
GameCube DSP User’s Manual
Reverse-engineered and documented by Duddie

duddie@walla.com

March 10, 2020
v0.0.6

1

mailto:duddie@walla.com

2

Copyright (c) 2005 Duddie. Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation License”.

Contents

3

CONTENTS 4

Disclaimer

This documentation is no way endorsed by or affiliated with Nintendo, Nintendo of America or its licenses.
GameCube is a trademark of Nintendo of America. Other trademarked names used in this documentation
are trademarks of their respective owners.
This documentation is provided “AS IS” and can be wrong, incomplete or in any other way useless.
This documentation cannot be used for any commercial purposes without prior agreement received from
authors.
The purpose of this documentation is purely academic and it aims at understanding described hardware.
It is based on academic reverse engineering of hardware.

CONTENTS 5

Version History

Version Date Author Change
0.0.1 2005.05.08 Duddie Initial release
0.0.2 2005.05.09 Duddie Added $prod and $config registers, table of opcodes, disclaimer.
0.0.3 2005.05.09 Duddie Fixed BLOOP and BLOOPI and added description of the loop stack.
0.0.4 2005.05.12 Duddie Added preliminary DSP memory map and opcode syntax.
0.0.5 2018.04.09 Lioncache Converted document over to LaTeX.
0.0.6 2018.04.13 BhaaL Updated register tables, fixed opcode operations

CONTENTS 6

GNU Free Documentation License
Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image

CONTENTS 7

formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.
A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the

CONTENTS 8

Document). You may use the same title as a previous version if the original publisher of that version
gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement. C. State on the Title page the name of the publisher of the Modified Version, as
the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright
notice for your modifications adjacent to the other copyright notices. F. Include, immediately after the
copyright notices, a license notice giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below. G. Preserve in that license notice
the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice. H.
Include an unaltered copy of this License. I. Preserve the section Entitled "History", Preserve its Title,
and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence. J. Preserve the network location, if
any, given in the Document for public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives permission. K. For
any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications
given therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any
section Entitled "Endorsements". Such a section may not be included in the Modified Version. N. Do
not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant
Section. O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

CONTENTS 9

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.
If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See https://www.gnu.org/licenses/.
Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Chapter 1

Overview

1.1 DSP Memory Map

The DSP accesses memory in words, so all addresses refer to words. A DSP word is 16 bits in size.
Instruction Memory (IMEM) is divided into instruction RAM (IRAM) and instruction ROM (IROM).
Exception vectors are located at the top of the RAM and occupy the first 8 words.
DSP IRAM is mapped through as first 8KB of ARAM (Accelerator RAM), therefore the CPU can DMA
DSP code to DSP IRAM. This usually occurs during boot time, as the DSP ROM is not enabled at cold
reset and needs to be reenabled by a small stub executed in IRAM.

0x0000

0x0FFF

IRAM

0x8000

0x8FFF

IROM

10

Chapter 2

Registers

2.1 Register names

The DSP has 32 16-bit registers, although their individual purpose and their function differ from register
to register.

$0 $r00 $ar0 Addressing register 0
$1 $r01 $ar1 Addressing register 1
$2 $r02 $ar2 Addressing register 2
$3 $r03 $ar3 Addressing register 3
$4 $r04 $ix0 Indexing register 0
$5 $r05 $ix1 Indexing register 1
$6 $r06 $ix2 Indexing register 2
$7 $r07 $ix3 Indexing register 3
$8 $r08
$9 $r09
$10 $r0A
$11 $r0B
$12 $r0C $st0 Call stack register
$13 $r0D $st1 Data stack register
$14 $r0E $st2 Loop address stack register
$15 $r0F $st3 Loop counter register
$16 $r10 $ac0.h 40-bit Accumulator 0 (high)
$17 $r11 $ac1.h 40-bit Accumulator 1 (high)
$18 $r12 $config Config register
$19 $r13 $sr Status register
$20 $r14 $prod.l Product register (low)
$21 $r15 $prod.m1 Product register (mid 1)
$22 $r16 $prod.h Product register (high)
$23 $r17 $prod.m2 Product register (mid 2)
$24 $r18 $ax0.l 32-bit Accumulator 0 (low)
$25 $r19 $ax0.h 32-bit Accumulator 0 (high)
$26 $r1A $ax1.l 32-bit Accumulator 1 (low)
$27 $r1B $ax1.h 32-bit Accumulator 1 (high)
$28 $r1C $ac0.l 40-bit Accumulator 0 (low)
$29 $r1D $ac1.l 40-bit Accumulator 1 (low)
$30 $r1E $ac0.m 40-bit Accumulator 0 (mid)
$31 $r1F $ac1.m 40-bit Accumulator 1 (mid)

11

CHAPTER 2. REGISTERS 12

2.2 Accumulators

The DSP has two long 40-bit accumulators ($acX) and their short 24-bit forms ($acsX) that reflect the
upper part of 40-bit accumulator. There are additional two 32-bit accumulators ($axX).
Accumulators $acX:
40-bit accumulator $acX ($acX.hml) consists of registers:

$acX = $acX . h << 32 | $acX .m << 16 | $acX . l

Short accumulators $acs.X:
24-bit accumulator $acsX ($acX.hm) consists of the upper 24 bits of accumulator $acX.

$acsX = $acX . h << 16 | $acX .m

Additional accumulators $axX:

$axX = $axX . h << 16 | $axX . l

CHAPTER 2. REGISTERS 13

2.3 Stacks

The GameCube DSP contains four stack registers:

• $st0 – Call stack register

• $st1 – Data stack register

• $st2 – Loop address stack register

• $st3 – Loop counter register

Stacks are implemented in hardware and have limited depth. The data stack is limited to four values
and the call stack is limited to eight values. The loop stack is limited to four values. Upon underflow or
overflow of any of the stack registers exception STOVF is raised.
The loop stack is used to control execution of repeated blocks of instructions. Whenever there is a value
in $st2 and the current PC is equal to the value in $st2, then the value in $st3 is decremented. If the
value is not zero, then the PC is modified by the value from call stack $st0. Otherwise values from the
call stack $st0 and both loop stacks, $st2 and $st3, are popped and execution continues at the next
opcode.

CHAPTER 2. REGISTERS 14

2.4 Config register

Its purpose is unknown at this time. It is written with 0x00FF and 0x0004 values.

CHAPTER 2. REGISTERS 15

2.5 Status register

Status register $sr reflects flags computed on accumulators after logical or arithmetic operations. Fur-
thermore, it also contains control bits to configure the flow of certain operations.

Bit Name Comment
15 SU Operands are signed (1 = unsigned)
14 SXM Sign extension mode (0 = set16, 1 = set40)
13 AM Product multiply result by 2 (when AM = 0)
12
11 EIE External interrupt enable
10
9 IE Interrupt enable
8 0 Hardwired to 0?
7 OS Overflow (sticky)
6 LZ Logic zero
5 Top two bits are equal
4 AS Above s32
3 S Sign
2 Z Arithmetic zero
1 O Overflow
0 C Carry

CHAPTER 2. REGISTERS 16

2.6 Product register

The product register is a register containing the intermediate product of a multiply or multiply and
accumulation operation. It’s result should never be used for calculation although the register can be read
or written. It reflects the state of the internal multiply unit. The product is 40 bits with 1 bit of overflow.

$prod = ($prod . h << 32) + (($prod .m1 + $prod .m2) << 16) + $prod . l

It needs to be noted that $prod.m1 + $prod.m2 overflow bit (bit 16) will be added to $prod.h.
Bit $sr.AM affects the result of the multiply unit. If $sr.AM is equal 0 then the result of every multiply
operation will be multiplied by two.

Chapter 3

Exceptions

3.1 Exception processing

Exception processing happens by setting the program counter to different exception vectors. At exception
time, the exception program counter is stored at call stack $st0 and status register $sr is stored at data
stack $st1.
Operation:

PUSH_STACK ($st0);
$st0 = $pc;
PUSH_STACK ($st1);
$st1 = $sr;
$pc = exception_nr * 2;

17

CHAPTER 3. EXCEPTIONS 18

3.2 Exception vectors

Exception vectors are located at address 0x0000 in Instruction RAM.

Level Address Name Description
0 0x0000 RESET
1 0x0002 STOVF Stack under/overflow
2 0x0004
3 0x0006
4 0x0008
5 0x000A ACCOV Accelerator address overflow
6 0x000C
7 0x000E INT External interrupt (from CPU)

Chapter 4

Hardware interface

4.1 Hardware registers

Hardware registers occupy the address space at 0xFFxx in DSP memory space. Each register is 16 bits in
width.

