
(12) United States Patent 
Cheng et al. 

US006717577B1 

US 6,717,577 B1 
Apr. 6, 2004 

(10) Patent N0.: 
(45) Date of Patent: 

(54) VERTEX CACHE FOR 3D COMPUTER 
GRAPHICS 

(75) Inventors: Howard H. Cheng, Redmond, WA 
(US); Robert Moore, Redmond, WA 
(US); Farhad Fouladi, Palo Alto, CA 
(US); Timothy J. Van Hook, Atherton, 
CA (US) 

(73) Assignee: Nintendo Co., Ltd., Kyoto (JP) 

( * ) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 

(21) Appl. No.: 09/465,754 

(22) Filed: Dec. 17, 1999 

Related US. Application Data 
(60) Provisional application No. 60/161,915, ?led on Oct. 28, 

1999. 

(51) Int. Cl.7 .............................................. .. G06T 15/00 

(52) US. Cl. ............... .. 345/419; 345/557 

(58) Field of Search ............................... .. 345/503, 430, 

345/526, 420, 502, 582, 506, 522, 419, 
423, 441, 501, 568, 537, 557; 711/118, 
133, 128; 365/230.03; 716/20; 707/101 

(56) References Cited 

U.S. PATENT DOCUMENTS 

4,275,413 A 6/1981 Sakamoto et al. 
4,357,624 A 11/1982 Greenberg 
4,463,380 A 7/1984 Hooks, Jr. 

(List continued on next page.) 

FOREIGN PATENT DOCUMENTS 

EP 0 637 813 A2 2/1995 
JP 9-330230 12/1997 
WO WO/93/04429 3/1993 

OTHER PUBLICATIONS 

GDC 2000: Advanced OpenGL Game Development, “A 
Practical and Robust Bump—mapping Technique for Today’s 
GPUs,” by Mark Kilgard, Jul. 5, 2000, WWW.nvidia.com. 

Amy mm 
Has: [421 max data Barnum} 

as 

sax 

Technical Presentations: “Texture Space Bump Mapping, 
”Sim Dietrich, Nov. 10, 2000, WWW.nvidia.com. 

Whitepapers: “Texture Addressing,” Sim Dietrich, Jan. 6, 
2000, WWW.nvidia.com. 

ZDNet RevieWs, from PC Magazine, “Other Enhance 
ments,” Jan. 15, 1999, WysiWygI//16/http:// 
WWW4.zdnet.com...ies/revieWs/0,4161,2188286,00.html. 

ZDNet RevieWs, from PC Magazine, “Screen Shot of 
Alpha—channel Transparency,” Jan. 15 , 1999, WysiWyg://16/ 
http://WWW4.zdnet.com...ies/revieWs/0,4161,2188286, 
00.html. 

(List continued on next page.) 

Primary Examiner—MattheW C. Bella 
Assistant Examiner—Dalip K. Singh 
(74) Attorney, Agent, or Firm—Nixon & Vanderhye PC 

(57) ABSTRACT 

In a 3D interactive computer graphics system such as a video 
game display system, polygon vertex data is fed to a 3D 
graphics processor/display engine via a vertex cache used to 
cache and organize indexed primitive vertex data streams. 
The vertex cache may be a small, loW-latency cache memory 
local to the display engine hardWare. Polygons can be 
represented as indexed arrays, e.g., indexed linear lists of 
data components representing some feature of a vertex (for 
example, positions, colors, surface normals, or texture 
coordinates). The vertex cache can fetch the relevant blocks 
of indexed vertex attribute data on an as-needed basis to 

make it available to the display processor—providing spatial 
locality for display processing Without requiring the vertex 
data to be prestored in display order. Ef?ciency can be 
increased by customizing and optimizing the vertex cache 
and associated tags for the purpose of delivering vertices to 
the graphics engine—alloWing more efficient prefetching 
and assembling of vertices than might be possible using a 
general-purpose cache and tag structure. 
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VERTEX CACHE FOR 3D COMPUTER 
GRAPHICS 

This application claims the bene?t of Provisional appli 
cation Ser. No. 60/161,915, ?led Oct. 28, 1999. 

