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(57) ABSTRACT 

A graphics system including a custom graphics and audio 
processor produces exciting 2D and 3D graphics and sur 
round sound. The system includes a graphics and audio 
processor including a 3D graphics pipeline and an audio 
digital signal processor. Improved fog simulation is pro 
vided by enabling backwards exponential and backwards 
exponential squared fog density functions to be used in the 
fog calculation. Improved exponential and exponential 
squared fog density functions are also provided Which 
provide the ability to program a fog start value. A range 
adjustment function is used to adjust fog based on the X 
position of the pixels being rendered, thereby preventing 
range error as the line of sight moves aWay from the Z axis. 
An exemplary Fog Calculation Unit, as Well as exemplary 
fog control functions and fog related registers, are also 
disclosed. 

20 Claims, 11 Drawing Sheets 
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METHOD AND APPARATUS FOR 
PROVIDING IMPROVED FOG EFFECTS IN 

A GRAPHICS SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is ?led in accordance With 35 U.S.C. 
§119(e)(1) and claims the bene?t of the provisional appli 
cation Ser. No. 60/227,032 ?led on Aug. 23, 2000, entitled 
“Method And Apparatus For Providing Improved Fog 
Effects In A Graphics System.” 

This application is related to the following applications 
identi?ed beloW, Which focus on various aspects of the 
graphics system described herein. Each of the folloWing 
applications are hereby incorporated herein by reference. 

provisional Application No. 60/161,915, ?led Oct. 28, 
1999 and its corresponding utility application Ser. No. 
09/465,754, ?led Dec. 17, 1999, both entitled “Vertex 
Cache For 3D Computer Graphics”, 

provisional Application No. 60/226,912, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/726,215, ?led Nov. 28, 2000, both entitled “Method 
and Apparatus for Buffering Graphics Data in a Graph 
ics System”, 

provisional Application No. 60/226,889, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,419, ?led Nov. 28, 2000, both entitled “Graph 
ics Pipeline Token Synchronization”, 

provisional Application No. 60/226,891, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,382, ?led Nov. 28, 2000, both entitled “Method 
And Apparatus For Direct and Indirect Texture Pro 
cessing In A Graphics System”, 

provisional Application No. 60/226,888, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,367, ?led Nov. 28, 2000, both entitled “Recir 
culating Shade Tree Blender For A Graphics System”, 

provisional Application No. 60/226,892, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/726,218, ?led Nov. 28, 2000, both entitled “Method 
And Apparatus For Ef?cient Generation Of Texture 
Coordinate Displacements For Implementing Emboss 
Style Bump Mapping In A Graphics Rendering 
System”, 

provisional Application No. 60/226,893, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,381, ?led Nov. 28, 2000, both entitled “Method 
And Apparatus For Environment-Mapped Bump 
Mapping In A Graphics System”, 

provisional Application No. 60/227,007, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/726,216, ?led Nov. 28, 2000, both entitled “Achro 
matic Lighting in a Graphics System and Method”, 

provisional Application No. 60/226,900, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/726,226, ?led Nov. 28, 2000, both entitled “Method 
And Apparatus For Anti-Aliasing In A Graphics 
System”, 

provisional Application No. 60/226,910, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,380, ?led Nov. 28, 2000, both entitled “Graph 
ics System With Embedded Frame Buffer Having 
Recon?gurable Pixel Formats”, 

utility application Ser. No. 09/585,329, ?led Jun. 2, 2000, 
entitled “Variable Bit Field Color Encoding”, 
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provisional Application No. 60/226,890, ?led Aug. 23, 

