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(7) ABSTRACT

A graphics system including a custom graphics and audio
processor produces exciting 2D and 3D graphics and sur-
round sound. The system includes a graphics and audio
processor including a 3D graphics pipeline and an audio
digital signal processor. The graphics pipeline performs
Z-buffering and optionally provides memory efficient full
scene anti-aliasing (FSAA). When the anti-aliasing render-
ing mode is selected, Z value bit compression is performed
to more efficiently make use of the available Z buffer
memory. A Z-clamping arrangement is used to improve the
precision of visually important Z components by clamping
Z values to zero of pixels that fall within a predetermined
Z-axis range near the Z=0 eye/camera (viewport) plane. This
allows a Z-clipping plane to be used very close to the
eye/camera plane—to avoid undesirable visual artifacts pro-
duced when objects rendered near to the eye/camera plane
are clipped—while preserving Z value precision for the
remaining depth of the scene. In an example
implementation, a Z value compression circuit provided in
the graphics pipeline is enhanced to effectuate Z-clamping
within the predetermined range of Z values. The enhanced
circuitry includes an adder for left-shifting an input Z value
one or more bits prior to compression and gates for masking
out the most significant non-zero shifted bits to zero.

7 Claims, 10 Drawing Sheets
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3D GRAPHICS RENDERING SYSTEM FOR
PERFORMING Z VALUE CLAMPING IN
NEAR-Z RANGE TO MAXIMIZE SCENE
RESOLUTION OF VISUALLY IMPORTANT Z
COMPONENTS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is related to the following commonly
assigned applications identified below, which focus on vari-
ous aspects of the graphics system described herein. Each of
the following applications are incorporated herein by refer-
ence:

provisional application No. 60/161,915, filed Oct. 28,
1999 and its corresponding utility application Ser. No.
09/465,754, filed Dec. 17, 1999, both entitled “Vertex
Cache For 3D Computer Graphics™;

provisional application No. 60/226,912, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,215, filed Nov. 28, 2000, both entitled “Method
and Apparatus for Buffering Graphics Data in a Graph-
ics System”;

provisional application No. 60/226,889, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,419, filed Nov. 28, 2000, both entitled “Graph-
ics Pipeline Token Synchronization™;

provisional application No. 60/226,891, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,382, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Direct and Indirect Texture Pro-
cessing In A Graphics System™;

provisional application No. 60/226,888, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,367, filed Nov. 28, 2000, both entitled “Recir-
culating Shade Tree Blender For A Graphics System”;

provisional application No. 60/226,893, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,381 filed Nov. 28, 2000, both entitled “Method
And Apparatus For Environment-Mapped Bump-
Mapping In A Graphics System”;

provisional application No. 60/227,007, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,216, filed Nov. 28, 2000, both entitled “Achro-
matic Lighting in a Graphics System and Method”;

provisional application No. 60/226,900, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,226, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Anti-Aliasing In A Graphics Sys-
tem”;

provisional application No. 60/226,910, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,380, filed Nov. 28, 2000, both entitled “Graph-
ics System With Embedded Frame Buffer Having
Reconfigurable Pixel Formats™;

utility application Ser. No. 09/585,329, filed Jun. 2, 2000,
entitled “Variable Bit Field Color Encoding”;

provisional application No. 60/226,890, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,227, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Dynamically Reconfiguring The
Order Of Hidden Surface Processing Based On Ren-
dering Mode”;

provisional application No. 60/226,915, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
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09/726,212 filed Nov. 28, 2000, both entitled “Method
And Apparatus For Providing Non-Photorealistic Car-
toon Outlining Within A Graphics System”;

provisional application No. 60/227,032, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,225, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Providing Improved Fog Effects In
A Graphics System”;

provisional application No. 60/226,885, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,664, filed Nov. 28, 2000, both entitled “Con-
troller Interface For A Graphics System”;

provisional application No. 60/227,033, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,221, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Texture Tiling In A Graphics Sys-
tem”;

provisional application No. 60/226,899, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,667, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Pre-Caching Data In Audio
Memory”;

provisional application No. 60/226,913, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,378, filed Nov. 28, 2000, both entitled
“Z-Texturing”;

provisional application No. 60/227,031, filed Aug. 23,
2000 entitled “Application Program Interface for a
Graphics System”,

provisional application No. 60/227,030, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,663, filed Nov. 28, 2000, both entitled “Graph-
ics System With Copy Out, Conversions Between
Embedded Frame Buffer And Main Memory”;

provisional application No. 60/226,886, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,665, filed Nov. 28, 2000, both entitled “Method
and Apparatus for Accessing Shared Resources”;

provisional application No. 60/226,894, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,220, filed Nov. 28, 2000, both entitled “Graph-
ics Processing System With Enhanced Memory Con-
troller”;

provisional application No. 60/226,914, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,390, filed Nov. 28, 2000, both entitled “Low
Cost Graphics System With Stitching Hardware Sup-
port For Skeletal Animation”, and

provisional application No. 60/227,006, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,421, filed Nov. 28, 2000, both entitled “Shadow
Mapping In A Low Cost Graphics System”.

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more particularly to interactive graphics systems such as
home video game platforms. Still more particularly this
invention relates to Z-value clamping in the near-Z range
when rendering anti-aliased scenes to maximize precision of
visually important Z components and to avoid near-Z clip-
ping.

