then the other platform will be able to
successfully execute the software.

As one example, an emulator may provide a hardware
and/or software configuration (platform) that is different
from the hardware and/or software configuration (platform)
of system 50. The emulator system might include software
and/or hardware components that emulate or simulate some
or all of hardware and/or software components of the system
for which the application software was written. For example,
the emulator system could comprise a general purpose
digital computer such as a personal computer, which
executes a software emulator program that simulates the
hardware and/or firmware of system 50.

Some general purpose digital computers (e.g., IBM or
Maclntosh personal computers and compatibles) are now
equipped with 3D graphics cards that provide 3D graphics
pipelines compliant with DirectX or other standard 3D
graphics command APIs. They may also be equipped with
stereophonic sound cards that provide high quality stereo-
phonic sound based on a standard set of sound commands.
Such multimedia-hardware-equipped personal computers
running emulator software may have sufficient performance
to approximate the graphics and sound performance of
system 50. Emulator software controls the hardware
resources on the personal computer platform to simulate the
processing, 3D graphics, sound, peripheral and other capa-
bilities of the home video game console platform for which
the game programmer wrote the game software.

FIG. 10A illustrates an example overall emulation process
using a host platform 1201, an emulator component 1303,
and a game software executable binary image provided on a
storage medium 62. Host 1201 may be a general or special
purpose digital computing device such as, for example, a
personal computer, a video game console, or any other
platform with sufficient computing power. Emulator 1303
may be software and/or hardware that runs on host platform
1201, and provides a real-time conversion of commands,
data and other information from storage medium 62 into a
form that can be processed by host 1201. For example,
emulator 1303 fetches “source” binary-image program
instructions intended for execution by system 50 from
storage medium 62 and converts these program instructions
to a target format that can be executed or otherwise pro-
cessed by host 1201.

As one example, in the case where the software is written
for execution on a platform using an IBM PowerPC or other
specific processor and the host 1201 is a personal computer
using a different (e.g., Intel) processor, emulator 1303
fetches one or a sequence of binary-image program instruc-
tions from storage medium 62 and converts these program
instructions to one or more equivalent Intel binary-image
program instructions. The emulator 1303 also fetches and/or
generates graphics commands and audio commands
intended for processing by the graphics and audio processor
114, and converts these commands into a format or formats
that can be processed by hardware and/or software graphics
and audio processing resources available on host 1201. As
one example, emulator 1303 may convert these commands
into commands that can be processed by specific graphics
and/or or sound hardware of the host 1201 (e.g., using
standard DirectX, OpenGL and/or sound APIs).

An emulator 1303 used to provide some or all of the
features of the video game system described above may also
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be provided with a graphic user interface (GUI) that sim-
plifies or automates the selection of various options and
screen modes for games run using the emulator. In one
example, such an emulator 1303 may further include
enhanced functionality as compared with the host platform
for which the software was originally intended.

FIG. 103B illustrates an emulation host system 1201
suitable for use with emulator 1303. System 1201 includes
a processing unit 1203 and a system memory 1205. A system
bus 1207 couples various system components including
system memory 1205 to processing unit 1203. System bus
1207 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory 1207 includes read only memory (ROM) 1252 and
random access memory (RAM) 1254. A basic input/output
system (BIOS) 1256, containing the basic routines that help
to transfer information between elements within personal
computer system 1201, such as during start-up, is stored in
the ROM 1252. System 1201 further includes various drives
and associated computer-readable media. A hard disk drive
1209 reads from and writes to a (typically fixed) magnetic
hard disk 1211. An additional (possible optional) magnetic
disk drive 1213 reads from and writes to a removable
“floppy” or other magnetic disk 1215. An optical disk drive
1217 reads from and, in some configurations, writes to a
removable optical disk 1219 such as a CD ROM or other
optical media. Hard disk drive 1209 and optical disk drive
1217 are connected to system bus 1207 by a hard disk drive
interface 1221 and an optical drive interface 1225, respec-
tively. The drives and their associated computer-readable
media provide nonvolatile storage of computer-readable
instructions, data structures, program modules, game pro-
grams and other data for personal computer system 1201. In
other configurations, other types of computer-readable
media that can store data that is accessible by a computer
(e.g., magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories
(RAMs), read only memories (ROMs) and the like) may also
be used.

A number of program modules including emulator 1303
may be stored on the hard disk 1211, removable magnetic
disk 1215, optical disk 1219 and/or the ROM 1252 and/or
the RAM 1254 of system memory 1205. Such program
modules may include an operating system providing graph-
ics and sound APIs, one or more application programs, other
program modules, program data and game data. A user may
enter commands and information into personal computer
system 1201 through input devices such as a keyboard 1227,
pointing device 1229, microphones, joysticks, game
controllers, satellite dishes, scanners, or the like. These and
other input devices can be connected to processing unit 1203
through a serial port interface 1231 that is coupled to system
bus 1207, but may be connected by other interfaces, such as
a parallel port, game port Fire wire bus or a universal serial
bus (USB). A monitor 1233 or other type of display device
is also connected to system bus 1207 via an interface, such
as a video adapter 1235.

