(12)

United States Patent
Leather et al.

US006707458B1

10y Patent No.: US 6,707,458 B1
5) Date of Patent: Mar. 16, 2004

(54

(75)

(73)

*)

@D

(22

(60)

(D
(52)

(58)

(56)

METHOD AND APPARATUS FOR TEXTURE
TILING IN A GRAPHICS SYSTEM
Inventors: Mark M. Leather, Saratoga, CA (US);
Yoshitaka Yasumoto, Osaka (JP)
Assignee: Nintendo Co., Ltd., Kyoto (JP)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 321 days.
Appl. No.: 09/726,221
Filed: Nov. 28, 2000
Related U.S. Application Data
Provisional application No. 60/227,033, filed on Aug. 23,
2000.
Int. CL7 oo G09G 5/00
US.Cl 345/582; 345/583; 345/629;
345/630
Field of Search 345/582, 583,
345/629, 630
References Cited
U.S. PATENT DOCUMENTS
4,275,413 A 6/1981 Sakamoto et al.
4,357,624 A 11/1982 Greenberg
4,388,620 A 6/1983 Sherman
4,425,559 A 1/1984 Sherman
4,463,380 A 7/1984 Hooks, Jr.
4,491,836 A 1/1985 Collmeyer et al.
4,570,233 A 2/1986 Yan et al.
4,586,038 A 4/1986 Sims et al.
4,600,919 A 7/1986 Stern
4,615,013 A 9/1986 Yan et al.
4,625,289 A 11/1986 Rockwood
4,653,012 A 3/1987 Duffy et al.
4,658,247 A 4/1987 Gharachorloo
4,692,880 A 9/1987 Merz et al.
4,695,943 A 9/1987 Keeley et al.
4,710,876 A 12/1987 Cline et al.
4,725,831 A 2/1988 Coleman

(List continued on next page.)

PX0 NDir. Coords

FOREIGN PATENT DOCUMENTS

CA 2070934 12/1993
EP 0637 813 A2 2/1995
EP 1 074 945 2/2001

(List continued on next page.)
OTHER PUBLICATIONS

GDC 2000: Advanced OpenGL Game Development, “A
Practical and Robust Bump-mapping Technique for Today’s
GPUs,” by Mark Kilgard, Jul. 5, 2000, www.nvidia.com.

Technical Presentations: “Texture Space Bump Mapping,”
Sim Dietrich, Nov. 10, 2000, www.nvidia.com.

Whitepapers: “Texture Addresing,” Sim Dietrich, Jan. 6,
2000, www.nvidia.com.

(List continued on next page.)

Primary Examiner—Matthew C. Bella
Assistant Examiner—Tam Tran
(74) Antorney, Agent, or Firm—Nixon & Vanderhye P.C.

(7) ABSTRACT

A graphics system including a custom graphics and audio
processor produces exciting 2D and 3D graphics and sur-
round sound. The system includes a graphics and audio
processor including a 3D graphics pipeline and an audio
digital signal processor. Textured surfaces are created using
indirect texture tiling. A set of direct and indirect texture
coordinates are defined. The indirect coordinates are used in
an indirect lookup operation in an indirect tile index map to
obtain tile select offsets. The offsets are used to modify the
direct texture coordinates, and the modified texture coordi-
nates are then used to obtain a texture tile from a tile
definitions map. The selected tile is then displayed. In
another embodiment, the offsets are biased and combined
with the direct texture coordinates to produce a second set of
modified texture coordinates. The second set is used to
obtain a second texture tile from the tile definitions map. The
two selected tiles are then blended together to provide a
synthetic texture tile having a pseudo-3D effect.

6 Claims, 37 Drawing Sheets

Refriaved
Indrect Texture Data
FIFQ
GFIFO)

=

Indirect
Datz

FIFO Buffer

To Pixel
Shader

014

US 6,707,458 Bl

Page 2

4,768,148
4,785,395
4,790,025
4,808,988
4,812,988
4,817,175
4,829,295
4,829,452
4,833,601
4,855,934
4,862,392
4,866,637
4,888,712
4,897,806
4,901,064
4,907,174
4,914,729
4,918,625
4,935,879
4,945,500
4,965,751
4,974,176
4,974,177
4,975,977
4,989,138
5,003,496
5,016,183
5,018,076
5,043,922
5,056,044
5,062,057
5,086,495
5,091,967
5,097,427
5,136,664
5,144,201
5,163,126
5,170,468
5,179,638
5,204,944
5,224,208
5,230,624
5,241,658
5,255,353
5,268,995
5,268,996
5,278,948
5,307,450
5,315,692
5,345,541
5,353,424
5,357,579
5,361,386
5,363,475
5,377,313
5,392,385
5,392,393
5,394,516
5,402,532
5,404,445
5,408,650
5,412,796
5,415,549
5,416,606
5,421,028
5,422,997
5,432,895
5,432,900
5,438,663
5,448,689