BACKGROUND AND SUMMARY OF THE
INVENTION

Many of us have seen films containing remarkably real-
istic dinosaurs, aliens, animated toys and other fanciful
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creatures. Such animations are made possible by computer
graphics. Using such techniques, a computer graphics artist
can specify how each object should look and how it should
change in appearance over time, and a computer then models
the objects and displays them on a display such as your
television or a computer screen. The computer takes care of
performing the many tasks required to make sure that each
part of the displayed image is colored and shaped just right
based on the position and orientation of each object in a
scene, the direction in which light seems to strike each
object, the surface texture of each object, and other factors.

Because computer graphics generation is complex,
computer-generated three-dimensional graphics just a few
years ago were mostly limited to expensive specialized flight
simulators, high-end graphics workstations and supercom-
puters. The public saw some of the images generated by
these computer systems in movies and expensive television
advertisements, but most of us couldn’t actually interact
with the computers doing the graphics generation. All this
has changed with the availability of relatively inexpensive
3D graphics platforms such as, for example, the Nintendo
64® and various 3D graphics cards now available for
personal computers. It is now possible to interact with
exciting 3D animations and simulations on relatively inex-
pensive computer graphics systems in your home or office.

Most 3D graphics computer systems render and prepare
images for display in response to polygon vertex attribute
data which typically includes a Z-axis (scene depth) value.
A well known technique called Z-buffering is often used to
properly render objects in accordance with their respective
depth (i.e., distance from the viewer/camera) in a 3D scene.
Since processing a lot of 3D image polygon vertex attribute
data can become very time consuming, graphics system
designers often employ a polygon culling and clipping
process to eliminate the processing of the non-displayed
image data. This non-displayed image data is typically
polygon vertex data that is outside a viewing frustum
bounded by predetermined “clipping” planes in a virtual 3D
image rendering space called “camera space” (also called
“screen space”). For example, portions of a 3D scene or
object that are behind the camera (viewport) position need
not be rendered and may be culled or clipped. Likewise,
scene portions and 3D objects very far in the scene distance
(ie., far from the camera/eye position along the scene depth
or Z-axis) need not be rendered.

Scene depth clipping may be performed using both a near
clipping plane and a far clipping plane where the far clipping
plane is many times the depth of the near clipping plane.
Scene depth clipping may also be performed with a clipping
plane at or behind the camera/eye position (i.e., the Z=0
plane) or without using a near clipping plane altogether.
However, for various reasons not discussed in detail here,
rendering 3D objects at or very close to the camera/eye
position may cause certain data processing problems such as
overflow and wrapping errors due to the small Z values
involved. For example, in the case of geometry projection,
vertices that get “too close” to the camera (Z=0) plane get a
w (homogeneous coordinate scale factor) value that is very
small. Dividing vertex X, y and z coordinates attributes by
such small w values during screen-space transformation
operations often causes precision and overflow problems-
especially when w=0, where the resulting scale values are
infinite. Clipping geometry to a near-plane avoids such
problems—each triangle with offending vertices is cut into
pieces by the near-plane, and the half that is ‘too close’ is
thrown away. Consequently, if scene depth clipping is per-
formed using a near clipping plane in front of the camera/eye
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position, the near clipping plane should be positioned far
enough in front of the camera that such overflow and
wrapping errors do not occur.

Alternatively, if scene depth clipping is performed with-
out using a near clipping plane, or with a clipping plane at
or behind the camera/eye position, it may be necessary to
burden the applications program with the responsibility of
preventing such overflows and wrapping problems by polic-
ing the permissible distance between the camera position
and a rendered object. A problem graphics system designers
confronted in the past is how to avoid certain undesirable
visual effects associated with the clipping of polygons of a
displayed 3D image object that approaches the plane of the
viewer (i.e., the camera/eye plane). In particular, graphics
artists and game developers never want to see a 3D object
clipped by a clipping plane placed in front of the viewer, as
this produces a hole in the object and gives the appearance
that objects are hollow. One solution is to define a six plane
viewing frustrum clipping box having the near clipping
plane very close to the eye/camera plane (i.e., the Z=0 plane)
and establish an application program rule that no 3D ani-
mated objects should come closer to the eye/camera plane
than the near clipping plane. With the near clipping plane
placed very close to the eye/camera plane, it less likely that
objects that need to be rendered somewhat near the eye/
camera plane will come so close as to suffer the ill effects of
clipping. Unfortunately, placing the near clipping plane very
close to the eye/camera plane reduces the Z depth precision
towards the far clipping plane. This Z precision problem is
particularly exacerbated when only a limited number of
Z-buffer bits are available for depth precision. The less bits
that are available for representing a Z value, the greater the
precision problem.

If performing Z-buffering in a graphics system where a
large number a bits, for example, 24 bits or more, are
available in the hardware for representing Z-axis depth
values, Z value precision may not pose a problem. However,
in certain systems or implementations where less bits are
available for representing Z-axis depth values, lack of suf-
ficient Z value precision can seriously effect Z-buffering
performance and accuracy. For example, in certain imple-
mentations it may be desirable to perform data compression
to accommodate storage memory constraints. If Z data
compression is performed, the degree of Z precision for
providing accurate Z-buffering may be adversely affected.

The present invention also solves the above problems by
providing techniques and arrangements in a 3D graphics
rendering system for preserving Z value depth precision
when performing Z-buffering where the Z value depth data
must be compressed.

The present invention also solves the above problems by
providing techniques and arrangements in a 3D graphics
rendering system for allowing a Z-clipping plane to be used
very close to the eye/camera plane—to avoid undesirable
visual artifacts produced when objects are rendered too near
to the eye/camera plane—while preserving Z value depth
precision.