2000 and its corresponding utility application Ser. No. 
09/726,227, ?led Nov. 28, 2000, both entitled “Method 
And Apparatus For Dynamically Recon?guring The 
Order Of Hidden Surface Processing Based On Ren 
dering Mode”, 

provisional Application No. 60/226,915, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/726,210, ?led Nov. 28, 2000, both entitled “Method 
And Apparatus For Providing Non-Photorealistic Car 
toon Outlining Within A Graphics System”, 

provisional Application No. 60/226,885, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
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troller Interface For A Graphics System”, 

provisional Application No. 60/227,033, ?led Aug. 23, 
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2000 and its corresponding utility application Ser. No. 
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2000 entitled “Application Program Interface for a 
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Embedded Frame Buffer And Main Memory”, 
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provisional Application No. 60/226,914, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,390, ?led Nov. 28, 2000, both entitled “LoW 
Cost Graphics System With Stitching HardWare Sup 
port For Skeletal Animation”, and 

provisional Application No. 60/227,006, ?led Aug. 23, 
2000 and its corresponding utility application Ser. No. 
09/722,421, ?led Nov. 28, 2000, both entitled “ShadoW 
Mapping In A LoW Cost Graphics System”. 

FIELD OF THE INVENTION 

The present invention relates to computer graphics, and 
more particularly to interactive graphics systems such as 
home video game platforms. Still more particularly this 
invention relates to a system and method for providing 
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improved fog effects in interactive three dimensional (3D) 
graphics systems. 

BACKGROUND AND SUMMARY OF THE 
INVENTION 

Many of us have seen ?lms containing remarkably real 
istic dinosaurs, aliens, animated toys and other fanciful 
creatures. Such animations are made possible by computer 
graphics. Using such techniques, a computer graphics artist 
can specify hoW each object should look and hoW it should 
change in appearance over time, and a computer then models 
the objects and displays them on a display such as your 
television or a computer screen. The computer takes care of 
performing the many tasks required to make sure that each 
part of the displayed image is colored and shaped just right 
based on the position and orientation of each object in a 
scene, the direction in Which light seems to strike each 
object, the surface texture of each object, and other factors. 

Because computer graphics generation is complex, 
computer-generated three-dimensional graphics just a feW 
years ago Were mostly limited to expensive specialiZed ?ight 
simulators, high-end graphics Workstations and supercom 
puters. The public saW some of the images generated by 
these computer systems in movies and expensive television 
advertisements, but most of us couldn’t actually interact 
With the computers doing the graphics generation. All this 
has changed With the availability of relatively inexpensive 
3D graphics platforms such as, for example, the Nintendo 
64® and various 3D graphics cards noW available for 
personal computers. It is noW possible to interact With 
exciting 3D animations and simulations on relatively inex 
pensive computer graphics systems in your home or of?ce. 
A problem graphics system designers confronted in the 

past Was to improve realism of the graphic system by closer 
modeling of the 3D virtual World in the graphics system to 
the real World. One problem With graphics systems is that 
they do not automatically take into account the effect that 
fog and other similar atmospheric conditions create in the 
real World. In other Words, computer graphics images having 
a distinctive crystal clear quality throughout the image can 
appear unrealistic as compared to the real World. In the real 
World, far aWay objects look less clear to the vieWer than do 
close objects. This difference in clarity results from the fact 
that fog, smog, mist, smoke, pollution and/or haZe (hereafter 
simply “fog”) can exist in the atmosphere betWeen the 
vieWer and the object being vieWed. As a result, the mol 
ecules making up the fog de?ect light, thereby causing 
clarity of an object to be reduced as the distance from the 
vieWer to the object increases. For example, in the real 
World, fog causes a tree that is close to a person to look 
clearer to that person than Will a tree that is far aWay from 
that same person. 

In contrast, in the virtual World of a computer graphics 
system, objects Will all have the same clarity unless a 
mechanism is employed in the graphics system to simulate 
the effects of fog. Various solutions to this problem Were 
offered. For example, many graphics systems have provided 
functions and techniques for incorporating atmospheric 
effects, such as fog, into a rendered scene in order to provide 
a more realistic vieW of the virtual World. For instance, the 
OpenGL graphics system, Which provides a commonly used 
softWare interface to graphics hardWare, enables a program 
mer to render atmospheric fog effects. OpenGL implements 
fogging by blending fog color With incoming fragments 
using a fog blending factor (f), as folloWs: 
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This blending factor is computer using one of the folloW 

ing three equations: 

Exponential (GLiEXP): f=e’(dE”S”y‘Z) 1) 

Exponential-squared (GLiEXPZ): f=ei(d?”s”y'z)‘ '2 2) 

Linear (GLiLINEAR): f=(end—z)/(end—start) 3) 