Address Name Description
Mailboxes
0xFFFE CMBH CPU Mailbox H
0xFFFF CMBL CPU Mailbox L
0xFFFC DMBH DSP Mailbox H
0xFFFD DMBL DSP Mailbox L
DMA Interface
0xFFCE DSMAH Memory address H
0xFFCF DSMAL Memory address L
0xFFCD DSPA DSP memory address
0xFFC9 DSCR DMA control
0xFFCB DSBL Block size
Accelerator
0xFFD4 ACSAH Accelerator start address H
0xFFD5 ACSAL Accelerator start address L
0xFFD6 ACEAH Accelerator end address H
0xFFD7 ACEAL Accelerator end address L
0xFFD8 ACCAH Accelerator current address H
0xFFD9 ACCAL Accelerator current address L
0xFFDD ACDAT Accelerator data
Interrupts
0xFFFB DIRQ IRQ request

19

CHAPTER 4. HARDWARE INTERFACE 20

4.2 Interrupts

The DSP can raise interrupts at the CPU. Interrupts are usually used to signal that a DSP mailbox has
been filled with new data.

0xFFFB DIRQ IRQ Request
---- ---- ---- ---I

Bit Name R/W Action
0 I W 1 - Raise interrupt at CPU

CHAPTER 4. HARDWARE INTERFACE 21

4.3 Mailboxes

4.3.1 CPU Mailbox
The CPU Mailbox (CMB) is a register that allows sending 31 bits of information from the CPU to the
DSP.

0xFFFE CMBH CPU Mailbox H
Mddd dddd dddd dddd

Bit Name R/W Action

15 M R 1 - Mailbox contains mail from the CPU
0 - Mailbox empty

14–0 d R Bits 30–16 of the mail sent from the CPU

0xFFFF CMBL CPU Mailbox L
dddd dddd dddd dddd

Bit Name R/W Action
15–0 d R Bits 15–0 of mail sent from the CPU. Reading of this register by

the DSP causes the CMBH.M bit to be cleared.

Operation:
From the CPU side, software usually checks the M bit of CMBH. It takes action only in the case that this
bit is 0. Said action is to write CMBH first and then CMBL. After writing to CMBL, the mail is ready to be
received by the DSP.
From the DSP side, the DSP loops by probing the M bit. When this bit is 1, the DSP reads CMBH first
and then CMBL. After reading CMBL, CMBH.M will be cleared.

CHAPTER 4. HARDWARE INTERFACE 22

4.3.2 DSP Mailbox
The DSP mailbox (DMB) is an interface to send 31 bits of information from the DSP to the CPU.

0xFFFC DMBH DSP Mailbox H
Mddd dddd dddd dddd

Bit Name R/W Action

15 M R 1 - Mailbox has not been received by CPU
0 - Mailbox empty

W Does not matter. It will be set when DMBL is written to
14–0 d W Bits 30–16 of mail sent from the DSP to the CPU

0xFFFD DMBL DSP Mailbox L
dddd dddd dddd dddd

Bit Name R/W Action
15–0 d W Bits 15–0 of mail sent from the DSP to the CPU. Writing to this

register by the DSP causes the DMBH.M bit to be set, indicating
that the mail is ready.

Operation:
Sending mail from the DSP to the CPU can be achieved by writing mail to register DMBH and then to
register DMBL in that order. After writing to DMBL, bit DMBH.M will be set, signaling that the mail is ready
to be received by the CPU. If the DSP needs to receive a response from the CPU, then it usually waits
for the M bit to be cleared after sending a mail. If the DSP does processing when the CPU receives a
mail, then it waits for the M bit to be cleared before issuing another mail to the CPU.

CHAPTER 4. HARDWARE INTERFACE 23

4.3.3 DMA
The GameCube DSP is connected to the memory bus through a DMA channel. DMA can be used to
transfer data between DSP memory (both instruction and data) and main memory.

0xFFCE DSMAH Memory Address H
dddd dddd dddd dddd

Bit Name R/W Action
15–0 d R Bits 31–16 of the main memory address

0xFFCF DSMAL Memory Address L
dddd dddd dddd dddd

Bit Name R/W Action
15–0 d R Bits 15–0 of the main memory address

0xFFCD DSPA DSP Address
dddd dddd dddd dddd

Bit Name R/W Action
15–0 d W Bits 15–0 of the DSP memory address

0xFFCB DSBL DSP Address
dddd dddd dddd dddd

Bit Name R/W Action
15–0 d W Length in bytes to transfer. Writing to this register starts a DMA

transfer.

0xFFC9 DSCR DSP Address
---- ---- ---- ----

Bit Name R/W Action
15–0 d W

CHAPTER 4. HARDWARE INTERFACE 24

4.4 Accelerator

The accelerator is used to transfer data from accelerator memory (ARAM) to DSP memory. The
accelerator area can be marked with ACSA (start) and ACEA (end) addresses. Current address for the
accelerator can be set or read from the ACCA register. Reading from accelerator memory is done by
reading from the ACDAT register. This register contains data from ARAM pointed to by the ACCA register.
After reading the data, ACCA is incremented by one. After ACCA grows bigger than the area pointed to by
ACEA, it gets reset to a value from ACSA and the ACCOV interrupt is generated.

Chapter 5

Opcodes

5.1 Opcode syntax

Basic opcode syntax:

OPC <opcode parameters >

Above syntax is correct for all opcodes.

EXAMPLES:

JMP 0x0300
CALL loop
HALT

Extended syntax:

OPC 'EXOPC <opcode parameters > : <extended opcode parameters >

Above syntax is correct only for arithmetic opcodes, because those can be extended with additional load/store
unit behavior.

EXAMPLES:

DECM 'L $acs0 : $acl.m, @ar0
NX 'MV : $acx1.h, $ac0.l

25

CHAPTER 5. OPCODES 26

5.2 Operation — Used Functions

Functions used for describing opcode operation.

PUSH_STACK($stR)

Description:
Pushes value onto given stack referenced by stack register $stR. Operation moves values down
in internal stack.

Operation:
stack_stR[stack_ptr_stR++] = $stR;

POP_STACK($stR)

Description:
Pops value from stack referenced by stack register $stR. Operation moves values up in internal
stack.

Operation:
$stR = stack_stR[--stack_ptr_stR];

FLAGS(val)

Description:
Calculates flags depending on given value or result of operation and sets corresponding bits in
status register $sr.

EXECUTE_OPCODE(new_pc)

Description:
Executes opcode at the given new_pc address.

CHAPTER 5. OPCODES 27

5.3 Bit meanings

Opcode decoding uses special naming for bits and their decimal representations to provide easier
understanding of bit fields in the opcode.

Binary form Decimal form Meaning
d, dd, ddd, dddd D Destination register
s, ss, sss, ssss S Source register
t, tt, ttt, tttt T Source register
r, rr, rrr, rrrr R Register (either source or destination)
Aaaaa(a) A, addrA Address in either instruction or data memory
xxxx xxxx X Extended opcode
mmm(m) M, addrM Address in memory
iii(i) I, Imm Immediate value
cccc cc Condition (see conditional opcodes)

CHAPTER 5. OPCODES 28

5.4 Conditional opcodes

Conditional opcodes are executed only when the condition described by their encoded conditional field
has been met. The groups of conditional instructions are, CALL, JMP, IF, and RET.

Bits cc Name Evaluated expression
0b0000 GE Greater than or equal
0b0001 L Less than
0b0010 G Greater than
0b0011 LE Less than or equal
0b0100 NE Not equal ($sr & 0x4) == 0
0b0101 EQ Equal ($sr & 0x4) != 0
0b0110 NC Not carry ($sr & 0x1) == 0
0b0111 C Carry ($sr & 0x1) != 0
0b1000 Below s32 ($sr & 0x10) == 0
0b1001 Above s32 ($sr & 0x10) != 0
0b1010
0b1011
0b1100 NZ Not zero ($sr & 0x40) == 0
0b1101 ZR Zero ($sr & 0x40) != 0
0b1110 O Overflow ($sr & 0x2) != 0
0b1111 <always>

Note:
There are two pairs of conditions that work similar: EQ/NE and ZR/NZ. EQ/NE pair operates on arithmetic
zero flag (arithmetic 0) while ZR/NZ pair operates on logic zero flag (logic 0).