The present invention also solves the above problems by
providing techniques and arrangements in a 3D graphics
rendering system for performing Z-buffering where the Z
depth value associated with a polygon vertex is represented
using, for example, 23 bits or less.

More specifically, in an exemplary embodiment of the
present invention, a Z-clamping arrangement is employed to
improve the precision of visually important Z components
by providing Z value clamping within a predetermined range
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of the Z=0 eye/camera (viewport) plane. This arrangement
allows a Z-clipping plane to be used very close to the
eye/camera plane—to avoid undesirable visual artifacts pro-
duced when objects rendered near to the eye/camera plane
are clipped-while preserving Z precision. A near clipping
plane, “znear”, is established at a Z plane very close to the
Z=0 plane and a far clipping plane, “z-far”, is established at
a Z plane far from the Z=0 plane. A clamping plane,
“znear2”, is then established such that it is located at
Z=znear * (l<<n), where n is an integer that effectively
determines the Z resolution for the scene by setting the
position of the znear2 plane relative to the znear plane.
Z-buffering is performed for all pixels that lie within a range
between the znear2 plane and the z-far clipping plane. Any
pixels that lie within the range between the znear plane and
znear2 plane have Z values clamped, for example, to zero or
to the Z value of the clamping plane. Hardware geometry
clipping is performed for all pixels where z<znear.

In an example implementation, a conventional Z value
compression circuit provided in the graphics pipeline is
enhanced to perform Z-clamping within the predetermined
range of Z values. The enhanced circuitry includes an adder
for left-shifting the Z value one or more bits prior to
compression and gates for masking out the most significant
non-zero shifted bits to zero.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention will be better and more completely understood by
referring to the following detailed description of presently
preferred embodiments in conjunction with the drawings, of
which:

FIG. 1 is an overall view of an example interactive
computer graphics system;

FIG. 2 is a block diagram of the FIG. 1 example computer
graphics system;

FIG. 3 is a block diagram of the example graphics and
audio processor shown in FIG. 2;

FIG. 4 is a block diagram of the example 3D graphics
processor shown in FIG. 3;

FIG. § is an example logical flow diagram of the FIG. 4
graphics and audio processor;

FIG. 6 is a flow chart illustrating example steps for
implementing Z-clamping in the near Z range in accordance
with the present invention;

FIG. 7 is a diagram illustrating in screen space the near-Z
clamping arrangement of the present invention;

FIG. 8A is an example hardware logic diagram for imple-
menting Z compression in the graphics pipeline embodiment
of the present invention;

FIG. 8B is a hardware logic diagram for implementing an
example near-Z clamping arrangement in the graphics pipe-
line embodiment of the present invention; and

FIGS. 9 and 10 show example alternative compatible
implementations.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS OF THE INVENTION

FIG. 1 shows an example interactive 3D computer graph-
ics system 50. System 50 can be used to play interactive 3D
video games with interesting stereo sound. It can also be
used for a variety of other applications.

In this example, system 50 is capable of processing,
interactively in real time, a digital representation or model of
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a three-dimensional world. System 50 can display some or
all of the world from any arbitrary viewpoint. For example,
system 50 can interactively change the viewpoint in
response to real time inputs from handheld controllers 524,
52b or other input devices. This allows the game player to
see the world through the eyes of someone within or outside
of the world. System 50 can be used for applications that do
not require real time 3D interactive display (e.g., 2D display
generation and/or non-interactive display), but the capability
of displaying quality 3D images very quickly can be used to
create very realistic and exciting game play or other graphi-
cal interactions.

To play a video game or other application using system,
the user first connects a main unit 54 to his or her color
television set 56 or other display device by connecting a
cable 58 between the two. Main unit 54 produces both video
signals and audio signals for controlling color television set
56. The video signals are what controls the images displayed
on the television screen 59, and the audio signals are played
back as sound through television stereo loudspeakers 61L,
61R.

The user also needs to connect main unit 54 to a power
source. This power source may be a conventional AC
adapter (not shown) that plugs into a standard home elec-
trical wall socket and converts the house current into a lower
DC voltage signal suitable for powering the main unit 54.
Batteries could be used in other implementations.

The user may use hand controllers 52a, 52b to control
main unit 54. Controls 60 can be used, for example, to
specify the direction (up or down, left or right, closer or
further away) that a character displayed on television 56
should move within a 3D world. Controls 60 also provide
input for other applications (e.g., menu selection, pointer/
cursor control, etc.). Controllers 52 can take a variety of
forms. In this example, controllers 52 shown each include
controls 60 such as joysticks, push buttons and/or directional
switches. Controllers 52 may be connected to main unit 54
by cables or wirelessly via electromagnetic (e.g., radio or
infrared) waves.

To play an application such as a game, the user selects an
appropriate storage medium 62 storing the video game or
other application he or she wants to play, and inserts that
storage medium into a slot 64 in main unit 54. Storage
medium 62 may, for example, be a specially encoded and/or
encrypted optical and/or magnetic disk. The user may oper-
ate a power switch 66 to turn on main unit 54 and cause the
main unit to begin running the video game or other appli-
cation based on the software stored in the storage medium
62. The user may operate controllers 52 to provide inputs to
main unit 54. For example, operating a control 60 may cause
the game or other application to start. Moving other controls
60 can cause animated characters to move in different
directions or change the user’s point of view in a 3D world.
Depending upon the particular software stored within the
storage medium 62, the various controls 60 on the controller
52 can perform different functions at different times.