FIELD OF THE INVENTION 

The present invention relates to 3D interactive computer 
graphics, and more speci?cally, to arrangements and tech 
niques for ef?ciently representing and storing vertex infor 
mation for animation and display processing. Still more 
particularly, the invention relates to a 3D graphics integrated 
circuit including a vertex cache for more ef?cient imaging of 
3D polygon data. 

BACKGROUND AND SUMMARY OF THE 
INVENTION 

Modem 3D computer graphics systems construct ani 
mated displays from display primitives, i.e., polygons. Each 
display object (e.g., a tree, a car, or a person or other 
character) is typically constructed from a number of indi 
vidual polygons. Each polygon is represented by its 
vertices—Which together specify the location, orientation 
and siZe of the polygon in three-dimensional space—along 
With other characteristics (e.g., color, surface normals for 
shading, textures, etc.). Computer techniques can ef?ciently 
construct rich animated 3D graphical scenes using these 
techniques. 
LoW cost, high speed interactive 3D graphics systems 

such as video game systems are constrained in terms of 
memory and processing resources. Therefore, in such sys 
tems it is important to be able to ef?ciently represent and 
process the various polygons representing a display object. 
For example, it is desirable to make the data representing the 
display object compact, and to present the data to the 3D 
graphics system in a Way so that all of the data needed for 
a particular task is conveniently available. 
One can characteriZe data in terms of temporal locality 

and spatial locality. Temporal locality means the same data 
is being referenced frequently in a small amount of time. In 
general, the polygon-representing data for typical 3D inter 
active graphics applications has a large degree of temporal 
locality. Spatial locality means that the next data item 
referenced is stored close in memory to the last one refer 
enced. Efficiency improvements can be realiZed by increas 
ing the data’s spatial locality. In a practical memory system 
that does not alloW unlimited loW-latency random access to 
an unlimited amount of data, performance is increased if all 
data needed to perform a given task is stored close together 
in loW-latency memory. 

To increase the spatial locality of the data, one can sort the 
polygon data based on the order of processing—assuring 
that all of the data needed to perform a particular task Will 
be presented at close to the same time so it can be stored 
together. For example, polygon data making up animations 
can be sorted in a Way that is preferential to the type of 
animation being performed. As one example, typical com 
plex interactive real-time animation such as surface defor 
mation requires manipulation of all the vertices at the 
surfaces. To perform such animation ef?ciently, it is desir 
able to sort the vertex data in a certain Way. 

Typical 3D graphical systems perform animation process 
ing and display processing separately, and these separate 
steps process the data differently. Unfortunately, the optimal 
order to sort the vertex data for animation processing is 
generally different from the optimal sort order for display 
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processing. Sorting for animation may tend to add random 
ness to display ordering. By sorting a data stream to simplify 
animation processing, We make it harder to ef?ciently dis 
play the data. 

Thus, for various reasons, it may not be possible to 
assume that spatial locality exists When accessing data for 
display. Dif?culty arises from the need to ef?ciently access 
an arbitrarily large display object. In addition, for the 
reasons explained above, there Will typically be some 
amount of randomness—at least for display purposes—in 
the order the vertex data is presented to the display engine. 
Furthermore, there may be other data locality above the 
vertex level that Would be useful to implement (e.g., group 
ing together all polygons that share a certain texture). 
One approach to achieving higher ef?ciency is to provide 

additional loW-latency memory (e.g., the loWest latency 
memory system affordable). It might al so be possible to ?t 
a display object in fast local memory to achieve random 
access. HoWever, objects can be quite large, and may need 
to be double-buffered. Therefore, the buffers required for 
such an approach could be very large. It might also be 
possible to use a main CPU’s data cache to assemble and 
sort the polygon data in an optimal order for the display 
engine. HoWever, to do this effectively, there Would have to 
be some Way to prevent the polygon data from thrashing the 
rest of the data cache. In addition, there Would be a need to 
prefetch the data to hide memory latency—since there Will 
probably be some randomness in the Way even data sorted 
for display order is accessed. Additionally, this approach 
Would place additional loading on the CPU—especially 
since there might be a need in certain implementations to 
assemble the data in a binary format the display engine can 
interpret. Using this approach, the main CPU and the display 
engine Would become serial, With the CPU feeding the data 
directly to the graphics engine. ParalleliZing the processing 
(e.g., to feed the display engine through a DRAM FIFO 
buffer) Would require substantial additional memory access 
bandWidth as compared to immediate-mode feeding. 