Where Z is the eye-coordinate distance betWeen the vieW 
point and the fragment center. The values for density, start 
and end are all speci?ed the programmer using a particular 
function (i.e. glfog*( 

Linear fog is frequently used to, for example, implement 
intensity depth-cuing in Which objects closer to the vieWer 
are draWn at a higher intensity. The effect of intensity as a 
function of distance is achieved by blending the incoming 
fragments With a black fog color. The exponential fog 
equation has some physical basis; it is the result of integrat 
ing a uniform attenuation betWeen the object and the vieWer. 
The exponential function can be used to, for example, 
represent a number of atmospheric effects using different 
combinations of fog colors and fog density values. By using 
fog, the obscured visibility of objects near the far plane can 
be exploited to overcome various problems such as draWing 
time overruns, level-of-detail transition, and database pag 
ing. HoWever, in practice it has been found that the expo 
nential function does not attenuate distant fragments rapidly 
enough. Thus, the exponential-squared fog Was introduced 
in OpenGlL to provide a sharper fall-off in visibility. The 
Direct3D (DirectX) interface to graphics hardWare also 
provides linear, exponential and exponential squared for 
density equations. 
As explained above, various fog mechanisms have been 

employed in the past in order to make a 3D graphics image 
appear more natural and realistic. HoWever, While signi? 
cant Work has been done in the past, further improvements 
in connection With fog simulation are desirable. 
The present invention solves this problem by providing 

improved techniques and arrangements that further enhance 
the use of fog in graphics systems. The instant invention 
provides improved fog functions that enable neW, interesting 
and visually enjoyable effects to be achieved in a graphics 
system. Additionally, the instant invention provides the 
ability to provide a horiZontal range adjustment for the fog, 
thereby increasing the fog density toWards the edges of the 
screen in order to make the effect more realistic. The 
invention further provides a method of sampling fog or 
screen space Z for a normal quad and Z blit is quad, When 
only one fog value is de?ned per quad. An exemplary fog 
calculation unit is also provided for implementing fog in 
accordance With the instant invention. 

In accordance With one aspect provided by the invention, 
a method and system for simulating fog in a graphics system 
is provided Which includes, obtaining a pixel color for a 
pixel, and blending a fog color With the pixel color, Wherein 
the percentage of fog color blended With the pixel color is 
determined based on one of the folloWing tWo fog density 
functions: 

FOg=2is~(zEiz0)/z1iz0) (Backwards Exponential) 

FOg=2is (Ze*ZU)/Z1*ZD) 2 (Backwards ExponentmlSquared) 

Wherein Ze is an eye-space Z value of the pixel, Z0 is an 
eye-space Z value at Which fog begins, and Z1 is an 
eye-space Z value at Which fog density substantially 
reaches a maximum value. 

A range adjustment is preferably made to the eye-space Z 
value (Ze) prior to applying the fog density function in order 
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to compensate for the change in range as the viewing angle 
increases in the X direction aWay from the Z axis. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features and advantages provided by the 
invention Will be better and more completely understood by 
referring to the folloWing detailed description of presently 
preferred embodiments in conjunction With the draWings, of 
Which: 

FIG. 1 is an overall vieW of an example interactive 
computer graphics system; 

FIG. 2 is a block diagram of the FIG. 1 example computer 
graphics system; 

FIG. 3 is a block diagram of the example graphics and 
audio processor shoWn in FIG. 2; 

FIG. 4 is a block diagram of the example 3D graphics 
processor shoWn in FIG. 3; 

FIG. 5 is an example logical flow diagram of the FIG. 4 
graphics and audio processor; 

FIG. 6a shoWs a conventional linear fog curve; 
FIGS. 6b—6e shoW exemplary exponential, exponential 

squared, reverse exponential and reverse exponential 
squared fog curves, respectively, in accordance With the 
instant invention; 

FIG. 7 is a graph demonstrating the increasing fog error 
that results When no horiZontal range adjustment is used; 

FIG. 8 is an exemplary fog compensation function that 
can be used to correct the error shoWn in FIG. 7; 

FIG. 9, is an exemplary embodiment of a fog calculation 
unit for calculating fog in accordance With the instant 
invention; and 

FIGS. 10A and 10B shoW example alternative compatible 
implementations. 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS OF THE INVENTION 

FIG. 1 shoWs an example interactive 3D computer graph 
ics system 50. System 50 can be used to play interactive 3D 
video games With interesting stereo sound. It can also be 
used for a variety of other applications. 