CHAPTER 5. OPCODES 29

5.5 Alphabetical list of opcodes

CHAPTER 5. OPCODES 30

5.5.1 ADD
0123456789101112131415

0100 110d xxxx xxxx

Format:

ADD $acD , $ac (1-D)

Description:

Adds accumulator $ac(1-D) to accumulator register $acD.

Operation:

$acD += $ac (1-D)
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 31

5.5.2 ADDARN
0123456789101112131415

0000 0000 0001 ssdd

Format:

ADDARN $arD , $ixS

Description:

Adds indexing register $ixS to an addressing register $arD.

Operation:

$arD += $ixS
$pc ++

CHAPTER 5. OPCODES 32

5.5.3 ADDAX
0123456789101112131415

0100 10sd xxxx xxxx

Format:

ADDAX $acD , $axS

Description:

Adds secondary accumulator $axS to accumulator register $acD.

Operation:

$acD += $axS
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 33

5.5.4 ADDAXL
0123456789101112131415

0111 00sd xxxx xxxx

Format:

ADDAXL $acD , $axS.l

Description:

Adds secondary accumulator $axS.l to accumulator register $acD.

Operation:

$acD += $axS.l
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 34

5.5.5 ADDI
0123456789101112131415

0000 001r 0000 0000

iiii iiii iiii iiii

Format:

ADDI $amR , #I

Description:

Adds a 16-bit sign-extended immediate to mid accumulator $acD.hm.

Operation:

$acD.hm += #I
FLAGS($acD)
$pc += 2

CHAPTER 5. OPCODES 35

5.5.6 ADDIS
0123456789101112131415

0000 010d iiii iiii

Format:

ADDIS $acD , #I

Description:

Adds an 8-bit sign-extended immediate to mid accumulator $acD.hm.

Operation:

$acD.hm += #I
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 36

5.5.7 ADDP
0123456789101112131415

0100 111d xxxx xxxx

Format:

ADDP $acD

Description:

Adds the product register to the accumulator register.

Operation:

$acD += $prod
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 37

5.5.8 ADDPAXZ
0123456789101112131415

1111 10sd xxxx xxxx

Format:

ADDPAXZ $acD , $axS

Description:

Adds secondary accumulator $axS to product register and stores result in accumulator register. Low
16-bits of $acD ($acD.l) are set to 0.

Operation:

$acD.hm = $prod.hm + $ax.h
$acD.l = 0
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 38

5.5.9 ADDR
0123456789101112131415

0100 0ssd xxxx xxxx

Format:

ADDR $acD , $(0 x18+S)

Description:

Adds register $(0x18+S) to the accumulator $acD register.

Operation:

$acD += $(0 x18+S)
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 39

5.5.10 ANDC
0123456789101112131415

0011 110d xxxx xxxx

Format:

ANDC $acD.m, $ac (1-D).m

Description:

Logic AND middle part of accumulator $acD.m with middle part of accumulator $ax(1-D).m.

Operation:

$acD.m &= $ac (1-D).m
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 40

5.5.11 ANDCF
0123456789101112131415

0000 001r 1010 0000

iiii iiii iiii iiii

Format:

ANDCF $acD.m, #I

Description:

Sets the logic zero (LZ) flag in status register $sr if the result of the logical AND operation involving
the mid part of accumulator $acD.m and the immediate value I is equal to immediate value I. If
the logical AND operation does not result in a value equal to I, then the LZ flag is cleared.

Operation:

IF ($acD.m & I) == I
$sr.LZ = 1

ELSE
$sr.LZ = 0

ENDIF
$pc += 2

CHAPTER 5. OPCODES 41

5.5.12 ANDF
0123456789101112131415

0000 001r 1100 0000

iiii iiii iiii iiii

Format:

ANDF $acD.m, #I

Description:

Sets the logic zero (LZ) flag in status register $sr if the result of the logic AND operation involving the
mid part of accumulator $acD.m and the immediate value I is equal to zero. If the result is not
equal to zero, then the LZ flag is cleared.

Operation:

IF ($acD.m & I) == 0
$sr.LZ = 1

ELSE
$sr.LZ = 0

ENDIF
$pc += 2

CHAPTER 5. OPCODES 42

5.5.13 ANDI
0123456789101112131415

0000 001r 0100 0000

iiii iiii iiii iiii

Format:

ANDI $acD.m, #I

Description:

Performs a logical AND with the mid part of accumulator $acD.m and the immediate value I.

Operation:

$acD.m &= #I
FLAGS($acD)
$pc += 2

CHAPTER 5. OPCODES 43

5.5.14 ANDR
0123456789101112131415

0011 01sd xxxx xxxx

Format:

ANDR $acD.m, $axS.h

Description:

Performs a logical AND with the middle part of accumulator $acD.m and the high part of secondary
accumulator, $axS.h.

Operation:

$acD.m &= $axS.h
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 44

5.5.15 ASL
0123456789101112131415

0001 010r 10ii iiii

Format:

ASL $acR , #I

Description:

Arithmetically left shifts the accumulator $acR by the amount specified by immediate I.

Operation:

$acR <<= I
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 45

5.5.16 ASR
0123456789101112131415

0001 010r 11ii iiii

Format:

ASR $acR , #I

Description:

Arithmetically right shifts accumulator $acR specified by the value calculated by negating sign-extended
bits 0-6.

Operation:

$acR >>= I
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 46

5.5.17 ASR16
0123456789101112131415

1001 r001 xxxx xxxx

Format:

ASR16 $acR

Description:

Arithmetically right shifts accumulator $acR by 16.

Operation:

$acR >>= 16
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 47

5.5.18 BLOOP
0123456789101112131415

0000 0000 011r rrrr

aaaa aaaa aaaa aaaa

Format:

BLOOP $R , addrA

Description:

Repeatedly execute a block of code starting at the following opcode until the counter specified by the
value from register $R reaches zero. Block ends at specified address addrA inclusive. i.e. opcode
at addrA is the last opcode included in loop. Counter is pushed on loop stack $st3, end of block
address is pushed on loop stack $st2 and the repeat address is pushed on call stack $st0. Up to 4
nested loops are allowed.

Operation:

$st0 = $pc + 2
$st2 = addrA
$st3 = $R
$pc += 2

// On real hardware , the below does not happen ,
// this opcode only sets stack registers
WHILE ($st3 --)

DO
EXECUTE_OPCODE ($pc)

WHILE($pc != $st2)
$pc = $st0

END
$pc = addrA + 1
// Remove vaues from stack

CHAPTER 5. OPCODES 48

5.5.19 BLOOPI
0123456789101112131415

0001 0001 iiii iiii
aaaa aaaa aaaa aaaa

Format:

BLOOPI #I, addrA

Description:

Repeatedly execute a block of code starting at the following opcode until the counter specified by the
immediate value I reaches zero. Block ends at specified address addrA inclusive. i.e. opcode at
addrA is the last opcode included in loop. Counter is pushed on loop stack $st3, end of block
address is pushed on loop stack $st2 and the repeat address is pushed on call stack $st0. Up to 4
nested loops are allowed.

Operation:

$st0 = $pc + 2
$st2 = addrA
$st3 = I
$pc += 2

// On real hardware , the below does not happen ,
// this opcode only sets stack registers
WHILE ($st3 --)

DO
EXECUTE_OPCODE ($pc)

WHILE($pc != $st2)
$pc = $st0

END
$pc = addrA + 1
// Remove vaues from stack

CHAPTER 5. OPCODES 49

5.5.20 CALL
0123456789101112131415

0000 0010 1011 1111
aaaa aaaa aaaa aaaa

Format:

CALL addressA

Description:

Call function. Push program counter of the instruction following “call” to call stack $st0. Set program
counter to address represented by the value that follows this CALL instruction.

Operation:

// Must skip value that follows "call"
PUSH_STACK ($st0)
$st0 = $pc + 2
$pc = addressA

CHAPTER 5. OPCODES 50

5.5.21 CALLcc
0123456789101112131415

0000 0010 1011 cccc

aaaa aaaa aaaa aaaa

Format:

CALLcc addressA

Description:

Call function if condition cc has been met. Push program counter of the instruction following “call” to
call stack $st0. Set program counter to address represented by the value that follows this CALL
instruction.

Operation:

// Must skip value that follows "call"
IF (cc)

PUSH_STACK ($st0)
$st0 = $pc + 2
$pc = addressA

ELSE
$pc += 2

ENDIF

CHAPTER 5. OPCODES 51

5.5.22 CALLR
0123456789101112131415

0001 0111 rrr1 1111

Format:

CALLR $R

Description:

Call function. Push program counter of the instruction following “call” to call stack $st0. Set program
counter to register $R.

