
(12) United States Patent
Cheng et al.

US006717577B1

US 6,717,577 B1
Apr. 6, 2004

(10) Patent N0.:
(45) Date of Patent:

(54) VERTEX CACHE FOR 3D COMPUTER
GRAPHICS

(75) Inventors: Howard H. Cheng, Redmond, WA
(US); Robert Moore, Redmond, WA
(US); Farhad Fouladi, Palo Alto, CA
(US); Timothy J. Van Hook, Atherton,
CA (US)

(73) Assignee: Nintendo Co., Ltd., Kyoto (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/465,754

(22) Filed: Dec. 17, 1999

Related US. Application Data
(60) Provisional application No. 60/161,915, ?led on Oct. 28,

1999.

(51) Int. Cl.7 G06T 15/00

(52) US. Cl. 345/419; 345/557

(58) Field of Search 345/503, 430,

345/526, 420, 502, 582, 506, 522, 419,
423, 441, 501, 568, 537, 557; 711/118,
133, 128; 365/230.03; 716/20; 707/101

(56) References Cited

U.S. PATENT DOCUMENTS

4,275,413 A 6/1981 Sakamoto et al.
4,357,624 A 11/1982 Greenberg
4,463,380 A 7/1984 Hooks, Jr.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP 0 637 813 A2 2/1995
JP 9-330230 12/1997
WO WO/93/04429 3/1993

OTHER PUBLICATIONS

GDC 2000: Advanced OpenGL Game Development, “A
Practical and Robust Bump—mapping Technique for Today’s
GPUs,” by Mark Kilgard, Jul. 5, 2000, WWW.nvidia.com.

Amy mm
Has: [421 max data Barnum}

as

sax

Technical Presentations: “Texture Space Bump Mapping,
”Sim Dietrich, Nov. 10, 2000, WWW.nvidia.com.

Whitepapers: “Texture Addressing,” Sim Dietrich, Jan. 6,
2000, WWW.nvidia.com.

ZDNet RevieWs, from PC Magazine, “Other Enhance
ments,” Jan. 15, 1999, WysiWygI//16/http://
WWW4.zdnet.com...ies/revieWs/0,4161,2188286,00.html.

ZDNet RevieWs, from PC Magazine, “Screen Shot of
Alpha—channel Transparency,” Jan. 15 , 1999, WysiWyg://16/
http://WWW4.zdnet.com...ies/revieWs/0,4161,2188286,
00.html.

(List continued on next page.)

Primary Examiner—MattheW C. Bella
Assistant Examiner—Dalip K. Singh
(74) Attorney, Agent, or Firm—Nixon & Vanderhye PC

(57) ABSTRACT

In a 3D interactive computer graphics system such as a video
game display system, polygon vertex data is fed to a 3D
graphics processor/display engine via a vertex cache used to
cache and organize indexed primitive vertex data streams.
The vertex cache may be a small, loW-latency cache memory
local to the display engine hardWare. Polygons can be
represented as indexed arrays, e.g., indexed linear lists of
data components representing some feature of a vertex (for
example, positions, colors, surface normals, or texture
coordinates). The vertex cache can fetch the relevant blocks
of indexed vertex attribute data on an as-needed basis to

make it available to the display processor—providing spatial
locality for display processing Without requiring the vertex
data to be prestored in display order. Ef?ciency can be
increased by customizing and optimizing the vertex cache
and associated tags for the purpose of delivering vertices to
the graphics engine—alloWing more efficient prefetching
and assembling of vertices than might be possible using a
general-purpose cache and tag structure.

21 Claims, 10 Drawing Sheets

212 L/

US 6,717,577 B1
Page 2

U.S. PATENT DOCUMENTS 5,561,746 A 10/1996 Murata et al.
5,561,752 A 10/1996 Jevans

27238782 2 $322 gtms 6‘ al- 5,563,989 A 10/1996 Billyard
7 7 cm 5,566,285 A 10/1996 Okada

4,615,013 A 9/1986 Yan et al.
4,625,289 A 11/1986 Rockwood g’gg’jgé 2 151332 ggii’nan
4,692,880 A 9/1987 MerZ et al. ’ ’
4,808,988 A 2/1989 Burke et al. 5,582,451 A 12/1996 Baumann
4,817,175 A 3/1989 Tenenbaum et a1' 5,586,234 A 12/1996 Sakuraba et al.
4,855,934 A 8/1989 Robinson 5,593,350 A 1/1997 BOlltOIl et al.
4,888,712 A 12/1989 Barkans et al. 5,600,763 A 2/1997 Greene et @1
4,897,806 A 1/1990 Cook et al. 5,606,650 A 2/1997 Kelley 9191
4’907’174 A 3/1990 Priem 5,607,157 A 3/1997 Nagashima
4,918,625 A 4/1990 Yan 5,608,864 A 3/1997 Bindlish et al.
4,935,879 A 6/1990 Ueda 5,616,031 A 4/1997 Logg
4,974,176 A 11/1990 Buchner et al. 5,621,867 A 4/1997 Murata et al.
4,974,177 A 11/1990 Nishiguchi 5,628,686 A 5/1997 Svancarek et al.
4,989,138 A 1/1991 Radochonski 5,638,535 A 6/1997 Rosenthal et al.
5,003,496 A 3/1991 Hunt, Jr. et al. 5,644,364 A 7/1997 KurtZe et al.
5,016,183 A 5/1991 Shyona 5,649,082 A 7/1997 Burns
5,018,076 A 5/1991 Johary et al. 5,650,955 A 7/1997 Puar et al.
5,043,922 A 8/1991 Matsumoto 5,651,104 A 7/1997 Cosman
5,062,057 A 10/1991 Blacken et al. 5,657,045 A 8/1997 Katsura et al.
5,091,967 A 2/1992 OhsaWa 5,657,443 A 8/1997 Krech, Jr.
5,097,427 A 3/ 1992 Lathrop et al. 5,657,478 A 8/1997 Recker et al.
5,144,291 A 9/1992 NishiZaWa 5,659,671 A 8/1997 Tannenbaum et al.
5,204,944 A 4/ 1993 Wolberg et al. 5,659,673 A 8/1997 Nonoshita
5,224,208 A 6/1993 Miller, Jr. et al. 5,659,715 A 8/1997 Wu et al.
5,239,624 A 8/1993 Cook et al. 5,664,162 A 9/1997 Dye
5,241,658 A 8/1993 Masterson et al. 5,666,439 A 9/1997 Ishida et al.
5,255,353 A 10/1993 ltoh 5,678,037 A 10/1997 Osugi et al.
5,268,995 A 12/1993 Diefendorff et al. 5,682,522 A 10/1997 Huang et al.
5,268,996 A 12/1993 Steiner et al. 5,684,941 A 11/1997 Dye
5,278,948 A 1/1994 Luken, Jr. 5,687,304 A 11/1997 Kiss
5,307,450 A 4/1994 Grossman 5,691,746 A 11/1997 Shyu
5,315,692 A 5/1994 Hansen et al. 5,694,143 A 12/1997 Fielder et al.
5,345,541 A 9/1994 Kelley et al. 5,696,892 A 12/1997 Redmann et al.
5,353,424 A 10/1994 Partovi et al. 711/128 5,703,806 A 12/1997 Puar et al.
5,357,579 A 10/1994 Buchner et al. 5,706,481 A 1/1998 Hannah et al.
5,361,386 A 11/1994 Watkins et al. 5,706,482 A 1/1998 Matsushima et al.
5,363,475 A 11/1994 Baker et al. 5,714,981 A 2/1998 Scott-Jackson et al.
5,377,313 A 12/1994 Scheibl 5,724,561 A 3/1998 Tarolli et al.
5,394,516 A 2/1995 Winser 5,726,689 A 3/1998 Negishi et al.
5,402,532 A 3/1995 Epstein et a1, 5,726,947 A 3/1998 YamaZaki et al. 365/230.03
5,404,445 A 4/1995 Matsumoto 5,734,386 A 3/1998 Cosman
5,408,650 A 4/1995 Arsenault 5,739,819 A 4/1998 Bar-Nahum
5,412,796 A 5/1995 Olive 5,740,343 A 4/1998 Tarolli et al.
5,415,549 A 5/1995 Logg 5,740,383 A 4/1998 Nally et al.
5,416,606 A 5/1995 Katayama et al. 5,742,749 A 4/1998 Foran et al.
5,422,997 A 6/1995 Nagashima 5,742,788 A 4/1998 Priem et al.
5,432,895 A 7/1995 Myers 5,745,118 A 4/1998 Alcorn et al.
5,432,900 A 7/1995 Rhodes et al. 5,745,125 A 4/1998 Deering et al. 345/503
5,438,663 A 8/1995 Matsumoto et al. 5,748,199 A 5/1998 Palm
5,448,689 A 9/1995 Matsuo et al. 5,748,986 A 5/1998 Butter?eld et al.
5,461,712 A 10/1995 Chelstowski et al. 5,751,291 A 5/1998 Olsen et al.
5,467,438 A 11/1995 Nishio et al. 5,751,292 A 5/1998 Emmot
5,467,459 A 11/1995 Alexander et al. 5,751,295 A 5/1998 Becklund et al.
5,469,535 A 11/1995 Jarvis et al. 5,751,930 A 5/1998 Katsura et al.
5,473,736 A 12/1995 Young 5,754,191 A 5/1998 Mills et al.
5,475,803 A 12/1995 Stearns et al. 5,757,382 A 5/1998 Lee
5,487,146 A 1/1996 Guttag et al. 5,760,783 A 6/1998 Migdal et al.
5,490,240 A 2/1996 Foran et al. 5,764,228 A 6/1998 Baldwin
5,495,563 A 2/1996 Winser 5,764,237 A 6/1998 Kaneko
5,504,499 A 4/1996 Horie et al. 5,767,856 A 6/1998 Peterson et al.
5,506,604 A 4/1996 Nally et al. 5,767,858 A 6/1998 Kawase et al.
5,535,374 A 7/1996 Olive 5,768,629 A 6/1998 Wise et al.
5,543,824 A 8/1996 Priem et al. 5,777,623 A 7/1998 Small
5,544,292 A 8/1996 Winser 5,781,927 A 7/1998 Wu et al.
5,548,709 A 8/1996 Hannah et al. 5,791,994 A 8/1998 Hirano et al.
5,553,228 A 9/1996 Erb et al. 5,801,711 A 9/1998 Koss et al.
5,557,712 A 9/1996 Guay 5,801,720 A 9/1998 Norrod et al. 345/526
5,559,954 A 9/1996 Sakoda et al. 5,805,175 A 9/1998 Priem