In this example, system 50 is capable of processing, 
interactively in real time, a digital representation or model of 
a three-dimensional World. System 50 can display some or 
all of the World from any arbitrary vieWpoint. For example, 
system 50 can interactively change the vieWpoint in 
response to real time inputs from handheld controllers 52a, 
52b or other input devices. This alloWs the game player to 
see the World through the eyes of someone Within or outside 
of the World. System 50 can be used for applications that do 
not require real time 3D interactive display (e.g., 2D display 
generation and/or non-interactive display), but the capability 
of displaying quality 3D images very quickly can be used to 
create very realistic and exciting game play or other graphi 
cal interactions. 

To play a video game or other application using system 
50, the user ?rst connects a main unit 54 to his or her color 
television set 56 or other display device by connecting a 
cable 58 betWeen the tWo. Main unit 54 produces both video 
signals and audio signals for controlling color television set 
56. The video signals are What controls the images displayed 
on the television screen 59, and the audio signals are played 
back as sound through television stereo loudspeakers 61L, 
61R. 

The user also needs to connect main unit 54 to a poWer 
source. This poWer source may be a conventional AC 
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adapter (not shoWn) that plugs into a standard home elec 
trical Wall socket and converts the house current into a loWer 
DC voltage signal suitable for poWering the main unit 54. 
Batteries could be used in other implementations. 
The user may use hand controllers 52a, 52b to control 

main unit 54. Controls 60 can be used, for example, to 
specify the direction (up or doWn, left or right, closer or 
further aWay) that a character displayed on television 56 
should move Within a 3D World. Controls 60 also provide 
input for other applications (e.g., menu selection, pointer/ 
cursor control, etc.). Controllers 52 can take a variety of 
forms. In this example, controllers 52 shoWn each include 
controls 60 such as joysticks, push buttons and/or directional 
sWitches. Controllers 52 may be connected to main unit 54 
by cables or Wirelessly via electromagnetic (e.g., radio or 
infrared) Waves. 

To play an application such as a game, the user selects an 
appropriate storage medium 62 storing the video game or 
other application he or she Wants to play, and inserts that 
storage medium into a slot 64 in main unit 54. Storage 
medium 62 may, for example, be a specially encoded and/or 
encrypted optical and/or magnetic disk. The user may oper 
ate a poWer sWitch 66 to turn on main unit 54 and cause the 
main unit to begin running the video game or other appli 
cation based on the softWare stored in the storage medium 
62. The user may operate controllers 52 to provide inputs to 
main unit 54. For example, operating a control 60 may cause 
the game or other application to start. Moving other controls 
60 can cause animated characters to move in different 
directions or change the user’s point of vieW in a 3D World. 
Depending upon the particular softWare stored Within the 
storage medium 62, the various controls 60 on the controller 
52 can perform different functions at different times. 

Example Electronics of Overall System 

FIG. 2 shoWs a block diagram of example components of 
system 50. The primary components include: 

a main processor (CPU) 110, 
a main memory 112, and 
a graphics and audio processor 114. 
In this example, main processor 110 (e.g., an enhanced 

IBM PoWer PC 750) receives inputs from handheld control 
lers 108 (and/or other input devices) via graphics and audio 
processor 114. Main processor 110 interactively responds to 
user inputs, and executes a video game or other program 
supplied, for example, by external storage media 62 via a 
mass storage access device 106 such as an optical disk drive. 
As one example, in the context of video game play, main 
processor 110 can perform collision detection and animation 
processing in addition to a variety of interactive and control 
functions. 