Operation:

PUSH_STACK ($st0)
$st0 = $pc + 1
$pc = $R

CHAPTER 5. OPCODES 52

5.5.23 CLR
0123456789101112131415

1000 r001 xxxx xxxx

Format:

CLR $acR

Description:

Clears accumulator $acR.

Operation:

$acR = 0
FLAGS($acR)
$pc ++

CHAPTER 5. OPCODES 53

5.5.24 CLRL
0123456789101112131415

1111 110r xxxx xxxx

Format:

CLRL $acR.l

Description:

Clears $acR.l - low 16 bits of accumulator $acR.

Operation:

$acR.l = 0
FLAGS($acR)
$pc ++

CHAPTER 5. OPCODES 54

5.5.25 CLRP
0123456789101112131415

1000 0100 xxxx xxxx

Format:

CLRP

Description:

Clears product register $prod.

Operation:

$prod = 0 // See note below
$pc ++

Note:

Actually product register gets cleared by setting registers with following values:

$14 = 0x0000
$15 = 0xfff0
$16 = 0x00ff
$17 = 0x0010

CHAPTER 5. OPCODES 55

5.5.26 CMP
0123456789101112131415

1000 0010 xxxx xxxx

Format:

CMP

Description:

Compares accumulator $ac0 with accumulator $ac1.

Operation:

$sr = FLAGS($ac0 - $ac1)
$pc ++

CHAPTER 5. OPCODES 56

5.5.27 CMPI
0123456789101112131415

0000 001r 1000 0000

iiii iiii iiii iiii

Format:

CMPI $amD , #I

Description:

Compares mid accumulator $acD.hm ($amD) with sign-extended immediate value I. However, flags are
set with regards to the whole accumulator register.

Operation:

res = ($acD.hm - I) | $acD.l
FLAGS(res)
$pc += 2

CHAPTER 5. OPCODES 57

5.5.28 CMPIS
0123456789101112131415

0000 011d iiii iiii

Format:

CMPIS $acD , #I

Description:

Compares accumulator with short immediate. Comparison is performed by subtracting the short
immediate (8-bit sign-extended) from mid accumulator $acD.hm and computing flags based on
whole accumulator $acD.

Operation:

FLAGS($acD - #I)
$pc ++

CHAPTER 5. OPCODES 58

5.5.29 DAR
0123456789101112131415

0000 0000 0000 01dd

Format:

DAR $arD

Description:

Decrement address register $arD.

Operation:

$arD --
$pc ++

CHAPTER 5. OPCODES 59

5.5.30 DEC
0123456789101112131415

0111 101d xxxx xxxx

Format:

DEC $acD

Description:

Decrements accumulator $acD.

Operation:

$acD --
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 60

5.5.31 DECM
0123456789101112131415

0111 100d xxxx xxxx

Format:

DECM $acsD

Description:

Decrements 24-bit mid-accumulator $acsD.

Operation:

$acsD --
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 61

5.5.32 HALT
0123456789101112131415

0000 0000 0020 0001

Format:

HALT

Description:

Stops execution of DSP code. Sets bit DSP_CR_HALT in register DREG_CR.

Operation:

DREG_CR |= DSP_CR_HALT ;

CHAPTER 5. OPCODES 62

5.5.33 IAR
0123456789101112131415

0000 0000 0000 10dd

Format:

IAR $arD

Description:

Increment address register $arD.

Operation:

$arD ++
$pc ++

CHAPTER 5. OPCODES 63

5.5.34 IFcc
0123456789101112131415

0000 0010 0111 cccc

Format:

IFcc

Description:

Executes the following opcode if the condition described by cccc has been met.

Operation:

IF (cc)
EXECUTE_OPCODE ($pc + 1)

ELSE
$pc += 2

ENDIF

CHAPTER 5. OPCODES 64

5.5.35 ILRR
0123456789101112131415

0000 001d 0001 00ss

Format:

ILRR $acD.m, @$arS

Description:

Move value from instruction memory pointed by addressing register $arS to mid accumulator register
$acD.m.

Operation:

$acD.m = MEM[$arS]
$pc ++

CHAPTER 5. OPCODES 65

5.5.36 ILRRD
0123456789101112131415

0000 001d 0001 01ss

Format:

ILRRD $acD.m, @$arS

Description:

Move value from instruction memory pointed by addressing register $arS to mid accumulator register
$acD.m. Decrement addressing register $arS.

Operation:

$acD.m = MEM[$arS]
$arS --
$pc ++

CHAPTER 5. OPCODES 66

5.5.37 ILRRI
0123456789101112131415

0000 001d 0001 10ss

Format:

ILRRI $acD.m, @$S

Description:

Move value from instruction memory pointed by addressing register $arS to mid accumulator register
$acD.m. Increment addressing register $arS.

Operation:

$acD.m = MEM[$arS]
$arS ++
$pc ++

CHAPTER 5. OPCODES 67

5.5.38 ILRRN
0123456789101112131415

0000 001d 0001 11ss

Format:

ILRRN $acD.m, @$arS

Description:

Move value from instruction memory pointed by addressing register $arS to mid accumulator register
$acD.m. Add corresponding indexing register $ixS to addressing register $arS.

Operation:

$acD.m = MEM[$arS]
$arS += $ixS
$pc ++

CHAPTER 5. OPCODES 68

5.5.39 INC
0123456789101112131415

0111 011d xxxx xxxx

Format:

INC $acD

Description:

Increments accumulator $acD.

Operation:

$acD ++
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 69

5.5.40 INCM
0123456789101112131415

0111 010d xxxx xxxx

Format:

INCM $acsD

Description:

Increments 24-bit mid-accumulator $acsD.

Operation:

$acsD ++
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 70

5.5.41 JMP
0123456789101112131415

0000 0010 1001 1111
aaaa aaaa aaaa aaaa

Format:

JMP addressA

Description:

Jumps to addressA. Set program counter to the address represented by the value that follows this JMP
instruction.

Operation:

$pc = addressA

CHAPTER 5. OPCODES 71

5.5.42 Jcc
0123456789101112131415

0000 0010 1001 cccc

aaaa aaaa aaaa aaaa

Format:

Jcc addressA

Description:

Jumps to addressA if condition cc has been met. Set program counter to the address represented by
the value that follows this Jcc instruction.

Operation:

IF (cc)
$pc = addressA

ELSE
$pc += 2

ENDIF

CHAPTER 5. OPCODES 72

5.5.43 JMPR
0123456789101112131415

0001 0111 rrr0 1111

Format:

JMPR $R

Description:

Jump to address; set program counter to a value from register $R.

Operation:

$pc = $R

CHAPTER 5. OPCODES 73

5.5.44 LOOP
0123456789101112131415

0000 0000 010r rrrr

Format:

LOOP $R

Description:

Repeatedly execute the following opcode until the counter specified by the value from register $R reaches
zero. Each execution decrements the counter. Register $R remains unchanged. If register $R is set
to zero at the beginning of loop then the looped instruction will not get executed.

Operation:

counter = $R
WHILE (counter --)

EXECUTE_OPCODE ($pc + 1)
END
$pc += 2

CHAPTER 5. OPCODES 74

5.5.45 LOOPI
0123456789101112131415

0001 0000 iiii iiii

Format:

LOOPI #I

Description:

Repeatedly execute the following opcode until the counter specified by immediate value I reaches zero.
Each execution decrements the counter. If immediate I is set to zero at the beginning of loop then
the looped instruction will not get executed.

Operation:

counter = I
WHILE (counter --)

EXECUTE_OPCODE ($pc + 1)
END
$pc += 2

CHAPTER 5. OPCODES 75

5.5.46 LR
0123456789101112131415

0000 0000 110d dddd
mmmm mmmm mmmm mmmm

Format:

LR $D , @M

Description:

Move value from data memory pointed by address M to register $D. Perform an additional operation
depending on destination register.

Operation:

$D = MEM[M]
$pc += 2

CHAPTER 5. OPCODES 76

5.5.47 LRI
0123456789101112131415

0000 0000 100d dddd

iiii iiii iiii iiii

Format:

LRI $D , #I

Description:

Load immediate value I to register $D. Perform and additional operation depending on destination
register.