US 6,717,577 B1
Page 3

5,808,619 A 9/1998 Choi et al. 5,949,428 A 9/1999 Toelle et al.
5,808,630 A 9/1998 Pannell 5,956,042 A 9/1999 Tucker et al.
5,809,219 A 9/1998 Pearce et al. 5,956,043 A 9/1999 Jensen
5,809,278 A 9/1998 Watanabe et al. 5,958,020 A 9/1999 Evoy et al.
5,815,165 A 9/1998 Blixt 5,959,640 A 9/1999 Rudin et al.
5,818,456 A 10/1998 Cosman et al. 5,963,220 A 10/1999 Lee et al.
5,819,017 A 10/1998 Akeley et al. 5,966,134 A 10/1999 Arias
5,821,940 A 10/1998 Morgan et al. 345/420 5,977,979 A 11/1999 Clough et al.
5,822,516 A 10/1998 Krech, Jr. 5,977,984 A 11/1999 Omori
5,828,382 A 10/1998 Wilde 5,982,376 A 11/1999 Abe et al.
5,828,383 A 10/1998 May et al. 5,982,390 A 11/1999 Stoneking et al.
5,828,907 A 10/1998 Wise et al. 5,986,659 A 11/1999 Gallery et al.
5,831,624 A 11/1998 Tarolli et al. 5,986,663 A 11/1999 Wilde
5,831,625 A 11/1998 Rich et al. 5,986,677 A 11/1999 Jones et al.
5,831,640 A 11/1998 Wang et al. 5,987,567 A 11/1999 Rivard et al.
5,835,096 A 11/1998 Baldwin 5,990,903 A 11/1999 Donovan
5,835,792 A 11/1998 Wise et al. 5,995,120 A 11/1999 Dye
5,838,334 A 11/1998 Dye 5,995,121 A 11/1999 Alcokrn et al.
5,844,576 A 12/1998 Wilde et al. 5,999,189 A 12/1999 Kaiiya et al.
5,850,229 A 12/1998 Edelsbrunner et al. 5,999,198 A 12/1999 Horan et al.
5,856,829 A 1/1999 Gray, III et al. 6,002,407 A 12/1999 Fadden
5,859,645 A 1/1999 Latham 6,002,410 A 12/1999 Battle
5,861,888 A 1/1999 Dempsey 6,005,582 A 12/1999 Gabriel et al.
5,861,893 A 1/1999 Stugress 6,005,583 A 12/1999 Morrison
5,867,166 A 2/1999 Myhrvold et al. 6,005,584 A 12/1999 Kitamura et al.
5,870,097 A 2/ 1999 Snyder et al. 6,007,428 A 12/1999 Nishiumi et al.
5,870,098 A 2/1999 Gardiner 6,008,820 A 12/1999 Chauvin et al.
5,870,102 A 2/1999 Tarolli et al. 6,011,562 A 1/2000 Gagne et al.
5,870,109 A 2/1999 McCormack et al. 6,011,565 A 1/2000 Kuo et al.
5,870,587 A 2/1999 Danforth et al. 6,014,144 A 1/2000 Nelson et al.
5,872,902 A 2/1999 Kuchkuda et al. 6,016,150 A 1/2000 Lengvel et al.
5,877,741 A 3/1999 Chee et al. 6,016,151 A 1/2000 Lin
5,877,770 A 3/1999 Hanaoka 6,018,350 A 1/2000 Lee et al.
5,877,771 A 3/ 1999 Drebin et al. 6,020,931 A 2/2000 Bilbrey et al.
5,880,736 A 3/1999 Peercy et al. 6,021,417 A 2/2000 Massarksy
5,880,737 A 3/ 1999 Gri?in et al. 6,022,274 A 2/2000 Takeda et al.
5,883,638 A 3/1999 Rouet et al. 6,023,261 A 2/2000 Ugaiin
5,886,701 A 3/ 1999 Chauvin et al. 6,026,182 A 2/2000 Lee et al.
5,886,705 A 3/1999 LentZ 6,028,608 A 2/2000 Jenkins
5,887,155 A 3/1999 Laidig 6,031,542 A 2/2000 Wittig
5,890,190 A 3/1999 Rutman 6,035,360 A 3/2000 Doidge et al.
5,892,517 A 4/1999 Rich 6,037,948 A 3/2000 Liepa
5,892,974 A 4/1999 Koizumi et al. 6,038,031 A 3/2000 Murphy
5,894,300 A 4/1999 TakiZawa 6,038,348 A 3/2000 Carlev
5,900,881 A 5/1999 Ikedo 6,040,843 A 3/2000 Monroe et al.
5,903,283 A 5/1999 Selwan et al. 6,040,844 A 3/2000 Yamaguchi et al.
5,909,218 A 6/1999 Naka et al. 6,041,010 A 3/2000 Puar et al.
5,909,225 A 6/1999 Schinnerer et al. 6,043,804 A 3/2000 Greene
5,912,675 A 6/1999 Laperriere 6,043,821 A 3/2000 Sprague et al.
5,912,676 A 6/1999 Malladi et al. 6,046,746 A 4/2000 Deering
5,914,721 A 6/1999 Lim 6,046,747 A 4/2000 Saunders et al.
5,914,725 A 6/ 1999 McInnis et al. 6,046,752 A 4/2000 Kirkland et al.
5,914,729 A 6/1999 Lippincott 6,049,337 A 4/2000 Van Overveld
5,920,876 A 7/1999 Ungar et al. 6,049,338 A 4/2000 Anderson et al.
5,923,332 A 7/1999 IZawa 6,052,125 A 4/2000 Gardiner et al.
5,923,334 A 7/1999 Luken 6,052,126 A 4/2000 Sakuraba et al.
5,926,182 A 7/1999 Menon et al. 6,052,127 A 4/2000 Vaswani et al.
5,926,647 A 7/1999 Adams et al. 6,052,129 A 4/2000 Fowler et al.
5,933,150 A 8/1999 Ngo et al. 6,052,133 A 4/2000 Kang
5,933,154 A 8/1999 Howard et al. 6,054,993 A 4/2000 Devic et al.
5,933,155 A 8/1999 Akeley 6,054,999 A 4/2000 Strandberg
5,933,529 A 8/1999 Kirn 6,057,847 A 5/2000 Jenkins
5,936,641 A 8/1999 Jain et al. 6,057,849 A 5/2000 Haubner et al.
5,936,683 A 8/1999 Lin 6,057,851 A 5/2000 Luken et al.
5,940,089 A 8/ 1999 Dilliplane et al. 6,057,859 A 5/2000 Handelman et al.
5,940,538 A 8/1999 Spiegel et al. 6,057,861 A 5/2000 Lee et al.
5,943,058 A 8/1999 Nagy 6,057,862 A 5/2000 Margulis
5,943,060 A 8/1999 Cosman et al. 6,057,863 A 5/2000 Olarig
5,945,997 A 8/1999 Zhao et al. 6,061,462 A 5/2000 Tostevin et al.
5,949,421 A 9/1999 Ogletree et al. 6,064,392 A 5/2000 Rohner
5,949,423 A 9/1999 Olsen 6,067,098 A 5/2000 Dye