Thus, there exists a need for more efficient techniques that 
can be used to represent, store and deliver polygon data for 
a 3D graphics display process. 
The present invention solves this problem by providing a 

vertex cache to organiZe indexed primitive vertex data 
streams. 

In accordance With one aspect provided by the present 
invention, polygon vertex data is fed to the 3D graphics 
processor/display engine via a vertex cache. The vertex 
cache may be a small, loW-latency memory that is local to 
(e.g., part of) the 3D graphics processor/display engine 
hardWare. Flexibility and ef?ciency results from the cache 
providing a virtual memory vieW much larger than the actual 
cache contents. 

The vertex cache may be used to build up the vertex data 
needed for display processing on the ?y on an as-needed 
basis. Thus, rather than pre-sorting the vertex data for 
display purposes, the vertex cache can simply fetch the 
relevant blocks of data on an as-needed basis to make it 
available to the display processor. Based on the high degree 
of temporal locality exhibited by the vertex data for inter 
active video game display and the use of particularly optimal 
indexed-array data structures (see beloW), most of the vertex 
data needed at any given time Will be available in even a 
small set-associative vertex cache having a number of cache 
lines proportional to the number of vertex data streams. One 
example optimum arrangement provides a 512x128-bit dual 
ported RAM to form an 8 set-associative vertex cache. 
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Efficiency can be increased by customizing and optimiZ 
ing the vertex cache and associated tags for the purpose of 
delivering vertices to the 3D graphics processor/display 
engine—alloWing more ef?cient prefetching and assembling 
of vertices than might be possible using a general-purpose 
cache and tag structure. Because the vertex cache alloWs 
data to be fed directly to the display engine, the cost of 
additional memory access bandWidth is avoided. Direct 
memory access may be used to ef?ciently transfer vertex 
data into the vertex cache. 

To further increase the ef?ciencies afforded by the vertex 
cache, it is desirable to reduce the need to completely 
re-specify a particular polygon or set of polygons each time 
it is (they are) used. In accordance With a further aspect 
provided by the present invention, polygons can be repre 
sented as arrays, e.g., linear lists of data components repre 
senting some feature of a vertex (for example, positions, 
colors, surface normals, or texture coordinates). Each dis 
play object may be represented as a collection of such arrays 
along With various sets of indices. The indices reference the 
arrays for a particular animation or display purpose. By 
representing polygon data as indexed component lists, dis 
continuities are alloWed betWeen mappings. Further, sepa 
rating out individual components alloWs data to be stored 
more compactly (e.g., in a fully compressed format). The 
vertex cache provided by the present invention can accom 
modate streams of such indexed data up to the index siZe. 

Through use of an indexed vertex representation in con 
junction With the vertex cache, there is no need to provide 
any resorting for display purposes. For example, the vertex 
data may be presented to the display engine in a order 
presorted for animation as opposed to display—making 
animation a more efficient process. The vertex cache uses the 
indexed vertex data structure representation to ef?ciently 
make the vertex data available to the display engine Without 
any need for explicit resorting. 
Any vertex component can be index-referenced or 

directly inlined in the command stream. This enables ef? 
cient data processing by the main processor Without requir 
ing the main processor’s output to conform to the graphics 
display data structure. For example, lighting operations 
performed by the main processor may generate only a color 
array from a list of normals and positions by loop-processing 
a list of lighting parameters to generate the color array. There 
is no need for the animation process to folloW a triangle list 
display data structure, nor does the animation process need 
to reformat the data for display. The display process can 
naturally consume the data provided by the animation pro 
cess Without adding substantial data reformatting overhead 
to the animation process. 