Operation:

$D = I
$pc += 2

CHAPTER 5. OPCODES 77

5.5.48 LRIS
0123456789101112131415

0000 1ddd iiii iiii

Format:

LRIS $(0 x18+D), #I

Description:

Load immediate value I (8-bit sign-extended) to accumulator register $(0x18+D). Perform an additional
operation depending on destination register.

Operation:

$(0 x18+D) = I
$pc ++

CHAPTER 5. OPCODES 78

5.5.49 LRR
0123456789101112131415

0001 1000 0ssd dddd

Format:

LRR $D , @$S

Description:

Move value from data memory pointed by addressing register $S to register $D. Perform an additional
operation depending on destination register.

Operation:

$D = MEM[$S]
$pc ++

CHAPTER 5. OPCODES 79

5.5.50 LRRD
0123456789101112131415

0001 1000 1ssd dddd

Format:

LRRD $D , @$S

Description:

Move value from data memory pointed by addressing register $S to register $D. Decrements register $S.
Perform additional operation depending on destination register.

Operation:

$D = MEM[$S]
$S --
$pc ++

CHAPTER 5. OPCODES 80

5.5.51 LRRI
0123456789101112131415

0001 1001 0ssd dddd

Format:

LRRI $D , @$S

Description:

Move value from data memory pointed by addressing register $S to register $D. Increments register $S.
Perform additional operation depending on destination register.

Operation:

$D = MEM[$S]
$S++
$pc ++

CHAPTER 5. OPCODES 81

5.5.52 LRRN
0123456789101112131415

0001 1001 1ssd dddd

Format:

LRRN $D , @$S

Description:

Move value from data memory pointed by addressing register $S to register $D. Add indexing register
$(0x4+S) to register $S. Perform additional operation depending on destination register.

Operation:

$D = MEM[$S]
$S += $(4+S)
$pc ++

CHAPTER 5. OPCODES 82

5.5.53 LRS
0123456789101112131415

0010 0ddd mmmm mmmm

Format:

LRS $(0 x18+D), @M

Description:

Move value from data memory pointed by address M (8-bit sign-extended) to register $(0x18+D). Perform
additional operation depending on destination register.

Operation:

$(0 x18+D) = MEM[M]
$pc ++

CHAPTER 5. OPCODES 83

5.5.54 LSL
0123456789101112131415

0001 010r 00ii iiii

Format:

LSL $acR , #I

Description:

Logically left shifts accumulator $acR by the amount specified by value I.

Operation:

$acR <<= I
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 84

5.5.55 LSL16
0123456789101112131415

1111 000r xxxx xxxx

Format:

LSL16 $acR

Description:

Logically left shifts accumulator $acR by 16.

Operation:

$acR <<= 16
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 85

5.5.56 LSR
0123456789101112131415

0001 010r 01ii iiii

Format:

LSR $acR , #I

Description:

Logically right shifts accumulator $acR by the amount calculated by negating sign-extended bits 0–6.

Operation:

$acR >>= I
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 86

5.5.57 LSR16
0123456789101112131415

1111 010r xxxx xxxx

Format:

LSR16 $acR

Description:

Logically right shifts accumulator $acR by 16.

Operation:

$acR >>= 16
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 87

5.5.58 MADD
0123456789101112131415

1111 001s xxxx xxxx

Format:

MADD $axS.l, $axS.h

Description:

Multiply low part $axS.l of secondary accumulator $axS by high part $axS.h of secondary accumulator
$axS (treat them both as signed) and add result to product register.

Operation:

$prod += $axS.l * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 88

5.5.59 MADDC
0123456789101112131415

1110 10st xxxx xxxx

Format:

MADDC $acS.l, $axT.h

Description:

Multiply middle part of accumulator $acS.m by high part of secondary accumulator $axT.h (treat them
both as signed) and add result to product register.

Operation:

$prod += $acS.l * $axT.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 89

5.5.60 MADDX
0123456789101112131415

1110 00st xxxx xxxx

Format:

MADDX $(0 x18+S*2), $(0 x19+T*2)

Description:

Multiply one part of secondary accumulator $ax0 (selected by S) by one part of secondary accumulator
$ax1 (selected by T) (treat them both as signed) and add result to product register.

Operation:

$prod += $(0 x18+S*2) * $(0 x19+T*2)
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 90

5.5.61 MOV
0123456789101112131415

0110 110d xxxx xxxx

Format:

MOV $acD , $ac (1-D)

Description:

Moves accumulator $ax(1-D) to accumulator $axD.

Operation:

$acD = $ax (1-D)
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 91

5.5.62 MOVAX
0123456789101112131415

0110 10sd xxxx xxxx

Format:

MOVAX $acD , $axS

Description:

Moves secondary accumulator $axS to accumulator $axD.

Operation:

$acD = $axS
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 92

5.5.63 MOVNP
0123456789101112131415

0111 111d xxxx xxxx

Format:

MOVNP $acD

Description:

Moves negated multiply product from the $prod register to the accumulator register $acD.

Operation:

$acD = -$prod
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 93

5.5.64 MOVP
0123456789101112131415

0110 111d xxxx xxxx

Format:

MOVP $acD

Description:

Moves multiply product from the $prod register to the accumulator register $acD.

Operation:

$acD = $prod
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 94

5.5.65 MOVPZ
0123456789101112131415

1111 111d xxxx xxxx

Format:

MOVPZ $acD

Description:

Moves multiply product from the $prod register to the accumulator $acD and sets $acD.l to 0.

Operation:

$acD.hm = $prod.hm
$acD.l = 0
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 95

5.5.66 MOVR
0123456789101112131415

0110 0ssd xxxx xxxx

Format:

MOVR $acD , $(0 x18+S)

Description:

Moves register $(0x18+S) (sign-extended) to middle accumulator $acD.hm. Sets $acD.l to 0.

Operation:

$acD.hm = $(0 x18+S)
$acD.l = 0
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 96

5.5.67 MRR
0123456789101112131415

0001 11dd ddds ssss

Format:

MRR $D , $S

Description:

Move value from register $S to register $D. Perform additional operation depending on destination
register.

Operation:

$D = $S
$pc ++

CHAPTER 5. OPCODES 97

5.5.68 MSUB
0123456789101112131415

1111 011s xxxx xxxx

Format:

MSUB $axS.l, $axS.h

Description:

Multiply low part $axS.l of secondary accumulator $axS by high part $axS.h of secondary accumulator
$axS (treat them both as signed) and subtract result from product register.

Operation:

$prod -= $axS.l * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 98

5.5.69 MSUBC
0123456789101112131415

1110 11st xxxx xxxx

Format:

MSUBC $acS.m, $axT.h

Description:

Multiply middle part of accumulator $acS.m by high part of secondary accumulator $axT.h (treat them
both as signed) and subtract result from product register.

Operation:

$prod -= $acS.m * $axT.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 99

5.5.70 MSUBX
0123456789101112131415

1110 01st xxxx xxxx

Format:

MSUBX $(0 x18+S*2), $(0 x19+T*2)

Description:

Multiply one part of secondary accumulator $ax0 (selected by S) by one part of secondary accumulator
$ax1 (selected by T) (treat them both as signed) and subtract result from product register.

Operation:

$prod -= $(0 x18+S*2) * $(0 x19+T*2)
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 100

5.5.71 MUL
0123456789101112131415

1001 s000 xxxx xxxx

Format:

MUL $axS.l, $axS.h

Description:

Multiply low part $axS.l of secondary accumulator $axS by high part $axS.h of secondary accumulator
$axS (treat them both as signed).

Operation:

$prod = $axS.l * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 101

5.5.72 MULAC
0123456789101112131415

1001 s10r xxxx xxxx

Format:

MULAC $axS.l, $axS.h, $acR

Description:

Add product register to accumulator register $acR. Multiply low part $axS.l of secondary accumulator
$axS by high part $axS.h of secondary accumulator $axS (treat them both as signed).

Operation:

$acR += $prod
$prod = $axS.l * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 102

5.5.73 MULC
0123456789101112131415

110s t000 xxxx xxxx

Format:

MULC $acS.m, $axT.h

Description:

Multiply mid part of accumulator register $acS.m by high part $axS.h of secondary accumulator $axS
(treat them both as signed).

Operation:

$prod = $acS.m * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 103

5.5.74 MULCAC
0123456789101112131415

110s t10r xxxx xxxx

Format:

MULCAC $acS.m, $axT.h, $acR

Description:

Multiply mid part of accumulator register $acS.m by high part $axS.h of secondary accumulator $axS
(treat them both as signed). Add product register before multiplication to accumulator $acR.