US 6,717,577 B1
Page 4

6,070,204
6,072,496
6,075,543
6,075,546
6,078,311
6,078,333
6,078,334
6,078,338
6,081,274
6,088,035
6,088,042
6,088,487
6,088,701
6,091,431
6,092,158
6,094,200
6,097,435
6,097,437
6,104,415
6,104,417
6,105,094
6,108,743
6,111,582
6,111,584
6,115,047
6,115,049
6,118,462
6,128,026
6,144,365
6,144,387
6,151,602
6,155,926
6,157,387
6,166,748
6,172,678
6,177,944
6,191,794
6,200,253
6,204,851
6,215,496
6,215,497
6,226,713
6,232,981
6,236,413
6,239,810
6,252,608
6,252,610
6,264,558
6,268,861
6,275,235
6,285,779
6,292,194
6,329,997
6,331,856
6,339,428
6,342,892
6,353,438
6,356,497
6,408,362
6,417,858
6,426,747
6,437,781
6,459,429
6,466,223
6,469,707
6,476,808
6,476,822
6,496,187

EggEEEEEEEEEEEEEE>>>>>>>>>>>>>>a>>>>>a>>>>>>>>>>>>>>>
5/ 2000
6/ 2000
6/ 2000
6/ 2000
6/ 2000
6/ 2000
6/ 2000
6/ 2000
6/ 2000
7/ 2000
7/ 2000
7/2000
7/ 2000
7/ 2000
7/ 2000
7/ 2000
8/ 2000
8/ 2000
8/ 2000
8/2000
8/ 2000
8/ 2000
8/ 2000
8/ 2000
9/2000
9/ 2000
9/ 2000
10/2000
1 1/ 2000
1 1/ 2000
1 1/ 2000
12/2000
12/ 2000
12/ 2000
1/ 2001
1/ 2001
2/2001
3/ 2001
3/ 2001
4/2001
4/ 2001
5/2001
5/2001
5/2001
5/ 2001
6/ 2001
6/ 2001
7/ 2001
7/ 2001
8/ 2001
9/ 2001
9/ 2001

12/ 2001
12/ 2001
1/ 2002
1/ 2002
3/ 2002
3/2002
6/ 2002
7/ 2002
7/ 2002
8/ 2002

10/ 2002
10/ 2002
10/ 2002
1 1/ 2002
1 1/ 2002
12/ 2002

Poisner
Guenter et al.

Akeley
Hussain et al.
Pelkey
Wittig et al.
Hanaoka et al.
Horan et al.
Shiraishi
Sudarsky et al.
Handelman et al.
Kurashige
Whaley et al.
Saxena et al.
Harriman et al.
Olsen et al.
Stanger et al.
Hwang
Gossett
Nielsen et al.
Lindeman
Debs et al.
Jenkins
Murphy
Deering
Winner et al.
Margulis
Brothers, III
Young et al.
Liu et al.
Hejlsberg et al.
Miyamoto et al.
Kotani
Van Hook et al.
Shiraishi
Fowler et al.
Priem et al.
Nishiumi et al.
Netschke et al.
SZeliski et al.

Leung
Mehrotra 711/118

Gossett
Gossett et al.
Van Hook et al.
Snyder et al.
Hussain
Nishiumi et al.
SanZ-Pastor et al.
Morgan, III
Lapidous et al.
Powll, III 345/430

Wu et al.
Van Hook et al.
Fowler et al.
Van Hook et al.
Van Hook et al.
Puar et al.

Arimilli et al. 711/133

Bosch et al.
Hoppe et al.
Tucker et al.
Deering
Dorbie et al.
Voorhies
Kuo et al.
Burbank
Deering et al.