Example Electronics of Overall System

FIG. 2 shows a block diagram of example components of
system.
The Primary Components Include:

a main processor (CPU) 110,

a main memory 112, and

a graphics and audio processor 114.

In this example, main processor 110 (e.g., an enhanced
IBM Power PC 750) receives inputs from handheld control-
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lers 108 (and/or other input devices) via graphics and audio
processor 114. Main processor 110 interactively responds to
user inputs, and executes a video game or other program
supplied, for example, by external storage media 62 via a
mass storage access device 106 such as an optical disk drive.
As one example, in the context of video game play, main
processor 110 can perform collision detection and animation
processing in addition to a variety of interactive and control
functions.

In this example, main processor 110 generates 3D graph-
ics and audio commands and sends them to graphics and
audio processor 114. The graphics and audio processor 114
processes these commands to generate interesting visual
images on display 59 and interesting stereo sound on stereo
loudspeakers 61R, 61L or other suitable sound-generating
devices.

Example system includes a video encoder 120 that
receives image signals from graphics and audio processor
114 and converts the image signals into analog and/or digital
video signals suitable for display on a standard display
device such as a computer monitor or home color television
set 56. System 50 also includes an audio codec (compressor/
decompressor) 122 that compresses and decompresses digi-
tized audio signals and may also convert between digital and
analog audio signaling formats as needed. Audio codec 122
can receive audio inputs via a buffer 124 and provide them
to graphics and audio processor 114 for processing (e.g.,
mixing with other audio signals the processor generates
and/or receives via a streaming audio output of mass storage
access device 106). Graphics and audio processor 114 in this
example can store audio related information in an audio
memory 126 that is available for audio tasks. Graphics and
audio processor 114 provides the resulting audio output
signals to audio codec 122 for decompression and conver-
sion to analog signals (e.g., via buffer amplifiers 128L,
128R) so they can be reproduced by loudspeakers 61L, 61R.

Graphics and audio processor 114 has the ability to
communicate with various additional devices that may be
present within system 50. For example, a parallel digital bus
130 may be used to communicate with mass storage access
device 106 and/or other components. A serial peripheral bus
132 may communicate with a variety of peripheral or other
devices including, for example:

a programmable read-only memory and/or real time clock

134,

a modem 136 or other networking interface (which may
in turn connect system 50 to a telecommunications
network 138 such as the Internet or other digital
network from/to which program instructions and/or
data can be downloaded or uploaded), and

flash memory 140.

A further external serial bus 142 may be used to commu-
nicate with additional expansion memory 144 (e.g., a
memory card) or other devices. Connectors may be used to
connect various devices to busses 130, 132, 142.

Example Graphics And Audio Processor

FIG. 3 is a block diagram of an example graphics and
audio processor 114. Graphics and audio processor 114 in
one example may be a single-chip ASIC (application spe-
cific integrated circuit). In this example, graphics and audio
processor 114 includes:

a processor interface 150,

a memory interface/controller 152,

a 3D graphics processor 154,

an audio digital signal processor (DSP) 156,
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an audio memory interface 158,

an audio interface and mixer 160,

a peripheral controller 162, and

a display controller 164.

3D graphics processor 154 performs graphics processing
tasks. Audio digital signal processor 156 performs audio
processing tasks. Display controller 164 accesses image
information from main memory 112 and provides it to video
encoder 120 for display on display device 56. Audio inter-
face and mixer 160 interfaces with audio codec 122, and can
also mix audio from different sources (e.g., streaming audio
from mass storage access device 106, the output of audio
DSP 156, and external audio input received via audio codec
122). Processor interface 150 provides a data and control
interface between main processor 110 and graphics and
audio processor 114.

Memory interface 152 provides a data and control inter-
face between graphics and audio processor 114 and memory
112. In this example, main processor 110 accesses main
memory 112 via processor interface 150 and memory inter-
face 152 that are part of graphics and audio processor 114.
Peripheral controller 162 provides a data and control inter-
face between graphics and audio processor 114 and the
various peripherals mentioned above. Audio memory inter-
face 158 provides an interface with audio memory 126.

Example Graphics Pipeline

FIG. 4 shows a more detailed view of an example 3D
graphics processor 154. 3D graphics processor 154 includes,
among other things, a command processor 200 and a 3D
graphics pipeline 180. Main processor 10 communicates
streams of data (e.g., graphics command streams and display
lists) to command processor 200. Main processor 110 has a
two-level cache 115 to minimize memory latency, and also
has a write-gathering buffer 111 for un-cached data streams
targeted for the graphics and audio processor 114. The
write-gathering buffer 111 collects partial cache lines into
full cache lines and sends the data out to the graphics and
audio processor 114 one cache line at a time for maximum
bus usage.

Command processor 200 receives display commands
from main processor 110 and parses them—obtaining any
additional data necessary to process them from shared
memory 112. The command processor 200 provides a stream
of vertex commands to graphics pipeline 180 for 2D and/or
3D processing and rendering. Graphics pipeline 180 gener-
ates images based on these commands. The resulting image
information may be transferred to main memory 112 for
access by display controller/video interface unit 164—
which displays the frame buffer output of pipeline 180 on
display 56.