U.S. PATENT DOCUMENTS

b I i g g g g e b S 3 T i e i e g e g g e g S i S S B i g e i g i S il e g e g g e g g S

8/1988
11/1988
12/1988

2/1989

3/1989

3/1989

5/1989

5/1989

5/1989

8/1989

8/1989

9/1989
12/1989

1/1990

2/1990

3/1990

4/1990

4/1990

6/1990

7/1990
10/1990
11/1990
11/1990
12/1990

1/1991

3/1991

5/1991

5/1991

8/1991
10/1991
10/1991

2/1992

2/1992

3/1992

8/1992

9/1992
11/1992
12/1992

1/1993

4/1993

6/1993

8/1993

8/1993
10/1993
12/1993
12/1993

1/1994

4/1994

5/1994

9/1994
10/1994
10/1994
11/1994
11/1994
12/1994

2/1995

2/1995

2/1995

3/1995

4/1995

4/1995

5/1995

5/1995

5/1995

5/1995

6/1995

7/1995

7/1995

8/1995

9/1995

Keeley et al.
Keeley
Inoue et al.
Burke et al.
Duthuit et al.
Tenenbaum et al.
Hiroyuki
Kang et al.
Barlow et al.
Robinson
Steiner

Gonzalez-Lopez et al.

Barkans et al.
Cook et al.
Deering

Priem

Omori et al.
Yan

Ueda

Deering
Thayer et al.
Buchner et al.
Nishiguchi
Kurosu et al.
Radochonski
Hunt, Jr. et al.
Shyong

Johary et al.
Matsumoto
Frederickson et al.
Blacken et al.
Gray et al.
Ohsawa
Lathrop et al.
Bersack et al.
Nishizawa
Einkauf et al.
Shah et al.
Dawson et al.
Wolberg et al.
Miller, Ir. et al.
Cook et al.
Masterson et al.
Itoh
Diefendorff et al.
Steiner et al.
Luken, Ir.
Grossman
Hansen et al.
Kelley et al.
Partovi et al.
Buchner et al.
Watkins et al.
Baker et al.
Scheibl
Evangelisti et al.
Deering
Winser

Epstein et al.
Matsumoto
Arsenault
Olive

Logg
Katayama et al.
Swanson
Nagashima
Myers

Rhodes et al.
Matsumoto et al.
Matsuo et al.

5,457,775
5,461,712
5,467,438
5,467,459
5,469,535
5,473,736
5,475,803
5,487,146
5,490,240
5,495,563
5,504,499
5,504,917
5,506,604
5,535,374
5,543,824
5,544,202
5,548,709
5,553,228
5,557,712
5,559,954
5,561,746
5,561,752
5,563,989
5,566,285
5,573,402
5,579,456
5,586,234
5,593,350
5,594,854
5,600,763
5,606,650
5,607,157
5,608,424
5,608,864
5,616,031
5,621,867
5,628,686
5,638,535
5,644,364
5,649,082
5,650,955
5,651,104
5,657,045
5,657,443
5,657,478
5,659,671
5,659,673
5,659,715
5,664,162
5,666,439
5,678,037
5,682,522
5,684,941
5,687,304
5,687,357
5,691,746
5,694,143
5,696,892
5,701,444
5,703,806
5,706,481
5,706,482
5,714,981
5,721,947
5,724,561
5,726,689
5,726,947
5,727,192
5,734,386
5,739,819
5,740,343

b g I S i g g e g g e i S B 3 T i i e g i e g g e g i i G S i i g g i e g i i i g i e g

10/1995
10/1995
11/1995
11/1995
11/1995
12/1995
12/1995
1/1996
2/1996
2/1996
4/1996
4/1996
4/1996
7/1996
8/1996
8/1996
8/1996
9/1996
9/1996
9/1996
10/1996
10/1996
10/1996
10/1996
11/1996
11/1996
12/1996
1/1997
1/1997
2/1997
2/1997
3/1997
3/1997
3/1997
4/1997
4/1997
5/1997
6/1997
7/1997
7/1997
7/1997
7/1997
8/1997
8/1997
8/1997
8/1997
8/1997
8/1997
9/1997
9/1997
10/1997
10/1997
11/1997
11/1997
11/1997
11/1997
12/1997
12/1997
12/1997
12/1997
1/1998
1/1998
2/1998
2/1998
3/1998
3/1998
3/1998
3/1998
3/1998
4/1998
4/1998

Johnson, Ir. et al.
Chelstowski et al.
Nishio et al.
Alexander et al.
Jarvis et al.
Young

Stearns et al.
Guttag et al.
Foran et al.
Winser

Horie et al.
Austin

Nally et al.
Olive

Priem et al.
Winser
Hannah et al.
Erb et al.