Operation:

temp = $prod
$prod = $acS.m * $axS.h
$acR += temp
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 104

5.5.75 MULCMV
0123456789101112131415

110s t11r xxxx xxxx

Format:

MULCMV $acS.m, $axT.h, $acR

Description:

Multiply mid part of accumulator register $acS.m by high part $axS.h of secondary accumulator $axS
(treat them both as signed). Move product register before multiplication to accumulator $acR.

Operation:

temp = $prod
$prod = $acS.m * $axS.h
$acR = temp
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 105

5.5.76 MULCMVZ
0123456789101112131415

110s t01r xxxx xxxx

Format:

MULCMVZ $acS.m, $axT.h, $acR

Description:

Multiply mid part of accumulator register $acS.m by high part $axS.h of secondary accumulator $axS
(treat them both as signed). Move product register before multiplication to accumulator $acR. Set
low part of accumulator $acR.l to zero.

Operation:

temp = $prod
$prod = $acS.m * $axS.h
$acR.hm = temp.hm
$acR.l = 0
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 106

5.5.77 MULMV
0123456789101112131415

1001 s11r xxxx xxxx

Format:

MULMV $axS.l, $axS.h, $acR

Description:

Move product register to accumulator register $acR. Multiply low part $axS.l of secondary accumulator
Register$axS by high part $axS.h of secondary accumulator $axS (treat them both as signed).

Operation:

$acR = $prod
$prod = $axS.l * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 107

5.5.78 MULMVZ
0123456789101112131415

1001 s01r xxxx xxxx

Format:

MULMVZ $axS.l, $axS.h, $acR

Description:

Move product register to accumulator register $acR and clear low part of accumulator register $acR.l.
Multiply low part $axS.l of secondary accumulator $axS by high part $axS.h of secondary
accumulator $axS (treat them both as signed).

Operation:

$acR.hm = $prod.hm
$acR.l = 0
$prod = $axS.l * $axS.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 108

5.5.79 MULX
0123456789101112131415

101s t000 xxxx xxxx

Format:

MULX $ax0.S, $ax1.T

Description:

Multiply one part $ax0 by one part $ax1 (treat them both as signed). Part is selected by S and T bits.
Zero selects low part, one selects high part.

Operation:

$prod = (S == 0) ? $ax0.l : ax0.h * (T == 0) ? $ax1.l : $ax1.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 109

5.5.80 MULXAC
0123456789101112131415

101s t01r xxxx xxxx

Format:

MULXAC $ax0.S, $ax1.T, $acR

Description:

Add product register to accumulator register $acR. Multiply one part $ax0 by one part $ax1 (treat
them both as signed). Part is selected by S and T bits. Zero selects low part, one selects high part.

Operation:

$acR += $prod
$prod = (S == 0) ? $ax0.l : ax0.h * (T == 0) ? $ax1.l : $ax1.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 110

5.5.81 MULXMV
0123456789101112131415

101s t11r xxxx xxxx

Format:

MULXMV $ax0.S, $ax1.T, $acR

Description:

Move product register to accumulator register $acR. Multiply one part $ax0 by one part $ax1 (treat
them both as signed). Part is selected by S and T bits. Zero selects low part, one selects high part.

Operation:

$acR = $prod
$prod = (S == 0) ? $ax0.l : ax0.h * (T == 0) ? $ax1.l : $ax1.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 111

5.5.82 MULXMVZ
0123456789101112131415

101s t01r xxxx xxxx

Format:

MULXMVZ $ax0.S, $ax1.T, $acR

Description:

Move product register to accumulator register $acR and clear low part of accumulator register $acR.l.
Multiply one part $ax0 by one part $ax1 (treat them both as signed). Part is selected by S and T
bits. Zero selects low part, one selects high part.

Operation:

$acR.hm = $prod.hm
$acR.l = 0
$prod = (S == 0) ? $ax0.l : ax0.h * (T == 0) ? $ax1.l : $ax1.h
$pc ++

See also:

$sr.AM bit affects multiply result.

CHAPTER 5. OPCODES 112

5.5.83 NEG
0123456789101112131415

0111 110d xxxx xxxx

Format:

NEG $acD

Description:

Negates accumulator $acD.

Operation:

$acD =- $acD
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 113

5.5.84 NOP
0123456789101112131415

0000 0000 0000 0000

Format:

NOP

Description:

No operation.

Operation:

$pc ++

CHAPTER 5. OPCODES 114

5.5.85 NX
0123456789101112131415

1000 -000 xxxx xxxx

Format:

NX

Description:

No operation, but can be extended with extended opcode.

Operation:

$pc ++

CHAPTER 5. OPCODES 115

5.5.86 ORC
0123456789101112131415

0011 111d xxxx xxxx

Format:

ORC $acD.m, $ac (1-D).m

Description:

Logic OR middle part of accumulator $acD.m with middle part of accumulator $ax(1-D).m.

Operation:

$acD.m |= $ac (1-D).m
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 116

5.5.87 ORI
0123456789101112131415

0000 001r 0110 0000

iiii iiii iiii iiii

Format:

ORI $acD.m, #I

Description:

Logical OR of accumulator mid part $acD.m with immediate value I.

Operation:

$acD.m |= #I
FLAGS($acD)
$pc += 2

CHAPTER 5. OPCODES 117

5.5.88 ORR
0123456789101112131415

0011 10sd xxxx xxxx

Format:

ORR $acD.m, $axS.h

Description:

Logical OR middle part of accumulator $acD.m with high part of secondary accumulator $axS.h.

Operation:

$acD.m |= $axS.h
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 118

5.5.89 RET
0123456789101112131415

0000 0010 1101 1111

Format:

RET

Description:

Return from subroutine. Pops stored PC from call stack $st0 and sets $pc to this location.

Operation:

$pc = $st0
POP_STACK ($st0)

CHAPTER 5. OPCODES 119

5.5.90 RETcc
0123456789101112131415

0000 0010 1101 cccc

Format:

RETcc

Description:

Return from subroutine if condition cc has been met. Pops stored PC from call stack $st0 and sets $pc
to this location.

Operation:

IF (cc)
POP_STACK ($st0)

ELSE
$pc += 2

ENDIF

CHAPTER 5. OPCODES 120

5.5.91 RTI
0123456789101112131415

0000 0010 1111 1111

Format:

RTI

Description:

Return from exception. Pops stored status register $sr from data stack $st1 and program counter PC
from call stack $st0 and sets $pc to this location.

Operation:

$sr = $st1
POP_STACK ($st1)
$pc = $st0
POP_STACK ($st0)

CHAPTER 5. OPCODES 121

5.5.92 SBSET
0123456789101112131415

0001 0010 0000 0iii

Format:

SBSET #I

Description:

Set bit of status register $sr. Bit number is calculated by adding 6 to immediate value I.

Operation:

$sr |= (I + 6)
$pc ++

CHAPTER 5. OPCODES 122

5.5.93 SBCLR
0123456789101112131415

0001 0011 0000 0iii

Format:

SBCLR #I

Description:

Clear bit of status register $sr. Bit number is calculated by adding 6 to immediate value I.

Operation:

$sr &= ~(I + 6)
$pc ++

CHAPTER 5. OPCODES 123

5.5.94 SI
0123456789101112131415

0001 0110 mmmm mmmm

iiii iiii iiii iiii

Format:

SI @M , #I

Description:

Store 16-bit immediate value I to a memory location pointed by address M (M is an 8-bit sign-extended
value).

Operation:

MEM[M] = I
$pc += 2

CHAPTER 5. OPCODES 124

5.5.95 SR
0123456789101112131415

0000 0000 111s ssss

mmmm mmmm mmmm mmmm

Format:

SR @M , $S

Description:

Store value from register $S to a memory pointed by address M. Perform additional operation depending
on destination register.

Operation:

MEM[M] = $S
$pc += 2

CHAPTER 5. OPCODES 125

5.5.96 SRR
0123456789101112131415

0001 1010 0dds ssss

Format:

SRR @$D , $S

Description:

Store value from source register $S to a memory location pointed by addressing register $D. Perform
additional operation depending on source register.

Operation:

MEM[$D] = $S
$pc ++

CHAPTER 5. OPCODES 126

5.5.97 SRRD
0123456789101112131415

0001 1010 1dds ssss

Format:

SRRD @$D , $S

Description:

Store value from source register $S to a memory location pointed by addressing register $D. Decrement
register $D. Perform additional operation depending on source register.