On the other hand, there is no penalty for sorting the 
vertex data in display order; the vertex data is ef?ciently 
presented to the display engine in either case, Without the 
vertex cache signi?cantly degrading performance vis-a-vis a 
vertex presentation structure optimiZed for presenting data 
presorted for display. 

In accordance With a further aspect provided by this 
invention, the vertex data includes quantized, compressed 
data streams in any of several different formats (e.g., 8-bit 
?xed point, 16-bit ?xed point, or ?oating point). This data 
can be indexed (i.e., referenced by the vertex data stream) or 
direct (i.e., contained Within the stream itself). These various 
data formats can all be stored in the common vertex cache, 
and subsequently decompressed and converted into a com 
mon format for the graphics display pipeline. Such hardWare 
support of ?exible types, formats and numbers of attributes 
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as either immediate or indexed input data avoids complex 
and time-consuming softWare data conversion. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features and advantages provided by the 
present invention Will be better and more completely under 
stood by referring to the folloWing detailed description of 
preferred embodiments in conjunction With the draWings of 
Which: 

FIG. 1 is a block diagram of an example interactive 3D 
graphics system; 

FIG. 1A is a block diagram of the example graphics and 
audio coprocessor shoWn in FIG. 1; 

FIG. 1B is a more detailed schematic diagram of portions 
of the FIG. 1A graphics and audio coprocessor shoWing an 
example 3D pipeline graphics processing arrangement; 

FIG. 2 shoWs an example command processor including 
a vertex cache provided With vertex index array data; 

FIG. 2A shoWs an example display list processor includ 
ing a vertex cache provided in accordance With the present 
invention; 

FIG. 2B shoWs an example dual FIFO arrangement; 

FIG. 3 is a schematic diagram of an example indexed 
vertex data structure; 

FIG. 3A shoWs an example vertex descriptor block; 
FIG. 4 is a block diagram of an example vertex cache 

implementation; 
FIG. 5 shoWs an example vertex cache memory address 

format; and 
FIG. 6 shoWs an example vertex cache tag status register 

format. 

DETAILED DESCRIPTION OF PRESENTLY 
PREFERRED EXAMPLE EMBODIMENTS 

FIG. 1 is a schematic diagram of an overall example 
interactive 3D computer graphics system 100 in Which the 
present invention may be practiced. System 100 can be used 
to play interactive 3D video games accompanied by inter 
esting stereo sound. Different games can be played by 
inserting appropriate storage media such as optical disks into 
an optical disk player 134. A game player can interact With 
system 100 in real time by manipulating input devices such 
as handheld controllers 132, Which may include a variety of 
controls such as joysticks, buttons, sWitches, keyboards or 
keypads, etc. 

System 100 includes a main processor (CPU) 102, a main 
memory 104, and a graphics and audio coprocessor 106. In 
this example, main processor 102 receives inputs from 
handheld controllers 132 (and/or other input devices) via 
coprocessor 100. Main processor 102 interactively responds 
to such user inputs, and executes a video game or other 
graphics program supplied, for example, by external storage 
134. For example, main processor 102 can perform collision 
detection and animation processing in addition to a variety 
of real time interactive control functions. 

Main processor 102 generates 3D graphics and audio 
commands and sends them to graphics and audio coproces 
sor 106. The graphics and audio coprocessor 106 processes 
these commands to generate interesting visual images on a 
display 136 and stereo sounds on stereo loudspeakers 137R, 
137L or other suitable sound-generating devices. 

System 100 includes a TV encoder 140 that receives 
image signals from coprocessor 100 and converts the image 
signals into composite video signals suitable for display on 
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a standard display device 136 (e.g., a computer monitor or 
home color television set). System 100 also includes an 
audio codec (compressor/decompressor) 138 that com 
presses and decompresses digitized audio signals (and may 
also convert betWeen digital and analog audio signalling 
formats). Audio codec 138 can receive audio inputs via a 
buffer 140 and provide them to coprocessor 106 for pro 
cessing (e.g., mixing With other audio signals the coproces 
sor generates and/or receives via a streaming audio output of 
optical disk device 134). Coprocessor 106 stores audio 
related information in a memory 144 that is dedicated to 
audio tasks. Coprocessor 106 provides the resulting audio 
output signals to audio codec 138 for decompression and 
conversion to analog signals (e.g., via buffer ampli?ers 
142L, 142R) so they can be played by speakers 137L, 137R. 