Guay

Sakoda et al.
Murata et al.
Jevans

Billyard

Okada

Gray

Cosman
Sakuraba et al.
Bouton et al.
Baldwin et al.
Greene et al.
Kelley et al.
Nagashima
Takahashi et al.
Bindlish et al.
Logg

Murata et al.
Svancarek et al.
Rosenthal et al.
Kurtze et al.
Burns

Puar et al.
Cosman
Katsura et al.
Krech, Ir.
Recker et al.
Tannenbaum et al.
Nonoshita

Wu et al.

Dye

Ishida et al.
Osugi et al.
Huang et al.
Dye

Kiss

Priem

Shyu

Fielder et al.
Redmann et al.
Baldwin

Puar et al.
Hannah et al.
Matsushima et al.
Scott-Jackson et al.
Priem et al.
Tarolli et al.
Negishi et al.
Yamazaki et al.
Baldwin
Cosman
Bar-Nahum
Tarolli et al.

US 6,707,458 Bl

Page 3

5,740,383
5,740,406
5,742,749
5,742,788
5,745,118
5,745,125
5,748,199
5,748,986
5,751,291
5,751,202
5,751,295
5,751,930
5,754,191
5,757,382
5,758,182
5,760,783
5,764,228
5,764,237
5,764,243
5,767,856
5,767,858
5,768,626
5,768,629
5,774,133
5,777,623
5,777,629
5,781,927
5,791,994
5,798,770
5,801,706
5,801,711
5,801,716
5,801,720
5,805,175
5,805,868
5,808,619
5,808,630
5,800,219
5,809,278
5,815,165
5,815,166
5,818,456
5,819,017
5,821,940
5,821,949
5,822,516
5,828,382
5,828,383
5,828,907
5,831,624
5,831,625
5,831,640
5,835,096
5,835,792
5,838,334
5,844,576
5,850,229
5,852,451
5,856,829
5,859,645
5,861,888
5,861,893
5,867,166
5,870,007
5,870,008
5,870,102
5,870,109
5,870,587
5,872,902
5,874,969
5,877,741

b g I S i g g e g g e i S B 3 T i i e g i e g g e g i i G S i i g g i e g i i i g i e g

4/1998
4/1998
4/1998
4/1998
4/1998
4/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
5/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
6/1998
7/1998
7/1998
7/1998
8/1998
8/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
9/1998
10/1998
10/1998
10/1998
10/1998
10/1998
10/1998
10/1998
10/1998
11/1998
11/1998
11/1998
11/1998
11/1998
11/1998
12/1998
12/1998
12/1998
1/1999
1/1999
1/1999
1/1999
2/1999
2/1999
2/1999
2/1999
2/1999
2/1999
2/1999
2/1999
3/1999

Nally et al.
Rosenthal et al.
Foran et al.
Priem et al.
Alcorn et al.
Deering et al.
Palm
Butterfield et al.
Olsen et al.
Emmot
Becklund et al.
Katsura et al.
Mills et al.
Lee
Rosenthal et al.
Migdal et al.
Baldwin
Kaneko
Baldwin
Peterson et al.
Kawase et al.
Munson et al.
Wise et al.
Neave et al.
Small
Baldwin

Wu et al.
Hirano et al.
Baldwin
Fujita et al.
Koss et al.
Silverbrook
Norrod et al.
Priem
Murphy

Choi et al.
Pannell
Pearce et al.
Watanabe et al.
Blixt

Baldwin
Cosman et al.
Akeley et al.
Morgan et al.
Deering
Krech, Ir.
Wilde

May et al.
Wise et al.
Tarolli et al.
Rich et al.
Wang et al.
Baldwin
Wise et al.
Dye

Wilde et al.

Edelsbrunner et al.

Cox et al.
Gray, III et al.
Latham
Dempsey
Strugess
Myhrvold et al.
Snyder et al.
Gardiner
Tarolli et al.
McCormack et al.
Danforth et al.
Kuchkuda et al.
Storm et al.
Chee et al.