OTHER PUBLICATIONS

Alpha (transparency) Effects, Future Technology Research
Index, http://www.futuretech.vuurwerk.n1/alpha.html.
Blythe, David, 5.6 Transparency Mapping and Trimming
with Alpha, http://toolbox.sgi.com/TasteOfDT/d...penGL/
advanced 98/notes/node41.html, Jun. 11, 1998.
10.2 Alpha Blending, http://www.sgi.com/software/opengl/
advanced98/notes/node146.html.
10.3 Sorting, http://www.sgi.com/software/opengl/ad
vanced98/notes/node147.html.
10.4 Using the Alpha Function, http://www.sgi.com/soft
ware/opengl/advanced98/notes/node148.html.
Winner, Stephanie, et al., “Hardware Accelerated Rendering
Of Antialiasing Using A Modi?ed A—buffer Algorithm,”
Computer Graphics Proceedings, Annual Conference Series,
1997, pp 307—316.
Debevec, Paul, et al., “Ef?cient View—Dependent Image—
Based Rendering with Projective Texture—Mapping,” Uni
versity of California at Berkeley.
Gibson, Simon, et al., “Interactive Rendering with Real—
World Illumination,” Rendering Techniques 2000; 11th
Eurographics Workshop on Rendering, pp. 365—376 (Jun.
2000).
Segal, Mark, et al., “Fast Shadows and Lighting Effects
Using Texture Mapping,” Computer Graphics, 26, 2, pp..
249—252 (Jul. 1992).
White paper, Kilgard, Mark J ., “Improving Shadows and
Re?ections via the Stencil Buffer” (Nov. 3, 1999).
“OpenGL Projected Textures,” from web site:HTTP:// reali
ty.sgi.com, 5 pages.
“5.13.1 How to Project a Texture,” from web site: www.s
gi.com, 2 pages.
Arkin, Alan, email, subject: “Texture distortion problem,”
from web site: HTTP://reality.sgi.com (Jul. 1997).
Moller, Tomas et al., “Real—Time Rendering,” pp. 179—183
(AK Peters Ltd., 1999).
Williams, Lance, “Casting Curved Shadows on Curved
Surfaces,” Computer Graphics (SIGGRAPH ’78 Proceed
ings), vol. 12, No. 3, pp. 270—274 (Aug. 1978).
Woo et al., “A Survey of Shadow Algorithms,” (IEEE
Computer Graphics and Applications, vol. 10, No. 6, pp.
13—32 (Nov. 1990).
Heidrich et al., “Applications of Pixel Textures in Visual
iZation and Realistic Image Synthesis,” Proceedings 1999
Symposium On Interactive 3D Graphics, pp. 127—134 (Apr.
1999).
Hourcade et al, “Algorithms for Antialiased Cast Shadows”,
Computers and Graphics, vol. 9, No. 3, pp. 260—265 (1985).
Michael McCool, “Shadow Volume Reconstruction from
Depth Maps”, ACM Transactions on Graphics, vol. 19, No.
1, Jan. 2000, pp. 1—26.
RenderMan Artist Tools, PhotoRealistic RenderMan 3.8
User’s Manual, Pixar (Aug. 1998).
RenderMan Interface Version 3.2 (Jul. 2000).
White paper, Dietrich, Sim, “Cartoon Rendering and
Advanced Texture Features of the GeForce 256 Texture
Matrix, Projective Textures, Cube Maps, Texture Coordinate
Generation and DOTPRODUCT3 Texture Blending” (Dec.
16, 1999).
Peter J. Kovach, INSIDE DIRECT 3D, Alpha Testing, ppp
289—291 (1999).
Web site information, CartoonReyes, REM Infogra?ca,
http://www.digimotion.co.uk/cartoonreyes.htm.

US 6,717,577 B1
Page 5

Raskar, Ramesh et a1., “Image Precision Silhouette Edges,”
Symposium on Interactive 3D Graphics 1999, Atlanta, 7
pages (Apr. 26—29, 1999).
SchlechtWeg, Stefan et a1., Rendering Line—DraWings With
Limited Resources, Proceedings of GRAPHICON ’96, 6th
International Conference and Exhibition on Computer
Graphics and Visualization in Russia, (St. Petersburg, Jul.
1—5, 1996) vol. 2, pp 131—137.
Haeberli, Paul et a1., “Texture Mapping as a Fundamental
DraWing Primitive,” Proceedings of the Fourth Eurograph
ics Workshop on Rendering, 11pages, Paris, France (Jun.
1993).
SchlechtWeg, Stefan et a1., “Emphasising in Line—draW
ings,” Norsk samarbeid innen gra?sk databehandling: NOR
SIGD Info, medlemsblad for NORSIGD, Nr 1/95, pp. 9—10.
Markosian, Lee et a1., “Real—Time Nonphotorealistic Ren
dering,” BroWn University site of the NSF Science and
Technology Center for Computer Graphics and Scienti?c
Visualization, Providence, RI, 5 pages (undated).
Feth, Bill, “Non—Photorealistic Rendering,”
Wif3@cornell.edu, CS490—Bruce Land, 5 pages (Spring
1998).
Elber, Gershon, “Line Art Illustrations of Parametric and
Implicit Forms,” IEEE Transactions on Visualization and
Computer Graphics, vol. 4, No. 1, Jan.—Mar. 1998.
Zeleznik, Robert et al. “SKETCH: An Interface for Sketch
ing 3D Scenes,” Computer Graphics Proceedings, Annual
Conference Series 1996, pp. 163—170.
Computer Graphics World, Dec. 1997.
Reynolds, Craig, “Stylized Depiction in Computer Graphics,
Non—Photorealistic, Painterly and Toon Rendering,” an
annotated survey of online Resources, 13 pages, last update
May 30, 2000, http://WWW.red.com/cWr/painterly.html.
Render Man Artist Tools, Using Arbitrary Output Variables
in Photorealistic Renderman (With Applications), PhotoRe
alistic Renderman Application Note #24, 8 pages, Jun. 1998,
http://WWW.pixar.com/products/renderman/toolkit/Toolkit/
AppNotes/appnote.24.html.
Decaudin, Philippe, “Cartoon—Looking Rendering of 3D
Scenes,” Syntim Project Inria, 6 pages, http://WWW—syntim.
inria.fr/syntim/recherche/decaudin/cartoon—eng.html.
Hachigian, Jennifer, “Super Cel Shader 1.00 Tips and
Tricks,” 2 pages, WysiWyg://thePage.13/http://members.
xoom.com/iXMCM.j arvia/3D/celshade.html.
Digimation Inc., “The Incredible Comicshop,” info sheet, 2
pages, http://WWW.digimation.com/asp/product/asp?prod
uctiid=33.
Softimage/3D Full Support, “Toon Assistant,” 1998 Avid
Technology, Inc., 1 page, http://WWW.softimage.com/3dsup
port/techn...uments/3.8/features3.8/relinotes.56.html.
Cambridge Animo—Scene III, info sheet, Cambridge Ani
mation Systems, 2 pages, http://WWW.com—ani.co.uk/
casWeb/products/softWare/SceneIII.htm.
Mulligan, Vikram, Toon, info sheet, 2 pages, http://digital
carversguild.com/products/toon/toon.ttml.
Toony Shader, “Dang I’m tired of photorealism,” 4 pages,
http://WWW.visi.com/~mcdonald/toony.html.
“Cartoon Shading , Using Shading Mapping,” 1 page, http://
WWW.goat.com/alias/shader.html#toonshad.
Web site information, CartoonReyes, http://WWW.zentertain
ment.com/zentropy/revieW/cartoonreyes.html.
VIDI Presenter 3D Repository, “Shaders.” 2 pages, http://
WWW.Webnation.com/vidirep/panels/renderman/shaders/
toon.phtml.