Coprocessor 106 has the ability to communicate With 
various peripherals that may be present Within system 100. 
For example, a parallel digital bus 146 may be used to 
communicate With optical disk device 134. A serial periph 
eral bus 148 may communicate With a variety of peripherals 
including, for example, a ROM and/or real time clock 150, 
a modem 152, and ?ash memory 154. A further external 
serial bus 156 may be used to communicate With additional 
expansion memory 158 (e.g., a memory card). 

Graphics And Audio Coprocessor 

FIG. 1A is a block diagram of components Within copro 
cessor 106. Coprocessor 106 may be a single integrated 
circuit. In this example, coprocessor 106 includes a 3D 
graphics processor/display engine 107, a processor interface 
108, a memory interface 110, an audio digital signal pro 
cessor (DSP) 162, an audio memory interface (I/F) 164, an 
audio interface and mixer 166, a peripheral controller 168, 
and a display controller 128. 

3D graphics processor/display engine 107 performs 
graphics processing tasks, and audio digital signal processor 
162 performs audio processing tasks. Display controller 128 
accesses image information from memory 104 and provides 
it to TV encoder 140 for display on display device 136. 
Audio interface and mixer 166 interfaces With audio codec 
138, and can also mix audio from different sources (e.g., a 
streaming audio input from disk 134, the output of audio 
DSP 162, and external audio input received via audio codec 
138). Processor interface 108 provides a data and control 
interface betWeen main processor 102 and coprocessor 106. 
Memory interface 110 provides a data and control interface 
betWeen coprocessor 106 and memory 104. In this example, 
main processor 102 accesses main memory 104 via proces 
sor interface 108 and memory controller 110 that are part of 
coprocessor 106. Peripheral controller 168 provides a data 
and control interface betWeen coprocessor 106 and the 
various peripherals mentioned above (e.g., optical disk 
device 134, controllers 132, ROM and/or real time clock 
150, modem 152, ?ash memory 154, and memory card 158). 
Audio memory interface 164 provides an interface With 
audio memory 144. 

FIG. 1B shoWs a more detailed vieW of 3D graphics 
processor/display engine 107 and associated components 
Within coprocessor 106. 3D graphics processor/display 
engine 107 includes a command processor 114 and a 3D 
graphics pipeline 116. Main processor 102 communicates 
streams of graphics data (i.e., display lists) to command 
processor 114. Command processor 114 receives these dis 
play commands and parses them (obtaining any additional 
data necessary to process them from memory 104), and 
provides a stream of vertex commands to graphics pipeline 
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116 for 3D processing and rendering. Graphics pipeline 116 
generates a 3D image based on these commands. The 
resulting image information may be transferred to main 
memory 104 for access by display controller 128—Which 
displays the frame buffer output of pipeline 116 on display 
136. 

In more detail, main processor 102 may store display lists 
in main memory 104, and pass pointers to command pro 
cessor 114 via bus interface 108. The command processor 
114 (Which includes a vertex cache 212 discussed in detail 
beloW) fetches the command stream from CPU 102, fetches 
vertex attributes from the command stream and/or from 
vertex arrays in memory, converts attribute types to ?oating 
point format, and passes the resulting complete vertex 
polygon data to the graphics pipeline 116 for rendering/ 
rasteriZation. As explained in more detail beloW, vertex data 
can come directly from the command stream, and/or from a 
vertex array in memory Where each attribute is stored in its 
oWn linear array. A memory arbitration circuitry 130 arbi 
trates memory access betWeen graphics pipeline 116, com 
mand processor 114 and display unit 128. As explained 
beloW, an on-chip 8-Way set-associative vertex cache 212 is 
used to reduce vertex attribute access latency. 