FIG. § is a logical flow diagram of graphics processor
154. Main processor 110 may store graphics command
streams 210, display lists 212 and vertex arrays 214 in main
memory 112, and pass pointers to command processor 200
via bus interface 150. The main processor 110 stores graph-
ics commands in one or more graphics first-in-first-out
(FIFO) buffers 210 it allocates in main memory 110. The
command processor 200 fetches:

command streams from main memory 112 via an on-chip

FIFO memory buffer 216 that receives and buffers the
graphics commands for synchronization/flow control
and load balancing,

display lists 212 from main memory 112 via an on-chip

call FIFO memory buffer 218, and

vertex attributes from the command stream and/or from

vertex arrays 214 in main memory 112 via a vertex
cache 220.
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Command processor 200 performs command processing
operations 2004 that convert attribute types to floating point
format, and pass the resulting complete vertex polygon data
to graphics pipeline 180 for rendering/rasterization. A pro-
grammable memory arbitration circuitry 130 (see FIG. 4)
arbitrates access to shared main memory 112 between graph-
ics pipeline 180, command processor 200 and display
controller/video interface unit 164.

FIG. 4 shows that graphics pipeline 180 may include:

a transform unit 300,

a setup/rasterizer 400,

a texture unit 500,

a texture environment unit 600, and

a pixel engine 700.

Transform unit 300 performs a variety of 2D and 3D
transform and other operations 300z (see FIG. 5). Transform
unit 300 may include one or more matrix memories 3005 for
storing matrices used in transformation processing 300a.
Transform unit 300 transforms incoming geometry per ver-
tex from object space to screen space; and transforms
incoming texture coordinates and computes projective tex-
ture coordinates (300c). Transform unit 300 performs poly-
gon clipping/culling (3004). Lighting processing 300e, also
performed by transform unit 300, provides per vertex light-
ing computations for up to eight independent lights in one
example embodiment. Transform unit 300 may also perform
texture coordinate generation (300c¢) for emboss-style bump
mapping effects. Also, as discussed later herein in greater
detail, Transform unit 300 performs depth (Z value) com-
pression and clamping.

Setup/rasterizer 400 includes a setup unit which receives
vertex data from transform unit 300 and sends triangle setup
information to one or more rasterizer units (400b) perform-
ing edge rasterization, texture coordinate rasterization and
color rasterization.

Texture unit 500 (which may include an on-chip texture
memory (TMEM) 502) performs various tasks related to
texturing including for example:

retrieving textures 504 from main memory 112,

texture processing (5004) including, for example, multi-

texture handling, post-cache texture decompression,
texture filtering, embossing, shadows and lighting
through the use of projective textures, and BLIT with
alpha transparency and depth,

bump map processing for computing texture coordinate

displacements for bump mapping, pseudo texture and
texture tiling effects (500b), and

indirect texture processing (500c).

Texture unit 500 performs texture processing using both
regular (non-indirect) and indirect texture lookup opera-
tions. A more detailed description of the example graphics
pipeline circuitry and procedures for performing regular and
indirect texture look-up operations is disclosed in commonly
assigned co-pending patent application, Ser. No. 09/722,
382, entitled “Method And Apparatus For Direct And Indi-
rect Texture Processing In A Graphics System” and its
corresponding provisional application, Ser. No. 60/226,891,
filed Aug. 23, 2000, both of which are incorporated herein
by reference.

Texture unit 500 outputs filtered texture values to the
Texture Environment Unit 600 for texture environment
processing (600a). Texture environment unit 600 blends
polygon and texture color/alpha/depth, and can also perform
texture fog processing (600b) to achieve inverse range based
fog effects. Texture environment unit 600 can provide mul-
tiple stages to perform a variety of other interesting
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environment-related functions based for example on color/
alpha modulation, embossing, detail texturing, texture
swapping, clamping, and depth blending. Texture environ-
ment unit 600 can also combine (e.g., subtract) textures in
hardware in one pass. For more details concerning the
texture environment unit 600, see commonly assigned appli-
cation Ser. No. 09/722,367 entitled “Recirculating Shade
Tree Blender for a Graphics System™ and its corresponding
provisional application, No. 60/226,888, filed Aug. 23,
2000, both of which are incorporated herein by reference.

Pixel engine 700 performs depth (Z value) compare
(7004) and pixel blending (700b). In this example, pixel
engine 700 stores data into an embedded (on-chip) frame
buffer memory 702. Graphics pipeline 180 may include one
or more embedded DRAM memories 702 to store frame
buffer and/or texture information locally. Z value depth
compares 700a' can also be performed at an earlier stage in
the graphics pipeline 180 depending on the rendering mode
currently in effect (e.g., Z value compares can be performed
earlier if alpha blending is not required). The pixel engine
700 includes a copy operation 700c that periodically writes
on-chip frame buffer 702 to main memory 112 for access by
display/video interface unit 164. This copy operation 700¢
can also be used to copy embedded frame buffer 702
contents to textures in the main memory 112 for dynamic
texture synthesis effects.

In this example graphics system, Anti-aliasing and other
filtering can be also performed during the copy-out opera-
tion. For more details concerning anti-aliasing see provi-
sional application No. 60/226,900, filed Aug. 23, 2000 and
its corresponding utility application Ser. No. 09/726,226,
filed Nov. 28, 2000, both entitled “Method And Apparatus
For Anti-Aliasing In A Graphics System”, both of which are
incorporated herein by reference.

The frame buffer output of graphics pipeline 180 (which
is ultimately stored in main memory 112) is read each frame
by display/video interface unit 164. Display controller/video
interface 164 provides digital RGB pixel values for display
on display 102.