The RenderMan Interface Version 3.1, (Sep. 1989).
“Renderman Artist Tools, PhotoRealistic RenderMan Tuto
rial,” Pixar (Jan. 1996).
Web site materials, “Renderman Artist Tools, PhotoRealistic
RenderMan 3.8 User’s Manual,” Pixar.
NVIDIA.com, technical presentation, “AGDC Per—Pixel
Shading” (Nov. 15, 2000).
NVIDIA.com, technical presentation, Introduction to DX8
Pixel Shaders (Nov. 10, 2000).
NVIDIA.com, technical presentation, “Advanced Pixel
Shader Details” (Nov. 10, 2000).
“Developer’s Lair, Multitexturing With the ATI Rage Pro,”
(7 pages) from ati.com Web site (2000).
Slide Presentation, Sébastien Dominé, “nVIDIA Mesh Skin
ning, OpenGl”.
Singh, Karan et a1., “Skinning Characters using Surface—
Oriented Free—Form Deformations,” Toronto Canada.
“HardWare Technology,” from ATI.com Web site, 8 pages
(2000).
“Skeletal Animation and Skinning,” from ATI.com Web site,
2 pages (Summer 2000).
“Developer Relations, ATI Summer 2000 Developer NeWs
letter,” from ATI.com Web site, 5 pages (Summer 2000).
Press Releases, “AT I’s RADEON family of products deliv
ers the most comprehensive support for the advance graph
ics features of DirectX 8.0,” Canada, from ATI.com Web
site, 2 pages (Nov. 9, 2000).
“ATI RADEON Skinning and TWeening,” from ATI.com
Web site, 1 page (2000).
Hart, Evan et a1., “Vertex Shading With Direct3D and
OpenGL,” Game Developers Conference 2001, from AT I.
com Web site (2001).
Search Results for: skinning, from ATI.com Web site, 5
pages (May 24, 2001).
Hart, Evan et a1., “Graphics by rage,” Game Developers
Conference 2000, from AT I.com Web site (2000).
Ef?cient Command/Data Interface Protocol For Graphics,
IBM TDB, vol. 36, issue 9A, Sep. 1, 1993, pp. 307—312.
Shade, Jonathan et a1., “Layered Depth Images,” Computer
Graphics Proceedings, Annual Conference Series, pp.
231—242 (1998).
Videum Conference Pro (PCI) Speci?cation, product of
Winnov (Winnov), published Jul. 21, 1999.
Whitepaper: Implementing Fog in Direct3D, Jan. 3, 2000,
WWW.nvidia.com.

Akeley, Kurt, “Reality Engine Graphics”, 1993, Silicon
Graphics Computer Systems, pp. 109—116.
White paper, Huddy, Richard, “The Ef?cient Use of Vertex
Buffers,” (Nov. 01, 2000).
White paper, Spitzer, John, et a1., “Using GLiNViarrayi
range and GLiNViFence on GEForce Products and Bey
one” (Aug. 1, 2000).
White paper, Rogers, Douglas H., “Optimizing Direct3D for
the GeForce 256” (Jan. 3, 2000).
White paper, “Technical Brief, AGP 4X With Fast
Writes—A Unique NVIDIA GeForce 256 Feature” (Nov.
10, 1999).
Hoppe, Hugues, “Optimization of Mesh Locality for Trans
parent Vertex Caching,” Proceedings of SIGGRAPH, pp.
269—276 (Aug. 8—13, 1999).

US 6,717,577 B1
Page 6

Hook, Brian, “An Incomplete Guide to Programming
DirectDraW and Direct3D Immediate Mode (Release 0.46),”
printed from Web site: WWW.WksoftWare.com, 42 pages.
Thompson, Tom, “Must—See 3—D Engines,” BYTE Maga
Zine, printed from Web site WWW.byte.com, 10 pages (Jun.
1996).
Thompson, Nigel, “Rendering With Immediate Mode,”
Microsoft Interactive Developer Column: Fun and Games,
printed from Web site msdn.microsoft.com, 8 pages (Mar.
97).

“HOWTO: Animate Textures in Direct3D Immediate

Mode,” printed from Web site support.microsoft.com, 3
pages (last revieWed Dec. 15, 2000).

“INFO: Rendering a Triangle Using an Execute Buffer,”
printed from Web site support.microsoft.com, 6 pages (last
revieWed Oct. 20, 2000).

* cited by examiner

U.S. Patent Apr. 6, 2004 Sheet 5 0f 10 US 6,717,577 B1

Command Stream \3
a 3’ addr data 114

2% i i }
ush ' ' Address 4i1 Dissplay List

Stack ream 200
pop: Parser _/

Draw |———> pipeline state
command

,, 204

P- -- J addr
Primitive "m'i've . ..
Descriptor >-—> Stream primitive stream

308 Parser

|____, per-primitive/per-index data
vertex
stream

208

,/
addr addr Vertex

Vertex > Vertex —> Components
Vertex Stream Cache d t from

Descriptor>-—-’ Parser zdata _“ Main
306 Memory

1 C 104
212

per
vertex new
data triangle

primitive
data

V

J
v 214

InverseQ J

To display Fig. 2A
pipeline

1 16

U.S. Patent Apr. 6, 2004 Sheet 6 0f 10 US 6,717,577 B1

Vertex “ n

Commands , CALL

MAIN MEMORY -* FIF01 l—
104

FIFO

-——> FIFOB'
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ‘_..|

U.S. Patent Apr. 6, 2004 Sheet 7 0f 10 US 6,717,577 B1

mom

E52 25 m2 .

25,55 5% I c?

3 c2

m: 93 35> 2 X2. wt?
2: m . . . mt?

w: XE “ E 25.5% m E;

@S M a>

@S w m Ea .1

E5 25>

w: x2: N .

E5 NE;

2.: # mom. \ w . _. tm>
e E5

@S w A/|\ . (It 35> 3E5 2255 a: $555 a: Vat;

n .3

gm S 3025 £5 2E c2 58
com.

2m ea w? > mwm x Q;

/ 2%

gm Q; m: 63:88 55>

U.S. Patent Apr. 6, 2004 Sheet 8 of 10 US 6,717,577 B1

306

Position

Normal

Color-Diffused

Color-Specular

Texture 0 Coordinates

Texture 1 Coordinates

Texture 2 Coordinates

Fig. 3A
Vertex Attribute Table

U.S. Patent Apr. 6, 2004 Sheet 9 0f 10 US 6,717,577 B1

Array 402

Stride[12] k
Array QiI'BCT/

Base [12] lndeX data attribute # 404

t t t t
tag WrData V t V V V V V V >

tag WrAddr _ TAG TAG TAG TAG TAG TAG TAG TAG

tag RdData ; 7 6 5 4 3 2 1 0

tag

. . we[7:0]

Address ‘mt/miss ___]
Calculation Sew tag Check |Qgic control

408 T

412 j t A t A A A A

tagWrAddr

iHgRdAddr TAG TAG TAG TAG TAG TAG TAG TAG
’ slat stat stat stat stat stat stat stat

MemAddrI V t , We L 406

[SL888 queue j” From main memory 104 a
q “ MemData

‘"6 T) V$RdAddr ‘ '

' W 400
V$WrAddr (512 x 128)

V$ offset ‘ 473
shifter ~/

212 Z/
. t a

Data Slze merge 420
_ unatigned

Dlrect data Hg. 4 T

To data conversion unit 214

U.S. Patent Apr. 6, 2004 Sheet 10 0f 10 US 6,717,577 B1

25>

62:8 28

m .mm 8,

NQ/J 5‘ // m? //

25 208 $222 2:2:8 2% 5. Es, @2858

2:. E5 2% 25. Q8

US 6,717,577 B1
1

VERTEX CACHE FOR 3D COMPUTER
GRAPHICS

This application claims the bene?t of Provisional appli
cation Ser. No. 60/161,915, ?led Oct. 28, 1999.

FIELD OF THE INVENTION

The present invention relates to 3D interactive computer
graphics, and more speci?cally, to arrangements and tech
niques for ef?ciently representing and storing vertex infor
mation for animation and display processing. Still more
particularly, the invention relates to a 3D graphics integrated
circuit including a vertex cache for more ef?cient imaging of
3D polygon data.