Operation:

MEM[$D] = $S
$D --
$pc ++

CHAPTER 5. OPCODES 127

5.5.98 SRRI
0123456789101112131415

0001 1011 0dds ssss

Format:

SRRI @$D , $S

Description:

Store value from source register $S to a memory location pointed by addressing register $D. Increment
register $D. Perform additional operation depending on source register.

Operation:

MEM[$D] = $S
$D++
$pc ++

CHAPTER 5. OPCODES 128

5.5.99 SRRN
0123456789101112131415

0001 1011 1dds ssss

Format:

SRRN @$D , $S

Description:

Store value from source register $S to a memory location pointed by addressing register $D. Add indexing
register $(0x4+D) to register $D. Perform additional operation depending on source register.

Operation:

MEM[$D] = $S
$D += $(4+D)
$pc ++

CHAPTER 5. OPCODES 129

5.5.100 SRS
0123456789101112131415

0010 1sss mmmm mmmm

Format:

SRS @M , $(0 x18+S)

Description:

Store value from register $(0x18+S) to a memory pointed by address M (8-bit sign-extended). Perform
additional operation depending on destination register.

Operation:

MEM[M] = $(0 x18+S)
$pc ++

CHAPTER 5. OPCODES 130

5.5.101 SUB
0123456789101112131415

0101 110d xxxx xxxx

Format:

SUB $acD , $ac (1-D)

Description:

Subtracts accumulator $ac(1-D) from accumulator register $acD.

Operation:

$acD -= $ac (1-D)
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 131

5.5.102 SUBAX
0123456789101112131415

0101 10sd xxxx xxxx

Format:

SUBAX $acD , $axS

Description:

Subtracts secondary accumulator $axS from accumulator register $acD.

Operation:

$acD -= $axS
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 132

5.5.103 SUBP
0123456789101112131415

0101 111d xxxx xxxx

Format:

SUBP $acD

Description:

Subtracts product register from accumulator register.

Operation:

$acD -= $prod
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 133

5.5.104 SUBR
0123456789101112131415

0101 0ssd xxxx xxxx

Format:

SUBR $acD , $(0 x18+S)

Description:

Subtracts register $(0x18+S) from accumulator $acD register.

Operation:

$acD -= $(0 x18+S)
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 134

5.5.105 TST
0123456789101112131415

1011 r001 xxxx xxxx

Format:

TST $acR

Description:

Test accumulator $acR.

Operation:

FLAGS($acR)
$pc ++

CHAPTER 5. OPCODES 135

5.5.106 TSTAXH
0123456789101112131415

1000 011r xxxx xxxx

Format:

TSTAXH $axR.h

Description:

Test hight part of secondary accumulator $axR.h.

Operation:

FLAGS($axR.h)
$pc ++

CHAPTER 5. OPCODES 136

5.5.107 XORI
0123456789101112131415

0000 001r 0010 0000

iiii iiii iiii iiii

Format:

XORI $acD.m, #I

Description:

Logical XOR (exclusive OR) of accumulator mid part $acD.m with immediate value I.

Operation:

$acD.m ^= #I
FLAGS($acD)
$pc += 2

CHAPTER 5. OPCODES 137

5.5.108 XORR
0123456789101112131415

0011 00sd xxxx xxxx

Format:

XORR $acD.m, $axS.h

Description:

Logical XOR (exclusive OR) middle part of accumulator $acD.m with high part of secondary accumulator
$axS.h.

Operation:

$acD.m ^= $axS.h
FLAGS($acD)
$pc ++

CHAPTER 5. OPCODES 138

5.6 Extended opcodes

Extended opcodes do not exist on their own. These opcodes can only be attached to opcodes that allow
extending (8 lower bits of opcode not used by opcode). Extended opcodes do not modify the program
counter ($pc register.

CHAPTER 5. OPCODES 139

5.7 Alphabetical list of extended opcodes

CHAPTER 5. OPCODES 140

5.7.1 ’DR
0123456789101112131415

xxxx xxxx 0000 01rr

Format:

'DR $arR

Description:

Decrement addressing register $arR.

Operation:

$arR --

CHAPTER 5. OPCODES 141

5.7.2 ’IR
0123456789101112131415

xxxx xxxx 0000 10rr

Format:

'IR $arR

Description:

Increment addressing register $arR.

Operation:

$arR ++

CHAPTER 5. OPCODES 142

5.7.3 ’L
0123456789101112131415

xxxx xxxx 01dd d0ss

Format:

'L $(0 x18+D), @$S

Description:

Load register $(0x18+D) with value from memory pointed by register $S. Post increment register $S.

Operation:

$(0 x18+D) = MEM[$S]
$S++

CHAPTER 5. OPCODES 143

5.7.4 ’LN
0123456789101112131415

xxxx xxxx 01dd d1ss

Format:

'LN $(0 x18+D), @$S

Description:

Load register $(0x18+D) with value from memory pointed by register $S. Add indexing register register
$(0x04+S) to register $S.

Operation:

$(0 x18+D) = MEM[$S]
$S += $(0 x04+S)

CHAPTER 5. OPCODES 144

5.7.5 ’LS
0123456789101112131415

xxxx xxxx 01dd d1ss

Format:

'LS $(0 x18+D), $acS.m

Description:

Load register $(0x18+D) with value from memory pointed by register $ar0. Store value from register
$acS.m to memory location pointed by register $ar3. Increment both $ar0 and $ar3.

Operation:

$(0 x18+D) = MEM[$ar0]
MEM[$ar3] = $acS.m
$ar0 ++
$ar3 ++

CHAPTER 5. OPCODES 145

5.7.6 ’LSM
0123456789101112131415

xxxx xxxx 10dd 100s

Format:

'LSM $(0 x18+D), $acS.m

Description:

Load register $(0x18+D) with value from memory pointed by register $ar0. Store value from register
$acS.m to memory location pointed by register $ar3. Add corresponding indexing register $ix3 to
addressing register $ar3 and increment $ar0.

Operation:

$(0 x18+D) = MEM[$ar0]
MEM[$ar3] = $acS.m
$ar0 ++
$ar3 += $ix3

CHAPTER 5. OPCODES 146

5.7.7 ’LSNM
0123456789101112131415

xxxx xxxx 10dd 110s

Format:

'LSNM $(0 x18+D), $acS.m

Description:

Load register $(0x18+D) with value from memory pointed by register $ar0. Store value from register
$acS.m to memory location pointed by register $ar3. Add corresponding indexing register $ix0 to
addressing register $ar0 and add corresponding indexing register $ix3 to addressing register $ar3.

Operation:

$(0 x18+D) = MEM[$ar0]
MEM[$ar3] = $acS.m
$ar0 += $ix0
$ar3 += $ix3

CHAPTER 5. OPCODES 147

5.7.8 ’LSN
0123456789101112131415

xxxx xxxx 10dd 010s

Format:

'LSN $(0 x18+D), $acS.m

Description:

Load register $(0x18+D) with value from memory pointed by register $ar0. Store value from register
$acS.m to memory location pointed by register $ar3. Add corresponding indexing register $ix0 to
addressing register $ar0 and increment $ar3.

Operation:

$(0 x18+D) = MEM[$ar0]
MEM[$ar3] = $acS.m
$ar0 += $ix0
$ar3 ++

CHAPTER 5. OPCODES 148

5.7.9 ’MV
0123456789101112131415

xxxx xxxx 0001 ddss

Format:

'MV $(0 x18+D), $(0 x1c+S)

Description:

Move value of register $(0x1c+S) to the register $(0x18+D).

Operation:

$(0 x18+D) = $(0 x1c+S)

CHAPTER 5. OPCODES 149

5.7.10 ’NR
0123456789101112131415

xxxx xxxx 0000 11rr

Format:

'NR $arR

Description:

Add corresponding indexing register $ixR to addressing register $arR.

Operation:

$arR += $ixR

CHAPTER 5. OPCODES 150

5.7.11 ’S
0123456789101112131415

xxxx xxxx 001s s0dd

Format:

'S @$D , $(0 x1c+D)

Description:

Store value of register $(0x1c+S) in the memory pointed by register $D. Post increment register $D.

Operation:

MEM[$D] = $(0 x1c+D)
$S++

CHAPTER 5. OPCODES 151

5.7.12 ’SL
0123456789101112131415

xxxx xxxx 10dd 001s

Format:

'SL $acS.m, $(0 x18+D)

Description:

Store value from register $acS.m to memory location pointed by register $ar0. Load register $(0x18+D)
with value from memory pointed by register $ar3. Increment both $ar0 and $ar3.