Example Z-Clamping Arrangement

A Z-clamping arrangement is used to improve the preci-
sion of the visually important Z-axis (depth) attributes of
rendered scene components by clamping to zero the Z value
of pixels that fall within a predetermined range in front of
the eye/camera (viewport) plane at Z=0. FIG. 6 illustrates an
example of the Z value clamping arrangement of the present
invention as viewed in screen space. A Z-clipping plane 201,
“znear”, is defined very close to the Z=0 eye/camera plane
202, so as to avoid undesirable visual artifacts produced
when objects are rendered too near to the eye/camera plane.
A clamping plane 203, “znear2”, is established such that
znear2 is located at a Z plane equal to znear*(1<<n), where
n is an integer that effectively determines the Z resolution for
the scene by setting the position of the znear2 plane relative
to the znear plane. A far clipping plane 204, “zfar”, is also
established at a Z plane far from the Z=0 plane. Z-buffering
is performed for all pixels that lie within a range between the
znear2 plane and the z-far clipping plane. Any pixels that lie
within the range between the znear plane and znear2 plane
have Z values clamped, for example, to zero (or to some
minimum Z value such as the Z value of the znear2 clamping
plane) and normal clipping is performed on geometry for all
pixels where z<znear.

FIG. 7 shows a flowchart of an example set of general
processing steps 301 for obtaining improved Z precision
when implementing Z-buffering in a graphics processing
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system. A “Z” depth value is generally computed or pro-
vided to the graphics rendering system as an polygon vertex
attribute, as indicated at block 302. In the Z-clamping
method of the present invention, a clipping plane “znear” is
established at a Z axis plane very close to the Z=0 plane and
another clipping plane “zfar” is established at Z axis position
far from the Z=0 plane, as indicated at block 304. A
clamping plane “znear2” is also established, as indicated at
block 306, at a Z axis plane where Z=znear2=znear *
(1<<n), where n is an integer that effectively determines the
Z resolution for the scene by setting the position of the
znear2 plane relative to the near znear plane (i.e., the farther
the znear2 plane is positioned from the znear plane, the
greater the Z-buffering resolution available for that portion
of the rendered scene that is farther from the camera/eye
plane than the znear2 plane). Normal Z-buffering is per-
formed for all pixels having Z values where znear2<Z<zfar,
as indicated at block 308. For pixels having Z values equal
to or between the znear and the znear2 clamping planes (i.e.,
where znear=Z=znear2), the Z value is clamped (e.g.,
clamped to zero or to a minimum value such as the value of
the znear2 plane) and the corresponding pixels are written to
the frame buffer in a first-to-last order, as indicated in block
310. For pixels where Z<znear, conventional geometry
clipping is performed, as indicated at block 312. In the
example graphics pipeline embodiment, most of the FIG. 7
steps are performed by clipping logic and an enhanced
Z-compression logic in Transform Unit 300, as described in
the example hardware implementation below.

Example Hardware Implementation

In example graphics pipeline 180, Transform Unit 300
includes both clipping plane logic circuitry and
Z-compression logic circuitry. Because processing anti-
aliased pixels requires more data to be stored in a limited
size Z-buffer (i.e., embedded Frame Buffer 702), the Z value
compression is performed in this example embodiment only
when full scene anti-aliasing is enabled. Such
Z-compression circuitry normally operates to compress a
computed 24 bit Z attribute value to a 16 bit value. FIG. 8A
shows example hardware logic circuitry that may be used for
providing Z compression without providing any clamping of
Z values. This example Z compression circuit essentially
comprises a priority encoder 320 and a shifter 322 which
performs compression on four 24 bit Z values, converting
them to 16 bit values.

In the example implementation of graphics pipeline 180,
a compression algorithm performs a type of reverse floating
point encoding. Whereas conventional floating point nota-
tion clumps most of the resolution towards the lower end of
the number scale, the properties of screen-space Z necessi-
tate providing most of the resolution towards the upper end
of the number scale. To accomplish such, three compression
schemes are used, with a selection between the three
schemes being based on the particular near-to-far ratio used
in the rendered scene. For example, when using ortho-
graphic projection or small far-to-near ratios, a direct linear
compression mapping is used wherein the lower eight bits
are simply stripped from the input Z value. For medium
far-to-near ratios, a floating point conversion to 16 bits using
14¢2 notation is used to represent a 24 bit Z value. This form
of compression provides an effective 15 bit resolution bits at
the near plane and a 17 bit resolution at the far plane. For
high far-to-near ratios, a floating point conversion to 16 bits
using 13e3 notation is used to represent the 24 bit Z value.
This has an effective resolution of 14 bits at the near plane
and 20 bits at the far plane.
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One straight forward simple implementation of the above
floating point conversion approach to compression involves
selecting an exponent and a shift value, then shifting the
input value down by an amount of the shift value and
appending the exponent at the high order bit position. In the
example embodiment, an exponent and shift value are
chosen by detecting the particular range of values within
which the upper bits of an input Z value fall, as indicated by
the following tables:

For 14e2 notation compression:

z [23:21] exp shift
000-011 0 9
100-101 1 8
110-110 2 7
111-111 3 7
For 13e3 notation compression:
z [23:17] exp shift
0000000-0111111 0 10
1000000-1011111 1 9
1100000-1101111 2 8
1110000-1110111 3 7
1111000-1111011 4 6
1111100-1111101 5 5
1111110-1111110 6 4
1111111-1111111 7 4

In the present example, Transform Unit 300 may use
conventional hardware clipping circuitry for programmably
setting and providing Z near and Z far clipping planes (as
well as appropriate X and Y axis clipping planes). To
implement the Z-clamping arrangement and setting a
Z-clamping plane as described above, Transform Unit 300
uses an enhanced Z-compression logic circuitry as shown in
FIG. 8B. In addition to the shifting of bits that is associated
with Z value compression, this circuit allows additional
shifting of one or more of the most significant bits (MSBs)
of the input Z value to be performed when implementing one
of the above two floating point conversion compression
schemes. As shown in FIG. 8B, this enhanced circuit
arrangement uses a priority encoder 320, a 4-bit (or smaller)
adder 324 and a shifter 322, plus AND gates (not shown) for
masking the most significant Z-value bits. The shifting of the
pre-compressed input Z value is determined by program-
mable adder 324, where “n” represents the number of
additional bit position shifts to be performed.