As shoWn in FIG. 1B, graphics pipeline 116 may include 
transform unit 118, a setup/rasteriZer 120, a texture unit 122, 
a texture environment unit 124 and a pixel engine 126. In 
graphics pipeline 116, transform unit 118 performs a variety 
of 3D transform operations, and may also perform lighting 
and texture effects. For example, transform unit 118 trans 
forms incoming geometry per vertex from object space to 
screen space; transforms incoming texture coordinates and 
computes projective texture coordinates; performs polygon 
clipping; performs per vertex lighting computations; and 
performs bump mapping texture coordinate generation. Set 
up/rasteriZer 120 includes a set up unit Which receives vertex 
data from the transform unit 118 and sends triangle set up 
information to rasteriZers performing edge rasteriZation, 
texture coordinate rasteriZation and color rasteriZation. Tex 
ture unit 122 performs various tasks related to texturing, 
including multi-texture handling, post-cache texture 
decompression, texture ?ltering, embossed bump mapping, 
shadoWs and lighting through the use of projective textures, 
and BLIT With alpha transparency and depth. Texture unit 
122 outputs ?ltered texture values to the texture environ 
ment unit 124. Texture environment unit 124 blends the 
polygon color and texture color together, performing texture 
fog and other environment-related functions. Pixel engine 
126 performs Z buffering and blending, and stores data into 
an on-chip frame buffer memory. 

Thus, graphics pipeline 116 may include one or more 
embedded DRAM memories (not shoWn) to store-frame 
buffer and/or texture information locally. The on-chip frame 
buffer is periodically Written to main memory 104 for access 
by display unit 128. The frame buffer output of graphics 
pipeline 116 (Which is ultimately stored in main memory 
104) is read each frame by display unit 128. Display unit 128 
provides digital RGB pixel values for display on display 
136. 

Vertex Cache And Vertex Index Array 

FIG. 2 is a schematic illustration of command processor 
114 including a vertex cache 212 and a display list processor 
213. Command processor 114 handles a Wide range of vertex 
and primitive data structures, from a single stream of vertex 
data containing position, normal, texture coordinates and 
colors to fully indexed arrays. Any vertex component can be 
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index-referenced or directly in-lined in the command 
stream. Command processor 114 thus supports ?exible 
types, formats and numbers of attributes as either immediate 
or indexed data. 

Display list processor 213 Within command processor 114 
processes display list commands provided by CPU 102— 
typically via a buffer allocated Within main memory 104. 
Vertex cache 212 caches indexed polygon vertex data struc 
tures such as the example data structure 300 shoWn in FIG. 
2. Example indexed polygon vertex data structure 300 may 
include a vertex index array 304 Which references a number 
of vertex component data arrays (e.g., a color data array 
306a, a texture vertex data array 306b, a surface normal data 
array 306c, a position vertex data array 306d, and so on). 
Vertex cache 212 accesses the vertex data from these arrays 
306 in main memory 104, and caches them for fast access 
and use by display list processor 213. 

Display List Processor 

FIG. 2A shoWs example display list processor 213 per 
formed by command processor 114. In this FIG. 2A 
example, display list processor 213 provides several stages 
of parsing. Display list commands received from main 
processor 102 are interpreted by a display list stream parser 
200. Display list stream parser 200 may use an address stack 
202 to provide nesting of instructions—or dual FIFOS may 
be used to store a stream of vertex commands from a FIFO 
in main memory 106 to alloW subroutine branching in 
instancing (see FIG. 2B) Without need for reloading 
prefetched vertex command data. Using the FIG. 2B 
approach, the display list commands may thus provide for a 
one-level-deep display list—Where the top level command 
stream can call the display list one level deep. This “call” 
capability is useful for pre-computed commands and 
instancing in geometry. 

Display list stream parser 200 routes commands that 
affect the state of graphics pipeline 116 to the graphics 
pipeline. The remaining primitive command stream is 
parsed by a primitive stream parser 204 based on a primitive 
descriptor obtained from memory 104 (see beloW). 