Operation:

$(0 x18+D) = MEM[$ar3]
MEM[$ar0] = $acS.m
$ar0 ++
$ar3 ++

CHAPTER 5. OPCODES 152

5.7.13 ’SLM
0123456789101112131415

xxxx xxxx 10dd 101s

Format:

'SLM $acS.m, $(0 x18+D)

Description:

Store value from register $acS.m to memory location pointed by register $ar0. Load register $(0x18+D)
with value from memory pointed by register $ar3. Add corresponding indexing register $ix3 to
addressing register $ar3 and increment $ar0.

Operation:

$(0 x18+D) = MEM[$ar3]
MEM[$ar0] = $acS.m
$ar0 ++
$ar3 += $ix3

CHAPTER 5. OPCODES 153

5.7.14 ’SLMN
0123456789101112131415

xxxx xxxx 10dd 111s

Format:

'SLMN $acS.m, $(0 x18+D)

Description:

Store value from register $acS.m to memory location pointed by register $ar0. Load register $(0x18+D)
with value from memory pointed by register $ar3. Add corresponding indexing register $ix0 to
addressing register $ar0 and add corresponding indexing register $ix3 to addressing register $ar3.

Operation:

$(0 x18+D) = MEM[$ar3]
MEM[$ar0] = $acS.m
$ar0 += $ix0
$ar3 += $ix3

CHAPTER 5. OPCODES 154

5.7.15 ’SLN
0123456789101112131415

xxxx xxxx 10dd 011s

Format:

'SLN $acS.m, $(0 x18+D)

Description:

Store value from register $acS.m to memory location pointed by register $ar0. Load register $(0x18+D)
with value from memory pointed by register $ar3. Add corresponding indexing register $ix0 to
addressing register $ar0 and increment $ar3.

Operation:

$(0 x18+D) = MEM[$ar3]
MEM[$ar0] = $acS.m
$ar0 += $ix0
$ar3 ++

CHAPTER 5. OPCODES 155

5.7.16 ’SN
0123456789101112131415

xxxx xxxx 001s s1dd

Format:

'SN @$D , $(0 x1c+D)

Description:

Store value of register $(0x1c+S) in the memory pointed by register $D. Add indexing register register
$(0x04+D) to register $D.

Operation:

MEM[$D] = $(0 x1c+D)
$D += $(0 x04+D)

CHAPTER 5. OPCODES 156

5.8 Instructions sorted by opcode

NOP * 0000 0000 0000 0000
DAR * 0000 0000 0000 01aa
IAR * 0000 0000 0000 10aa
XXX NOT USED 0000 0000 0000 11xx
ADDARN * 0000 0000 0001 bbaa
HALT * 0000 0000 0010 0001

LOOP * 0000 0000 010r rrrr
BLOOP * 00000 0000 011r rrrr

LRI * 0000 0000 100r rrrr iiii iiii iiii iiii
XXX NOT USED * 0000 0000 101x xxxx
LR * 0000 0000 110r rrrr mmmm mmmm mmmm mmmm
SR * 0000 0000 111r rrrr mmmm mmmm mmmm mmmm

IF cc * 0000 0010 0111 cccc
JMP cc * 0000 0010 1001 cccc
CALL cc * 0000 0010 1011 cccc
RET cc * 0000 0010 1101 cccc

ADDI * 0000 001r 0000 0000 iiii iiii iiii iiii
XORI * 0000 001r 0010 0000 iiii iiii iiii iiii
ANDI * 0000 001r 0100 0000 iiii iiii iiii iiii
ORI * 0000 001r 0110 0000 iiii iiii iiii iiii
CMPI * 0000 001r 1000 0000 iiii iiii iiii iiii
ANDCF * 0000 001r 1010 0000 iiii iiii iiii iiii
ANDF * 0000 001r 1100 0000 iiii iiii iiii iiii

ILRR * 0000 001r 0001 mmaa

ADDIS * 0000 010d iiii iiii
CMPIS * 0000 011d iiii iiii
LRIS * 0000 1rrr iiii iiii

LOOPI * 0001 0000 iiii iiii aaaa aaaa aaaa aaaa
BLOOPI * 0001 0001 iiii iiii aaaa aaaa aaaa aaaa
SBSET * 0001 0010 ???? ?iii
SBCLR * 0001 0011 ???? ?iii
LSL/LSR * 0001 010r 0sss ssss
ASL/ASR * 0001 010r 1sss ssss

SI * 0001 0110 iiii iiii mmmm mmmm mmmm mmmm
CALLR * 0001 0111 rrr1 1111
JMPR * 0001 0111 rrr0 1111
LRR(I|D|X) * 0001 100x xaar rrrr
SRR(I|D|X) * 0001 101x xaar rrrr
MRR * 0001 11dd ddds ssss

LRS * 0010 0rrr mmmm mmmm
SRS * 0010 1rrr mmmm mmmm

XORR * 0011 00sr xxxx xxxx
ANDR * 0011 01sr xxxx xxxx
ORR * 0011 10sr xxxx xxxx
ANDC * 0011 110r xxxx xxxx
ORC * 0011 111r xxxx xxxx

CHAPTER 5. OPCODES 157

ADDR * 0100 0ssd xxxx xxxx
ADDAX * 0100 10sd xxxx xxxx
ADD * 0100 110d xxxx xxxx
ADDP * 0100 111d xxxx xxxx

SUBR * 0101 0ssd xxxx xxxx
SUBAX * 0101 10sd xxxx xxxx
SUB * 0101 110d xxxx xxxx
SUBP * 0101 111d xxxx xxxx

MOVR * 0110 0ssd xxxx xxxx
MOVAX * 0110 10sd xxxx xxxx
MOV * 0110 110d xxxx xxxx
MOVP * 0110 111d xxxx xxxx

ADDAXL * 0111 00sr xxxx xxxx
INCM * 0111 010r xxxx xxxx
INC * 0111 011r xxxx xxxx
DECM * 0111 100r xxxx xxxx
DEC * 0111 101r xxxx xxxx
NEG * 0111 110r xxxx xxxx
MOVNP * 0111 111r xxxx xxxx

NX * 1000 x000 xxxx xxxx
CLR * 1000 x001 xxxx xxxx
CMP * 1000 0010 xxxx xxxx
??? UNUSED * 1000 0011 xxxx xxxx
CLRP * 1000 0100 xxxx xxxx
TSTAXH * 1000 011x xxxx xxxx
M0/M2 1000 101x xxxx xxxx
CLR15/SET15 1000 110x xxxx xxxx
SET40/16 1000 111x xxxx xxxx

MUL * 1001 a000 xxxx xxxx
ASR16 * 1001 r001 xxxx xxxx
MULMVZ * 1001 a01r xxxx xxxx
MULAC * 1001 a10r xxxx xxxx
MULMV * 1001 a11r xxxx xxxx

MULX * 101b a000 xxxx xxxx
??? 1010 r001 xxxx xxxx
MULXMVZ * 101b a01r xxxx xxxx
MULXAC * 101b a10r xxxx xxxx
MULXMV * 101b a11r xxxx xxxx

MULC * 110s a000 xxxx xxxx
CMP * 110x r001 xxxx xxxx
MULCMVZ * 110s a01r xxxx xxxx
MULCAC * 110s a10r xxxx xxxx
MULCMV * 110s a11r xxxx xxxx

MADDX ** 1110 00st xxxx xxxx
MSUBX ** 1110 01st xxxx xxxx
MADDC ** 1110 10st xxxx xxxx
MSUBC ** 1110 11st xxxx xxxx

LSL16 * 1111 000r xxxx xxxx
MADD * 1111 001s xxxx xxxx

CHAPTER 5. OPCODES 158

LSR16 * 1111 010r xxxx xxxx
MSUB * 1111 011s xxxx xxxx
ADDPAXZ * 1111 10ar xxxx xxxx
CLRL * 1111 110r xxxx xxxx
MOVPZ * 1111 111r xxxx xxxx

Extension Opcodes

[D|I|N]R * xxxx xxxx 0000 nnaa
MV * xxxx xxxx 0001 ddss
S[N] * xxxx xxxx 001r rnaa
L[N] * xxxx xxxx 01dd diss
LS[NM|M|N] * xxxx xxxx 10dd ba0r
SL * xxxx xxxx 10dd ba1r
LD[NM|M|N] xxxx xxxx 11mn barr
LD2[NM|M|N] xxxx xxxx 11rm ba11