In this example, main processor 110 generates 3D graph 
ics and audio commands and sends them to graphics and 
audio processor 114. The graphics and audio processor 114 
processes these commands to generate interesting visual 
images on display 59 and interesting stereo sound on stereo 
loudspeakers 61R, 61L or other suitable sound-generating 
devices. 
Example system 50 includes a video encoder 120 that 

receives image signals from graphics and audio processor 
114 and converts the image signals into analog and/or digital 
video signals suitable for display on a standard display 
device such as a computer monitor or home color television 
set 56. System 50 also includes an audio codec (compressor/ 
decompressor) 122 that compresses and decompresses digi 
tiZed audio signals and may also convert betWeen digital and 
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analog audio signaling formats as needed. Audio codec 122 
can receive audio inputs via a buffer 124 and provide them 
to graphics and audio processor 114 for processing (e.g., 
mixing With other audio signals the processor generates 
and/or receives via a streaming audio output of mass storage 
access device 106). Graphics and audio processor 114 in this 
example can store audio related information in an audio 
memory 126 that is available for audio tasks. Graphics and 
audio processor 114 provides the resulting audio output 
signals to audio codec 122 for decompression and conver 
sion to analog signals (e.g., via buffer ampli?ers 128L, 
128R) so they can be reproduced by loudspeakers 61L, 61R. 

Graphics and audio processor 114 has the ability to 
communicate With various additional devices that may be 
present Within system 50. For example, a parallel digital bus 
130 may be used to communicate With mass storage access 
device 106 and/or other components. A serial peripheral bus 
132 may communicate With a variety of peripheral or other 
devices including, for example: 

a programmable read-only memory and/or real time clock 
134, 

a modem 136 or other netWorking interface (Which may 
in turn connect system 50 to a telecommunications 
netWork 138 such as the Internet or other digital 
netWork from/to Which program instructions and/or 
data can be doWnloaded or uploaded), and 

?ash memory 140. 
A further external serial bus 142 may be used to communi 
cate With additional expansion memory 144 (e.g., a memory 
card) or other devices. Connectors may be used to connect 
various devices to busses 130, 132, 142. 

Example Graphics and Audio Processor 

FIG. 3 is a block diagram of an example graphics and 
audio processor 114. Graphics and audio processor 114 in 
one example may be a single-chip ASIC (application spe 
ci?c integrated circuit). In this example, graphics and audio 
processor 114 includes: 

a processor interface 150, 

a memory interface/controller 152, 
a 3D graphics processor 154, 
an audio digital signal processor (DSP) 156, 
an audio memory interface 158, 
an audio interface and mixer 160, 

a peripheral controller 162, and 
a display controller 164. 
3D graphics processor 154 performs graphics processing 

tasks. Audio digital signal processor 156 performs audio 
processing tasks. Display controller 164 accesses image 
information from main memory 112 and provides it to video 
encoder 120 for display on display device 56. Audio inter 
face and mixer 160 interfaces With audio codec 122, and can 
also mix audio from different sources (e.g., streaming audio 
from mass storage access device 106, the output of audio 
DSP 156, and external audio input received via audio codec 
122). Processor interface 150 provides a data and control 
interface betWeen main processor 110 and graphics and 
audio processor 114. 
Memory interface 152 provides a data and control inter 

face betWeen graphics and audio processor 114 and memory 
112. In this example, main processor 110 accesses main 
memory 112 via processor interface 150 and memory inter 
face 152 that are part of graphics and audio processor 114. 
Peripheral controller 162 provides a data and control inter 
face betWeen graphics and audio processor 114 and the 
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various peripherals mentioned above. Audio memory inter 
face 158 provides an interface With audio memory 126. 

Example Graphics Pipeline 

FIG. 4 shoWs a more detailed vieW of an example 3D 
graphics processor 154. 3D graphics processor 154 includes, 
among other things, a command processor 200 and a 3D 
graphics pipeline 180. Main processor 110 communicates 
streams of data (e.g., graphics command streams and display 
lists) to command processor 200. Main processor 110 has a 
tWo-level cache 115 to minimiZe memory latency, and also 
has a Write-gathering buffer 111 for uncached data streams 
targeted for the graphics and audio processor 114. The 
Write-gathering buffer 111 collects partial cache lines into 
full cache lines and sends the data out to the graphics and 
audio processor 114 one cache line at a time for maximum 
bus usage. 
Command processor 200 receives display commands 

from main processor 110 and parses them—obtaining any 
additional data necessary to process them from shared 
memory 112. The command processor 200 provides a stream 
of vertex commands to graphics pipeline 180 for 2D and/or 
3D processing and rendering. Graphics pipeline 180 gener 
ates images based on these commands. The resulting image 
information may be transferred to main memory 112 for 
access by display controller/video interface unit 164— 
Which displays the frame buffer output of pipeline 180 on 
display 56. 