The indices to vertices are de-referenced and parsed by a 
vertex stream parser 208 based on a vertex descriptor 306 
Which may be provided in a table in hardWare. The vertex 
stream provided to vertex stream parser 208 may include 
such indices to vertex data stored Within main memory 104. 
Vertex stream parser 208 can access this vertex data from 
main memory 104 via vertex cache 212—thus separately 
providing the vertex commands and associated referenced 
vertex attributes via different paths in the case of indexed as 
opposed to direct data. In one example, vertex stream parser 
208 addresses vertex cache 212 as if it Were the entirety of 
main memory 104. Vertex cache 212, in turn, retrieves (and 
often times, may prefetch) vertex data from main memory 
104, and caches it temporarily for use by vertex stream 
parser 208. Caching the vertex data in vertex cache 212 
reduces the number of accesses to main memory 104—and 
thus the main memory bandWidth required by command 
processor 114. 

Vertex stream parser 208 provides data for each vertex to 
be rendered Within each triangle (polygon). This per-vertex 
data is provided, along With the per-primitive data outputted 
by primitive stream parser 204, to a decompression/inverse 
quantiZer block 214. Inverse quantiZer 214 converts differ 
ent vertex representations (e.g., 8-bit and 16-bit ?xed point 
format data) to a uniform ?oating-point representation used 
by graphics pipeline 116. Inverse quantiZer 214 provides 
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8 
hardWare support for a ?exible variety of different types, 
formats and numbers of attributes, and such data can be 
presented to display list processor 213 as either immediate 
or indexed input data. The uniform ?oating-point represen 
tation output of inverse quantiZer 214 is provided to graphics 
pipeline 116 for rasteriZation and further processing. If 
desired as an optimiZation, a further small cache or buffer 
may be provided at the output of inverse quantiZer 214 to 
avoid the need to re-transform vertex strip data. 

Vertex Index Array 

FIG. 3 shoWs a more detailed example of an indexed 
vertex list 300 of the preferred embodiment used to provide 
indirect (i.e., indexed) vertex attribute data via vertex cache 
212. This generaliZation indexed vertex list 300 may be used 
to de?ne primitives in the system shoWn in FIG. 1. Each 
primitive is described by a list of indices, each of Which 
indexes into an array of vertices. Vertices and primitives 
each use format descriptors to de?ne the types of their items. 
These descriptors associate an attribute With a type. An 
attribute is a data item that has a speci?c meaning to the 
rendering hardWare. This affords the possibility of program 
ming the hardWare With descriptors so it can parse and 
convert the vertex/primitive stream as it is loaded. Using the 
minimum siZe type and the minimum number of attributes 
per vertex leads to geometry compression. The FIG. 3 
arrangement also alloWs attributes to be associated With the 
vertices, the indices, or the primitive, as desired. 

Thus, in the FIG. 3 example indexed vertex array 300, a 
primitive list 302 de?nes each of the various primitives (e. g., 
triangles) in the data stream (e.g., prim0, prim1, prim2, 
prim3, . . . Aprimitive descriptor block 308 may provide 
attributes common to a primitive (e.g., texture and connec 
tivity data Which may be direct or indexed). Each primitive 
Within primitive list 302 indexes corresponding vertices 
Within a vertex list 304. A single vertex Within vertex list 304 
may be used by multiple primitives Within primitive list 302. 
If desired, primitive list 302 may be implied rather than 
explicit—i.e., vertex list 304 can be ordered in such a Way 
as to de?ne corresponding primitives by implication (e.g., 
using triangle strips). 
A vertex descriptor block 306 may be provided for each 

vertex Within vertex list 304. Vertex descriptor block 306 
includes attribute data corresponding to a particular vertex 
(e.g., rgb or other color data, alpha data, xyZ surface normal 
data). As shoWn in FIG. 2, vertex descriptor block 306 may 
comprise a number of different indexed component blocks. 
The vertex attribute descriptor block 306 10 de?nes Which 
vertex attributes are present, the number and siZe of the 
components, and hoW the components are referenced (e.g., 
either direct—that is, included Within the quantized vertex 
data stream—or indexed). In one example, the vertices in a 
DRAW command for a particular primitive all have the same 
vertex attribute data structure format. 

FIG. 3A shoWs an example list of attributes provided by 
vertex attribute block 306. The folloWing attributes may be 
provided: 

Attribute 

Position 
Normal 
Diffused Color 
Specular Color 