BACKGROUND AND SUMMARY OF THE
INVENTION

Modem 3D computer graphics systems construct ani
mated displays from display primitives, i.e., polygons. Each
display object (e.g., a tree, a car, or a person or other
character) is typically constructed from a number of indi
vidual polygons. Each polygon is represented by its
vertices—Which together specify the location, orientation
and siZe of the polygon in three-dimensional space—along
With other characteristics (e.g., color, surface normals for
shading, textures, etc.). Computer techniques can ef?ciently
construct rich animated 3D graphical scenes using these
techniques.
LoW cost, high speed interactive 3D graphics systems

such as video game systems are constrained in terms of
memory and processing resources. Therefore, in such sys
tems it is important to be able to ef?ciently represent and
process the various polygons representing a display object.
For example, it is desirable to make the data representing the
display object compact, and to present the data to the 3D
graphics system in a Way so that all of the data needed for
a particular task is conveniently available.
One can characteriZe data in terms of temporal locality

and spatial locality. Temporal locality means the same data
is being referenced frequently in a small amount of time. In
general, the polygon-representing data for typical 3D inter
active graphics applications has a large degree of temporal
locality. Spatial locality means that the next data item
referenced is stored close in memory to the last one refer
enced. Efficiency improvements can be realiZed by increas
ing the data’s spatial locality. In a practical memory system
that does not alloW unlimited loW-latency random access to
an unlimited amount of data, performance is increased if all
data needed to perform a given task is stored close together
in loW-latency memory.

To increase the spatial locality of the data, one can sort the
polygon data based on the order of processing—assuring
that all of the data needed to perform a particular task Will
be presented at close to the same time so it can be stored
together. For example, polygon data making up animations
can be sorted in a Way that is preferential to the type of
animation being performed. As one example, typical com
plex interactive real-time animation such as surface defor
mation requires manipulation of all the vertices at the
surfaces. To perform such animation ef?ciently, it is desir
able to sort the vertex data in a certain Way.

Typical 3D graphical systems perform animation process
ing and display processing separately, and these separate
steps process the data differently. Unfortunately, the optimal
order to sort the vertex data for animation processing is
generally different from the optimal sort order for display

10

15

25

35

45

55

65

2
processing. Sorting for animation may tend to add random
ness to display ordering. By sorting a data stream to simplify
animation processing, We make it harder to ef?ciently dis
play the data.

Thus, for various reasons, it may not be possible to
assume that spatial locality exists When accessing data for
display. Dif?culty arises from the need to ef?ciently access
an arbitrarily large display object. In addition, for the
reasons explained above, there Will typically be some
amount of randomness—at least for display purposes—in
the order the vertex data is presented to the display engine.
Furthermore, there may be other data locality above the
vertex level that Would be useful to implement (e.g., group
ing together all polygons that share a certain texture).
One approach to achieving higher ef?ciency is to provide

additional loW-latency memory (e.g., the loWest latency
memory system affordable). It might al so be possible to ?t
a display object in fast local memory to achieve random
access. HoWever, objects can be quite large, and may need
to be double-buffered. Therefore, the buffers required for
such an approach could be very large. It might also be
possible to use a main CPU’s data cache to assemble and
sort the polygon data in an optimal order for the display
engine. HoWever, to do this effectively, there Would have to
be some Way to prevent the polygon data from thrashing the
rest of the data cache. In addition, there Would be a need to
prefetch the data to hide memory latency—since there Will
probably be some randomness in the Way even data sorted
for display order is accessed. Additionally, this approach
Would place additional loading on the CPU—especially
since there might be a need in certain implementations to
assemble the data in a binary format the display engine can
interpret. Using this approach, the main CPU and the display
engine Would become serial, With the CPU feeding the data
directly to the graphics engine. ParalleliZing the processing
(e.g., to feed the display engine through a DRAM FIFO
buffer) Would require substantial additional memory access
bandWidth as compared to immediate-mode feeding.

Thus, there exists a need for more efficient techniques that
can be used to represent, store and deliver polygon data for
a 3D graphics display process.
The present invention solves this problem by providing a

vertex cache to organiZe indexed primitive vertex data
streams.

In accordance With one aspect provided by the present
invention, polygon vertex data is fed to the 3D graphics
processor/display engine via a vertex cache. The vertex
cache may be a small, loW-latency memory that is local to
(e.g., part of) the 3D graphics processor/display engine
hardWare. Flexibility and ef?ciency results from the cache
providing a virtual memory vieW much larger than the actual
cache contents.

The vertex cache may be used to build up the vertex data
needed for display processing on the ?y on an as-needed
basis. Thus, rather than pre-sorting the vertex data for
display purposes, the vertex cache can simply fetch the
relevant blocks of data on an as-needed basis to make it
available to the display processor. Based on the high degree
of temporal locality exhibited by the vertex data for inter
active video game display and the use of particularly optimal
indexed-array data structures (see beloW), most of the vertex
data needed at any given time Will be available in even a
small set-associative vertex cache having a number of cache
lines proportional to the number of vertex data streams. One
example optimum arrangement provides a 512x128-bit dual
ported RAM to form an 8 set-associative vertex cache.

US 6,717,577 B1
3

Efficiency can be increased by customizing and optimiZ
ing the vertex cache and associated tags for the purpose of
delivering vertices to the 3D graphics processor/display
engine—alloWing more ef?cient prefetching and assembling
of vertices than might be possible using a general-purpose
cache and tag structure. Because the vertex cache alloWs
data to be fed directly to the display engine, the cost of
additional memory access bandWidth is avoided. Direct
memory access may be used to ef?ciently transfer vertex
data into the vertex cache.

To further increase the ef?ciencies afforded by the vertex
cache, it is desirable to reduce the need to completely
re-specify a particular polygon or set of polygons each time
it is (they are) used. In accordance With a further aspect
provided by the present invention, polygons can be repre
sented as arrays, e.g., linear lists of data components repre
senting some feature of a vertex (for example, positions,
colors, surface normals, or texture coordinates). Each dis
play object may be represented as a collection of such arrays
along With various sets of indices. The indices reference the
arrays for a particular animation or display purpose. By
representing polygon data as indexed component lists, dis
continuities are alloWed betWeen mappings. Further, sepa
rating out individual components alloWs data to be stored
more compactly (e.g., in a fully compressed format). The
vertex cache provided by the present invention can accom
modate streams of such indexed data up to the index siZe.

Through use of an indexed vertex representation in con
junction With the vertex cache, there is no need to provide
any resorting for display purposes. For example, the vertex
data may be presented to the display engine in a order
presorted for animation as opposed to display—making
animation a more efficient process. The vertex cache uses the
indexed vertex data structure representation to ef?ciently
make the vertex data available to the display engine Without
any need for explicit resorting.
Any vertex component can be index-referenced or

directly inlined in the command stream. This enables ef?
cient data processing by the main processor Without requir
ing the main processor’s output to conform to the graphics
display data structure. For example, lighting operations
performed by the main processor may generate only a color
array from a list of normals and positions by loop-processing
a list of lighting parameters to generate the color array. There
is no need for the animation process to folloW a triangle list
display data structure, nor does the animation process need
to reformat the data for display. The display process can
naturally consume the data provided by the animation pro
cess Without adding substantial data reformatting overhead
to the animation process.

On the other hand, there is no penalty for sorting the
vertex data in display order; the vertex data is ef?ciently
presented to the display engine in either case, Without the
vertex cache signi?cantly degrading performance vis-a-vis a
vertex presentation structure optimiZed for presenting data
presorted for display.