FIG. 5 is a logical flow diagram of graphics processor 
154. Main processor 110 may store graphics command 
streams 210, display lists 212 and vertex arrays 214 in main 
memory 112, and pass pointers to command processor 200 
via bus interface 150. The main processor 110 stores graph 
ics commands in one or more graphics ?rst-in-?rst-out 
(FIFO) buffers 210 it allocates in main memory 110. The 
command processor 200 fetches: 

command streams from main memory 112 via an on-chip 
FIFO memory buffer 216 that receives and buffers the 
graphics commands for synchronization/?ow control 
and load balancing, 

display lists 212 from main memory 112 via an on-chip 
call FIFO memory buffer 218, and 

vertex attributes from the command stream and/or from 
vertex arrays 214 in main memory 112 via a vertex 
cache 220. 

Command processor 200 performs command processing 
operations 200a that convert attribute types to ?oating point 
format, and pass the resulting complete vertex polygon data 
to graphics pipeline 180 for rendering/rasteriZation. A pro 
grammable memory arbitration circuitry 130 (see FIG. 4) 
arbitrates access to shared main memory 112 betWeen graph 
ics pipeline 180, command processor 200 and display 
controller/video interface unit 164. 

FIG. 4 shoWs that graphics pipeline 180 may include: 
a transform unit 300, 

a setup/rasteriZer 400, 
a texture unit 500, 

a texture environment unit 600, and 

a pixel engine 700. 
Transform unit 300 performs a variety of 2D and 3D 

transform and other operations 300a (see FIG. 5). Transform 
unit 300 may include one or more matrix memories 300b for 
storing matrices used in transformation processing 300a. 
Transform unit 300 transforms incoming geometry per ver 
tex from object space to screen space; and transforms 
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incoming texture coordinates and computes projective tex 
ture coordinates (300C). Transform unit 300 may also per 
form polygon clipping/culling 300d. Lighting processing 
3006‘ also performed by transform unit 300b provides per 
vertex lighting computations for up to eight independent 
lights in one example embodiment. Transform unit 300 can 
also perform texture coordinate generation (300C) for 
embossed type bump mapping effects, as Well as polygon 
clipping/culling operations (300a) 

Setup/rasteriZer 400 includes a setup unit Which receives 
vertex data from transform unit 300 and sends triangle setup 
information to one or more rasteriZer units (400b) perform 
ing edge rasteriZation, texture coordinate rasteriZation and 
color rasteriZation. 

Texture unit 500 (Which may include an on-chip texture 
memory (TMEM) 502) performs various tasks related to 
texturing including for example: 

retrieving textures 504 from main memory 112, 
texture processing (500a) including, for example, multi 

texture handling, post-cache texture decompression, 
texture ?ltering, embossing, shadoWs and lighting 
through the use of projective textures, and BLIT With 
alpha transparency and depth, 

bump map processing for computing texture coordinate 
displacements for bump mapping, pseudo texture and 
texture tiling effects (500b), and 

indirect texture processing (500C). 
Texture unit 500 outputs ?ltered texture values to the 

texture environment unit 600 for texture environment pro 
cessing (600a). Texture environment unit 600 blends poly 
gon and texture color/alpha/depth, and can also perform 
texture fog processing (600b) to achieve inverse range based 
fog effects. Texture environment unit 600 can provide mul 
tiple stages to perform a variety of other interesting 
environment-related functions based for example on color/ 
alpha modulation, embossing, detail texturing, texture 
sWapping, clamping, and depth blending. 