Other Example Compatible Implementations

Certain of the above-described system components 50
could be implemented as other than the home video game
console configuration described above. For example, one
could run graphics application or other software written for
system 50 on a platform with a different configuration that
emulates system 50 or is otherwise compatible with it. If the
other platform can successfully emulate, simulate and/or
provide some or all of the hardware and software resources
of system 50, then the other platform will be able to
successfully execute the software.

As one example, an emulator may provide a hardware
and/or software configuration (platform) that is different
from the hardware and/or software configuration (platform)
of system 50. The emulator system might include software
and/or hardware components that emulate or simulate some
or all of hardware and/or software components of the system
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for which the application software was written. For example,
the emulator system could comprise a general purpose
digital computer such as a personal computer, which
executes a software emulator program that simulates the
hardware and/or firmware of system 50.

Some general purpose digital computers (e.g., IBM or
Maclntosh personal computers and compatibles) are now
equipped with 3D graphics cards that provide 3D graphics
pipelines compliant with DirectX or other standard 3D
graphics command APIs. They may also be equipped with
stereophonic sound cards that provide high quality stereo-
phonic sound based on a standard set of sound commands.
Such multimedia-hardware-equipped personal computers
running emulator software may have sufficient performance
to approximate the graphics and sound performance of
system 50. Emulator software controls the hardware
resources on the personal computer platform to simulate the
processing, 3D graphics, sound, peripheral and other capa-
bilities of the home video game console platform for which
the game programmer wrote the game software.

FIG. 9 illustrates an example overall emulation process
using a host platform 1201, an emulator component 1303,
and a game software executable binary image provided on a
storage medium 62. Host 1201 may be a general or special
purpose digital computing device such as, for example, a
personal computer, a video game console, or any other
platform with sufficient computing power. Emulator 1303
may be software and/or hardware that runs on host platform
1201, and provides a real-time conversion of commands,
data and other information from storage medium 62 into a
form that can be processed by host 1201. For example,
emulator 1303 fetches “source” binary-image program
instructions intended for execution by system from storage
medium 62 and converts these program instructions to a
target format that can be executed or otherwise processed by
host 1201.

As one example, in the case where the software is written
for execution on a platform using an IBM PowerPC or other
specific processor and the host 1201 is a personal computer
using a different (e.g., Intel) processor, emulator 1303
fetches one or a sequence of binary-image program instruc-
tions from storage medium 62 and converts these program
instructions to one or more equivalent Intel binary-image
program instructions. The emulator 1303 also fetches and/or
generates graphics commands and audio commands
intended for processing by the graphics and audio processor
114, and converts these commands into a format or formats
that can be processed by hardware and/or software graphics
and audio processing resources available on host 1201. As
one example, emulator 1303 may convert these commands
into commands that can be processed by specific graphics
and/or or sound hardware of the host 1201 (e.g., using
standard DirectX, OpenGL and/or sound APIs).

An emulator 1303 used to provide some or all of the
features of the video game system described above may also
be provided with a graphic user interface (GUI) that sim-
plifies or automates the selection of various options and
screen modes for games run using the emulator. In one
example, such an emulator 1303 may further include
enhanced functionality as compared with the host platform
for which the software was originally intended. In the case
where particular graphics support hardware within an emu-
lator does not include the near-z processing functions shown
in FIGS. 7 and 8, the emulator designer has a choice of
either:

implementing the near-z processing functions in software

with a potential corresponding decrease in performance
depending upon the speed of the processor, or
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14
“stubbing” (i.e., ignoring) the near-z processing to pro-
vide a rendered image that may have near image
artifacts.

While the FIG. 6 flowchart may be implemented entirely
in software, entirely in hardware or by a combination of
hardware and software, the preferred embodiment performs
most of these calculations in hardware to obtain increased
speed performance and other advantages. Nevertheless, in
other implementations (e.g., where a very fast processor is
available), the computations and steps of FIG. 6 may be
implemented in software to provide similar or identical
imaging results.

FIG. 10 illustrates an emulation host system 1201 suitable
for use with emulator 1303. System 1201 includes a pro-
cessing unit 1203 and a system memory 1205. A system bus
1207 couples various system components including system
memory 1205 to processing unit 1203. System bus 1207
may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory 1207 includes read only memory (ROM) 1252 and
random access memory (RAM) 1254. A basic input/output
system (BIOS) 1256, containing the basic routines that help
to transfer information between elements within personal
computer system 1201, such as during start-up, is stored in
the ROM 1252. System 1201 further includes various drives
and associated computer-readable media. A hard disk drive
1209 reads from and writes to a (typically fixed) magnetic
hard disk 1211. An additional (possible optional) magnetic
disk drive 1213 reads from and writes to a removable
“floppy” or other magnetic disk 1215. An optical disk drive
1217 reads from and, in some configurations, writes to a
removable optical disk 1219 such as a CD ROM or other
optical media. Hard disk drive 1209 and optical disk drive
1217 are connected to system bus 1207 by a hard disk drive
interface 1221 and an optical drive interface 1225, respec-
tively. The drives and their associated computer-readable
media provide nonvolatile storage of computer-readable
instructions, data structures, program modules, game pro-
grams and other data for personal computer system 1201. In
other configurations, other types of computer-readable
media that can store data that is accessible by a computer
(e.g., magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories
(RAMs), read only memories (ROMs) and the like) may also
be used.