In accordance With a further aspect provided by this
invention, the vertex data includes quantized, compressed
data streams in any of several different formats (e.g., 8-bit
?xed point, 16-bit ?xed point, or ?oating point). This data
can be indexed (i.e., referenced by the vertex data stream) or
direct (i.e., contained Within the stream itself). These various
data formats can all be stored in the common vertex cache,
and subsequently decompressed and converted into a com
mon format for the graphics display pipeline. Such hardWare
support of ?exible types, formats and numbers of attributes

15

25

35

45

55

65

4
as either immediate or indexed input data avoids complex
and time-consuming softWare data conversion.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
present invention Will be better and more completely under
stood by referring to the folloWing detailed description of
preferred embodiments in conjunction With the draWings of
Which:

FIG. 1 is a block diagram of an example interactive 3D
graphics system;

FIG. 1A is a block diagram of the example graphics and
audio coprocessor shoWn in FIG. 1;

FIG. 1B is a more detailed schematic diagram of portions
of the FIG. 1A graphics and audio coprocessor shoWing an
example 3D pipeline graphics processing arrangement;

FIG. 2 shoWs an example command processor including
a vertex cache provided With vertex index array data;

FIG. 2A shoWs an example display list processor includ
ing a vertex cache provided in accordance With the present
invention;

FIG. 2B shoWs an example dual FIFO arrangement;

FIG. 3 is a schematic diagram of an example indexed
vertex data structure;

FIG. 3A shoWs an example vertex descriptor block;
FIG. 4 is a block diagram of an example vertex cache

implementation;
FIG. 5 shoWs an example vertex cache memory address

format; and
FIG. 6 shoWs an example vertex cache tag status register

format.

DETAILED DESCRIPTION OF PRESENTLY
PREFERRED EXAMPLE EMBODIMENTS

FIG. 1 is a schematic diagram of an overall example
interactive 3D computer graphics system 100 in Which the
present invention may be practiced. System 100 can be used
to play interactive 3D video games accompanied by inter
esting stereo sound. Different games can be played by
inserting appropriate storage media such as optical disks into
an optical disk player 134. A game player can interact With
system 100 in real time by manipulating input devices such
as handheld controllers 132, Which may include a variety of
controls such as joysticks, buttons, sWitches, keyboards or
keypads, etc.

System 100 includes a main processor (CPU) 102, a main
memory 104, and a graphics and audio coprocessor 106. In
this example, main processor 102 receives inputs from
handheld controllers 132 (and/or other input devices) via
coprocessor 100. Main processor 102 interactively responds
to such user inputs, and executes a video game or other
graphics program supplied, for example, by external storage
134. For example, main processor 102 can perform collision
detection and animation processing in addition to a variety
of real time interactive control functions.

Main processor 102 generates 3D graphics and audio
commands and sends them to graphics and audio coproces
sor 106. The graphics and audio coprocessor 106 processes
these commands to generate interesting visual images on a
display 136 and stereo sounds on stereo loudspeakers 137R,
137L or other suitable sound-generating devices.

System 100 includes a TV encoder 140 that receives
image signals from coprocessor 100 and converts the image
signals into composite video signals suitable for display on

US 6,717,577 B1
5

a standard display device 136 (e.g., a computer monitor or
home color television set). System 100 also includes an
audio codec (compressor/decompressor) 138 that com
presses and decompresses digitized audio signals (and may
also convert betWeen digital and analog audio signalling
formats). Audio codec 138 can receive audio inputs via a
buffer 140 and provide them to coprocessor 106 for pro
cessing (e.g., mixing With other audio signals the coproces
sor generates and/or receives via a streaming audio output of
optical disk device 134). Coprocessor 106 stores audio
related information in a memory 144 that is dedicated to
audio tasks. Coprocessor 106 provides the resulting audio
output signals to audio codec 138 for decompression and
conversion to analog signals (e.g., via buffer ampli?ers
142L, 142R) so they can be played by speakers 137L, 137R.

Coprocessor 106 has the ability to communicate With
various peripherals that may be present Within system 100.
For example, a parallel digital bus 146 may be used to
communicate With optical disk device 134. A serial periph
eral bus 148 may communicate With a variety of peripherals
including, for example, a ROM and/or real time clock 150,
a modem 152, and ?ash memory 154. A further external
serial bus 156 may be used to communicate With additional
expansion memory 158 (e.g., a memory card).

Graphics And Audio Coprocessor

FIG. 1A is a block diagram of components Within copro
cessor 106. Coprocessor 106 may be a single integrated
circuit. In this example, coprocessor 106 includes a 3D
graphics processor/display engine 107, a processor interface
108, a memory interface 110, an audio digital signal pro
cessor (DSP) 162, an audio memory interface (I/F) 164, an
audio interface and mixer 166, a peripheral controller 168,
and a display controller 128.

3D graphics processor/display engine 107 performs
graphics processing tasks, and audio digital signal processor
162 performs audio processing tasks. Display controller 128
accesses image information from memory 104 and provides
it to TV encoder 140 for display on display device 136.
Audio interface and mixer 166 interfaces With audio codec
138, and can also mix audio from different sources (e.g., a
streaming audio input from disk 134, the output of audio
DSP 162, and external audio input received via audio codec
138). Processor interface 108 provides a data and control
interface betWeen main processor 102 and coprocessor 106.
Memory interface 110 provides a data and control interface
betWeen coprocessor 106 and memory 104. In this example,
main processor 102 accesses main memory 104 via proces
sor interface 108 and memory controller 110 that are part of
coprocessor 106. Peripheral controller 168 provides a data
and control interface betWeen coprocessor 106 and the
various peripherals mentioned above (e.g., optical disk
device 134, controllers 132, ROM and/or real time clock
150, modem 152, ?ash memory 154, and memory card 158).
Audio memory interface 164 provides an interface With
audio memory 144.

FIG. 1B shoWs a more detailed vieW of 3D graphics
processor/display engine 107 and associated components
Within coprocessor 106. 3D graphics processor/display
engine 107 includes a command processor 114 and a 3D
graphics pipeline 116. Main processor 102 communicates
streams of graphics data (i.e., display lists) to command
processor 114. Command processor 114 receives these dis
play commands and parses them (obtaining any additional
data necessary to process them from memory 104), and
provides a stream of vertex commands to graphics pipeline

15

25

35

45

55

65

6
116 for 3D processing and rendering. Graphics pipeline 116
generates a 3D image based on these commands. The
resulting image information may be transferred to main
memory 104 for access by display controller 128—Which
displays the frame buffer output of pipeline 116 on display
136.

In more detail, main processor 102 may store display lists
in main memory 104, and pass pointers to command pro
cessor 114 via bus interface 108. The command processor
114 (Which includes a vertex cache 212 discussed in detail
beloW) fetches the command stream from CPU 102, fetches
vertex attributes from the command stream and/or from
vertex arrays in memory, converts attribute types to ?oating
point format, and passes the resulting complete vertex
polygon data to the graphics pipeline 116 for rendering/
rasteriZation. As explained in more detail beloW, vertex data
can come directly from the command stream, and/or from a
vertex array in memory Where each attribute is stored in its
oWn linear array. A memory arbitration circuitry 130 arbi
trates memory access betWeen graphics pipeline 116, com
mand processor 114 and display unit 128. As explained
beloW, an on-chip 8-Way set-associative vertex cache 212 is
used to reduce vertex attribute access latency.