Pixel engine 700 performs depth (Z) compare (700a) and 
pixel blending (700b). In this example, pixel engine 700 
stores data into an embedded (on-chip) frame buffer memory 
702. Graphics pipeline 180 may include one or more embed 
ded DRAM memories 702 to store frame buffer and/or 
texture information locally. Z compares 700a‘ can also be 
performed at an earlier stage in the graphics pipeline 180 
depending on the rendering mode currently in effect (e.g., Z 
compares can be performed earlier if alpha blending is not 
required). The pixel engine 700 includes a copy operation 
700c that periodically Writes on-chip frame buffer 702 to 
main memory 112 for access by display/video interface unit 
164. This copy operation 700c can also be used to copy 
embedded frame buffer 702 contents to textures in the main 
memory 112 for dynamic texture synthesis effects. Anti 
aliasing and other ?ltering can be performed during the 
copy-out operation. The frame buffer output of graphics 
pipeline 180 (Which is ultimately stored in main memory 
112) is read each frame by display/video interface unit 164. 
Display controller/video interface 164 provides digital RGB 
pixel values for display on display 102. 

Fog Simultaion 
When fog is enabled, a constant fog color is blended With 

the pixel color output from the last active Texture Environ 
ment (TEV) stage. The percentage of fog color blended 
depends on the fog density, Which is a function of the 
distance from a vieWpoint to a quad (2x2 pixels). In this 
example, the graphics processor 114 preferably supports ?ve 
types of fog each of Which provides a different fog density 
function. 
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The ?rst fog type is the conventional linear fog as shoWn 

in FIG. 6a, Wherein the fog equation provides a constant 
increase in fog density betWeen a starting point Where the 
linear fog begins and an ending point Where the fog reaches 
its maximum value. For this conventional linear fog, the fog 
equation is: 

Where Ze is the eye space Z of the pixel, Z0 is the “fog 
start” value and is the eye-space Z value at Which linear 
fog begins or “kicks in”, and Z1 is the “fog end” value 
and is the eye-space Z value at Which the fog density 
reaches its maximum value. FIG. 6a shoWs an example 
graph of the linear fog equation With “fog start”=50 and 
“fog end”=100. 

The second and third types of fog are exponential fog and 
exponential squared fog. In contrast to the OpenGL and 
DirectX fog types, the instant invention incorporates a “fog 
start” value into the fog equations, thereby enhancing the 
functionality thereof. For exponential and exponential 
squared fog, the respective fog equations are: 

Where Z1 is the eye-space Z value at Which the fog density 
almost reaches 1. FIGS. 6b and 6c shoW example 
graphs of the exponential and exponential squared fog 
equations, respectively, With Z0=50 and Z1=100. 

The fourth and ?fth types of fog are entirely neW and are 
not based on previous fog equations, such as those provided 
in OpenGL. These tWo neW fog types are backWards expo 
nential fog and backWards exponential squared fog. The 
respective fog equations for these tWo fog types are: 

Where Z1 is the eye-space Z value at Which the fog density 
almost reaches 1. FIGS. 6d and 66 show example 
graphs of these tWo fog equations, respectively, With 
Z0=50 and Z1=100. Unlike the exponential fog and 
exponential squared fog, the backWards exponential 
fog and backWards exponential squared fog have more 
gentle slopes at ?rst and steep slopes near the end. 
These tWo entirely neW fog types enable neW and 
interesting fog effects to be achieved, thereby further 
improving use of fog in 3D graphics systems. For 
example, these tWo fog types can be used to provide an 
improved curtain-type fog effect, Wherein an object 
suddenly passes therethrough, Which provides an inter 
esting visual effect superior to that of the other knoWn 
fog types for certain applications. It is noted that a near 
(start) and far (end) Z for the fog function can be 
programmed independently of the clipping near and far 
Z. 

The eye-space Z used for fog calculations, in the manner 
described above, does not represent the correct range unless 
the vieWer is facing the same direction as the Z axis. 
Speci?cally, as shoWn in FIG. 7, if only the eye-space Z is 
used for determining the range, and increasing error Will 
result as the line of sight moves aWay from the Z axis. As 
shoWn in FIG. 7, the range error, represented by shaded 
portions 610a and 610b, increases as the angle 0t increases 
aWay from the Z axis. HoWever, in accordance With a 