System 1201 may also include a modem 1154 or other
network interface means for establishing communications
over a network 1152 such as the Internet. Modem 1154,
which may be internal or external, is connected to system
bus 123 via serial port interface 1231. A network interface
1156 may also be provided for allowing system 1201 to
communicate with a remote computing device 1150 (e.g.,
another system 1201) via a local area network 1158 (or such
communication may be via wide area network 1152 or other
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communications path such as dial-up or other communica-
tions means). System 1201 will typically include other
peripheral output devices, such as printers and other stan-
dard peripheral devices.
In one example, video adapter 1235 may include a 3D
graphics pipeline chip set providing fast 3D graphics ren-
dering in response to 3D graphics commands issued based
on a standard 3D graphics application programmer interface
such as Microsoft’s DirectX 7.0 or other version. A set of
stereo loudspeakers 1237 is also connected to system bus
1207 via a sound generating interface such as a conventional
“sound card” providing hardware and embedded software
support for generating high quality stereophonic sound
based on sound commands provided by bus 1207. These
hardware capabilities allow system 1201 to provide suffi-
cient graphics and sound speed performance to play soft-
ware stored in storage medium 62.
An emulator 1303 used to provide some or all of the
features of the video game system described above may also
be provided with a graphic user interface (GUI) that sim-
plifies or automates the selection of various options and
screen modes for games run using the emulator. In one
example, such an emulator 1303 may further include
enhanced functionality as compared with the host platform
for which the software was originally intended. In the case
where particular graphics support hardware within an emu-
lator does not include fog functions shown in FIG. 9, the
emulator designer has a choice of either:
translating fog commands into other graphics API com-
mands the graphics hardware does support; or

implementing the fog functions in software with a poten-
tial corresponding decrease in performance depending
upon the speed of the processor; or

“stubbing” the fog commands to provide a rendered

image that does not include fog effects.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the scope
of the appended claims.

We claim:

1. A method for simulating fog in a graphics system,
comprising:

obtaining a pixel color for a pixel; and

blending a fog color with the pixel color;

wherein a percentage of fog color blended with the pixel

color is determined based on the following fog density
function:

Fog=2"%" (Ze-20)/Z1-Z0)

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

2. The method of claim 1, further including:

adjusting the eye-space z value (Ze) of the pixel based
upon an X position (x) of the pixel prior to applying the
fog density function.

3. The method of claim 2, further including:

using an adjusting function for the adjusting of Ze that is
symmetrical about a center point.

4. The method of claim 3, wherein the adjusting function

is:

w
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sqrt((x-center)*+k>)/k

where center is an X location of the center of an image,
and k determines how fast fog density increases away
from the center.

5. A method for simulating fog in a graphics system,

comprising:

obtaining a pixel color for a pixel; and

blending a fog color with the pixel color;

wherein a percentage of fog color blended with the pixel
color is determined based on the following fog density
function:

Fo g=278‘(Zele)/Zlle)‘ 2

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

6. The method of claim 5, further including:

adjusting the eye-space z value (Ze) of the pixel based
upon an X position (x) of the pixel prior to applying the
fog density function.

7. The method of claim 6, further including:

using an adjusting function for the adjusting of Ze that is
symmetrical about a center point.

8. The method of claim 7, wherein the adjusting function

is:

sqri((x-center)*+k2)/k

where center is an X location of the center of an image,
and k determines how fast fog density increases away
from the center.

9. A graphics system, comprising:

a first section which obtains a pixel color for a pixel; and

a second section which blends a fog color with the pixel
color;

wherein the second section determines a percentage of fog
color blended with the pixel color based on the follow-
ing fog density function:

Fo g=2—8 *(Ze-Z0)/Z1-Z0)

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

10. The graphics system of 9, further including:

a third section which adjusts the eye-space z value (Ze) of
the pixel based upon an X position (x) of the pixel prior
to applying the fog density function.

11. The graphics system of claim 10, wherein the third
section applies an adjusting function for the adjusting of Ze
that is symmetrical about a center point.

12. The graphics system of claim 11, wherein the adjust-
ing function is:

sqrt((x-center)*+k>)/k

where center is an X location of the center of an image,
and k determines how fast fog density increases away
from the center.

13. A graphics system, comprising:

a first section which obtains a pixel color for a pixel; and

a second section which blends a fog color with the pixel
color;
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wherein the second section determines a percentage of fog
color blended with the pixel color based on the follow-
ing fog density function:

Fo g=2—8 +(Ze-Z0)/Z1-Z0)**2

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

14. The graphics system of 13, further including:

a third section which adjusts the eye-space z value (Ze) of
the pixel based upon an X position (x) of the pixel prior
to applying the fog density function.

15. The graphics system of claim 14, wherein the third
section applies an adjusting function for the adjusting of Ze
that is symmetrical about a center point.

16. The graphics system of claim 15, wherein the adjust-
ing function is:

sqri((x-center)*+k2)/k

where center is an X location of the center of an image,
and k determines how fast fog density increases away
from the center.

17. In a graphics system having the ability to simulate fog
based on a fog density function, the improvement compris-
ing:

a fog calculation unit implementing the following fog

density function:

Fo g=2—8 *(Ze-Z0)/Z1-Z0)

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

18. In a graphics system having the ability to simulate fog
based on a fog density function, the improvement compris-
ing:

a fog calculation unit implementing the following fog

density function:
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Fo g=278‘(Zele)/Zlle)‘ 2

wherein Ze is an eye-space z value of the pixel, Z0 is an
eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

19. A method for simulating fog in a graphics system,

comprising:

obtaining a color for a location in an image to be rendered
by the graphics system; and

blending a fog color with the color;

wherein a percentage of fog color blended with the color
is determined based on the following fog density func-
tion:

Fog=2"%" (Ze-20)/Z1-Z0)

wherein Ze is an eye-space z value of the location, Z0 is
an eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.

20. A method for simulating fog in a graphics system,

comprising:

obtaining a color for a location in an image to be rendered
by the graphics system; and

blending a fog color with the color;

wherein a percentage of fog color blended with the color
is determined based on the following fog density func-
tion:

Fo g=278‘(Zele)/Zlle)‘ 2

wherein Ze is an eye-space z value of the location, Z0 is
an eye-space z value at which fog begins, and Z1 is an
eye-space z value at which fog density substantially
reaches a maximum value.