As shoWn in FIG. 1B, graphics pipeline 116 may include
transform unit 118, a setup/rasteriZer 120, a texture unit 122,
a texture environment unit 124 and a pixel engine 126. In
graphics pipeline 116, transform unit 118 performs a variety
of 3D transform operations, and may also perform lighting
and texture effects. For example, transform unit 118 trans
forms incoming geometry per vertex from object space to
screen space; transforms incoming texture coordinates and
computes projective texture coordinates; performs polygon
clipping; performs per vertex lighting computations; and
performs bump mapping texture coordinate generation. Set
up/rasteriZer 120 includes a set up unit Which receives vertex
data from the transform unit 118 and sends triangle set up
information to rasteriZers performing edge rasteriZation,
texture coordinate rasteriZation and color rasteriZation. Tex
ture unit 122 performs various tasks related to texturing,
including multi-texture handling, post-cache texture
decompression, texture ?ltering, embossed bump mapping,
shadoWs and lighting through the use of projective textures,
and BLIT With alpha transparency and depth. Texture unit
122 outputs ?ltered texture values to the texture environ
ment unit 124. Texture environment unit 124 blends the
polygon color and texture color together, performing texture
fog and other environment-related functions. Pixel engine
126 performs Z buffering and blending, and stores data into
an on-chip frame buffer memory.

Thus, graphics pipeline 116 may include one or more
embedded DRAM memories (not shoWn) to store-frame
buffer and/or texture information locally. The on-chip frame
buffer is periodically Written to main memory 104 for access
by display unit 128. The frame buffer output of graphics
pipeline 116 (Which is ultimately stored in main memory
104) is read each frame by display unit 128. Display unit 128
provides digital RGB pixel values for display on display
136.

Vertex Cache And Vertex Index Array

FIG. 2 is a schematic illustration of command processor
114 including a vertex cache 212 and a display list processor
213. Command processor 114 handles a Wide range of vertex
and primitive data structures, from a single stream of vertex
data containing position, normal, texture coordinates and
colors to fully indexed arrays. Any vertex component can be

US 6,717,577 B1
7

index-referenced or directly in-lined in the command
stream. Command processor 114 thus supports ?exible
types, formats and numbers of attributes as either immediate
or indexed data.

Display list processor 213 Within command processor 114
processes display list commands provided by CPU 102—
typically via a buffer allocated Within main memory 104.
Vertex cache 212 caches indexed polygon vertex data struc
tures such as the example data structure 300 shoWn in FIG.
2. Example indexed polygon vertex data structure 300 may
include a vertex index array 304 Which references a number
of vertex component data arrays (e.g., a color data array
306a, a texture vertex data array 306b, a surface normal data
array 306c, a position vertex data array 306d, and so on).
Vertex cache 212 accesses the vertex data from these arrays
306 in main memory 104, and caches them for fast access
and use by display list processor 213.

Display List Processor

FIG. 2A shoWs example display list processor 213 per
formed by command processor 114. In this FIG. 2A
example, display list processor 213 provides several stages
of parsing. Display list commands received from main
processor 102 are interpreted by a display list stream parser
200. Display list stream parser 200 may use an address stack
202 to provide nesting of instructions—or dual FIFOS may
be used to store a stream of vertex commands from a FIFO
in main memory 106 to alloW subroutine branching in
instancing (see FIG. 2B) Without need for reloading
prefetched vertex command data. Using the FIG. 2B
approach, the display list commands may thus provide for a
one-level-deep display list—Where the top level command
stream can call the display list one level deep. This “call”
capability is useful for pre-computed commands and
instancing in geometry.

Display list stream parser 200 routes commands that
affect the state of graphics pipeline 116 to the graphics
pipeline. The remaining primitive command stream is
parsed by a primitive stream parser 204 based on a primitive
descriptor obtained from memory 104 (see beloW).

The indices to vertices are de-referenced and parsed by a
vertex stream parser 208 based on a vertex descriptor 306
Which may be provided in a table in hardWare. The vertex
stream provided to vertex stream parser 208 may include
such indices to vertex data stored Within main memory 104.
Vertex stream parser 208 can access this vertex data from
main memory 104 via vertex cache 212—thus separately
providing the vertex commands and associated referenced
vertex attributes via different paths in the case of indexed as
opposed to direct data. In one example, vertex stream parser
208 addresses vertex cache 212 as if it Were the entirety of
main memory 104. Vertex cache 212, in turn, retrieves (and
often times, may prefetch) vertex data from main memory
104, and caches it temporarily for use by vertex stream
parser 208. Caching the vertex data in vertex cache 212
reduces the number of accesses to main memory 104—and
thus the main memory bandWidth required by command
processor 114.

Vertex stream parser 208 provides data for each vertex to
be rendered Within each triangle (polygon). This per-vertex
data is provided, along With the per-primitive data outputted
by primitive stream parser 204, to a decompression/inverse
quantiZer block 214. Inverse quantiZer 214 converts differ
ent vertex representations (e.g., 8-bit and 16-bit ?xed point
format data) to a uniform ?oating-point representation used
by graphics pipeline 116. Inverse quantiZer 214 provides

10

15

25

35

45

55

65

8
hardWare support for a ?exible variety of different types,
formats and numbers of attributes, and such data can be
presented to display list processor 213 as either immediate
or indexed input data. The uniform ?oating-point represen
tation output of inverse quantiZer 214 is provided to graphics
pipeline 116 for rasteriZation and further processing. If
desired as an optimiZation, a further small cache or buffer
may be provided at the output of inverse quantiZer 214 to
avoid the need to re-transform vertex strip data.

Vertex Index Array

FIG. 3 shoWs a more detailed example of an indexed
vertex list 300 of the preferred embodiment used to provide
indirect (i.e., indexed) vertex attribute data via vertex cache
212. This generaliZation indexed vertex list 300 may be used
to de?ne primitives in the system shoWn in FIG. 1. Each
primitive is described by a list of indices, each of Which
indexes into an array of vertices. Vertices and primitives
each use format descriptors to de?ne the types of their items.
These descriptors associate an attribute With a type. An
attribute is a data item that has a speci?c meaning to the
rendering hardWare. This affords the possibility of program
ming the hardWare With descriptors so it can parse and
convert the vertex/primitive stream as it is loaded. Using the
minimum siZe type and the minimum number of attributes
per vertex leads to geometry compression. The FIG. 3
arrangement also alloWs attributes to be associated With the
vertices, the indices, or the primitive, as desired.

Thus, in the FIG. 3 example indexed vertex array 300, a
primitive list 302 de?nes each of the various primitives (e. g.,
triangles) in the data stream (e.g., prim0, prim1, prim2,
prim3, . . . Aprimitive descriptor block 308 may provide
attributes common to a primitive (e.g., texture and connec
tivity data Which may be direct or indexed). Each primitive
Within primitive list 302 indexes corresponding vertices
Within a vertex list 304. A single vertex Within vertex list 304
may be used by multiple primitives Within primitive list 302.
If desired, primitive list 302 may be implied rather than
explicit—i.e., vertex list 304 can be ordered in such a Way
as to de?ne corresponding primitives by implication (e.g.,
using triangle strips).
A vertex descriptor block 306 may be provided for each

vertex Within vertex list 304. Vertex descriptor block 306
includes attribute data corresponding to a particular vertex
(e.g., rgb or other color data, alpha data, xyZ surface normal
data). As shoWn in FIG. 2, vertex descriptor block 306 may
comprise a number of different indexed component blocks.
The vertex attribute descriptor block 306 10 de?nes Which
vertex attributes are present, the number and siZe of the
components, and hoW the components are referenced (e.g.,
either direct—that is, included Within the quantized vertex
data stream—or indexed). In one example, the vertices in a
DRAW command for a particular primitive all have the same
vertex attribute data structure format.

FIG. 3A shoWs an example list of attributes provided by
vertex attribute block 306. The folloWing attributes may be
provided:

Attribute

Position
Normal
Diffused Color
Specular Color