A number of program modules including emulator 1303
may be stored on the hard disk 1211, removable magnetic
disk 1215, optical disk 1219 and/or the ROM 1252 and/or
the RAM 1254 of system memory 1205. Such program
modules may include an operating system providing graph-
ics and sound APIs, one or more application programs, other
program modules, program data and game data. A user may
enter commands and information into personal computer
system 1201 through input devices such as a keyboard 1227,
pointing device 1229, microphones, joysticks, game
controllers, satellite dishes, scanners, or the like. These and
other input devices can be connected to processing unit 1203
through a serial port interface 1231 that is coupled to system
bus 1207, but may be connected by other interfaces, such as
a parallel port, game port Fire wire bus or a universal serial
bus (USB). A monitor 1233 or other type of display device
is also connected to system bus 1207 via an interface, such
as a video adapter 1235.

System 1201 may also include a modem 1154 or other
network interface means for establishing communications
over a network 1152 such as the Internet. Modem 1154,
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which may be internal or external, is connected to system
bus 123 via serial port interface 1231. A network interface
1156 may also be provided for allowing system 1201 to
communicate with a remote computing device 1150 (e.g.,
another system 1201) via a local area network 1158 (or such
communication may be via wide area network 1152 or other
communications path such as dial-up or other communica-
tions means). System 1201 will typically include other
peripheral output devices, such as printers and other stan-
dard peripheral devices.

In one example, video adapter 1235 may include a 3D
graphics pipeline chip set providing fast 3D graphics ren-
dering in response to 3D graphics commands issued based
on a standard 3D graphics application programmer interface
such as Microsoft’s DirectX 7.0 or other version. A set of
stereo loudspeakers 1237 is also connected to system bus
1207 via a sound generating interface such as a conventional
“sound card” providing hardware and embedded software
support for generating high quality stereophonic sound
based on sound commands provided by bus 1207. These
hardware capabilities allow system 1201 to provide suffi-
cient graphics and sound speed performance to play soft-
ware stored in storage medium 62.

All documents referenced above are hereby incorporated
by reference.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the scope
of the appended claims.

We claim:

1. In a 3D graphics rendering system, a method of
performing Z buffering, comprising:

establishing a first clipping plane, znear, at a Z-axis

position very near to the Z=0 plane and a second
clipping plane, zfar, at a Z-axis position very far from
the z=0 plane;

establishing a Z-axis value clamping plane, znear2, at

z=znear2=znear*(1<<n), wherein “n” is a predeter-
mined integer value that sets a position of the znear2
clamping plane relative to the znear plane and effec-
tively provides a predetermined z value resolution for
a portion of a rendered scene that lies between the
znear2 plane and the zfar plane;

performing conventional Z-buffering for pixels having z

values where znear2<z<zfar; and

clamping z values to a predetermined value for pixels

where znear=z=znear2, wherein pixel data corre-
sponding to clamped z values is written to a display
frame buffer in a first to last rendered order.

2. The graphics system of claim 1 wherein the predeter-
mined value for clamped Z values is zero.
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3. In a 3D graphics rendering system including a proces-
sor and a separate graphics processing pipeline having
transformation and lighting circuitry, the pipeline perform-
ing Z buffering, an arrangement included within the graphics
pipeline for providing Z value compression and selectable Z
value clamping, comprising:

a priority encoder and a shifter, wherein said priority

encoder provides a shift value to said shifter for per-
forming a binary value compression operation; and

an adder including bit masking circuitry, said adder con-
nected between the priority encoder and the shifter,

wherein said adder is used to selectably increase a shift
value provided by the priority encoder to said shifter
during a Z value compression operation to effectively
clamp Z values within a selectable predetermined
range.

4. The graphics system of claim 3 wherein said predeter-
mined Z value is zero.

5. The graphics system of claim 3 wherein said predeter-
mined range of Z values is determined by a Z clipping plane,
znear, defined at a predetermined Z-axis position very near
to the z=0 plane and a Z clamping plane, znear2, defined at
z=znear2=znear*(1<<n), where “n” is equal to an integer
value indicative of a selected increase in shift value provided
to said priority encoder.

6. In a 3D graphics rendering system including a proces-
sor and a separate graphics processing pipeline, the pipeline
performing full scene anti-aliasing with Z-value
compression, a method for selectably setting a predeter-
mined Z value resolution for a portion of a rendered scene,
comprising:

shifting a binary Z-value one or more bit positions prior

to performing Z value compression, wherein the
amount of shifting determines a range of Z values near
a Z=0 plane for which Z values are clamped to a
predetermined value.

7. In a graphics processing system that renders and
displays images at least in part in response to polygon vertex
attribute data including Z-value binary data stored in an
associated memory, a Z value compression processing cir-
cuit portion embodied in hardware, comprising:

a priority encoder,
a shifter, and

an adder connected between the priority encoder and the
shifter, wherein the adder may be used to selectably
increase a value provided by said priority encoder to
said shifter for shifting the Z-value binary data an
additional predetermined number of bit positions dur-
ing a compression operation to effectuate a clamping of
Z values that are within a predetermined range of Z
values to a predetermined value.