5,877,770
5,877.771
5,880,736
5,880,737
5,883,638
5,886,701
5,886,705
5,887,155
5,890,190
5,892,517
5,892,974
5,894,300
5,900,881
5,903,283
5,900,218
5,900,225
5,912,675
5,912,676
5,914,721
5,914,725
5,914,729
5,917,496
5,920,326
5,920,876
5923332
5,923,334
5,926,182
5,926,647
5,933,150
5,933,154
5,933,155
5,933,529
5,936,641
5,936,683
5,940,086
5,940,089
5,940,538
5,943,058
5,943,060
5,945,997
5,949,421
5,949,423
5,949,424
5,949,428
5,949,440
5,956,042
5,956,043
5,958,020
5,959,640
5,963,220
5,966,134
5,969,726
5,977,979
5,977,984
5,982,376
5,982,390
5,986,659
5,986,663
5,986,677
5,987,567
5,990,903
5,995,120
5,995,121
5,999,189
5,999,196
5,999,198
6,002,407
6,002,409
6,002,410
6,005,582
6,005,583

b g I S i g g e g g e i S B 3 T i i e g i e g g e g i i G S i i g g i e g i i i g i e g

3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
3/1999
4/1999
4/1999
4/1999
5/1999
5/1999
6/1999
6/1999
6/1999
6/1999
6/1999
6/1999
6/1999
6/1999
7/1999
7/1999
7/1999
7/1999
7/1999
7/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
8/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
10/1999
10/1999
10/1999
11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
11/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999
12/1999

Hanaoka
Drebin et al.
Peercy et al.
Griffen et al.
Rouet et al.
Chauvin et al.
Lentz

Laidig
Rutman

Rich

Koizumi et al.
Takizawa
Tkedo

Selwan et al.
Naka et al.
Schinnerer et al.
Laperriere
Malladi et al.
Lim

Mclnnis et al.
Lippincott
Fujita et al.
Rentschler et al.
Ungar et al.
Izawa

Luken

Menon et al.
Adams et al.
Ngo et al.
Howard et al.
Akeley

Kim

Jain et al.

Lin
Rentschler et al.
Dilliplane et al.
Spiegel et al.
Nagy

Cosman et al.
Zhao et al.
Ogletree et al.
Olsen

Cabral et al.
Toelle et al.
Krech, Ir. et al.
Tucker et al.
Jensen

Evoy et al.
Rudin et al.
Lee et al.
Arias
Rentschler et al.
Clough et al.
Omori

Abe et al.
Stoneking et al.
Gallery et al.
Wilde

Jones et al.
Rivard et al.
Donovan

Dye

Alcorn et al.
Kajiya et al.
Storm et al.
Horan et al.
Fadden
Harkin

Battle

Gabriel et al.
Morrison

US 6,707,458 Bl

Page 4

6,005,584 A 12/1999 Kitamura et al. 6,104,415 A 8/2000 Gossett
6,007,428 A 12/1999 Nishiumi et al. 6,104,417 A 82000 Nielsen et al.
6,008,820 A 12/1999 Chauvin et al. 6,105,094 A 82000 Lindeman
6,011,562 A 1/2000 Gagne et al. 6,108,743 A 8/2000 Debs et al.
6,011,565 A 1/2000 Kuo et al. 6,111,582 A 8/2000 Jenkins
6,014,144 A 1/2000 Nelson et al. 6,111,584 A 82000 Murphy
6,016,150 A 1/2000 Lengyel et al. 6,115,047 A 9/2000 Deering
6,016,151 A 1/2000 Lin 6,115,049 A 9/2000 Wmner.et al.
6018350 A 1/2000 Lee et al. 6,118462 A 9/2000 Margulis

. 6,128,026 A 10/2000 Brothers, III
6,020,931 A 2/2000 Bilbrey et al. 6144365 A 11/2000 Young ef al.
60,0247 A 2/2000 Massarksy 6144387 A 11/2000 Liu et al.
0,022,274 A 2/2000 Takeda et al. 6,151,602 A 11/2000 Hejlsberg et al.
6,023,261 A 2/2000 Ugajin 6,155926 A 12/2000 Miyamoto et al.
6,023,738 A 2/2000 Priem et al. 6,157,387 A 12/2000 Kotani
6,025853 A 2/2000 Baldwin 6,166,748 A 12/2000 Van Hook et al.
6,026,182 A 2/2000 Lee et al. 6,172,678 Bl 1/2001 Shiraishi
6,028,608 A 2/2000 Jenkins 6,173,367 Bl 1/2001 Aleksic et al.
6,028,611 A 2/2000 Anderson et al. 6,177,944 Bl 1/2001 Fowler et al.
6,031,542 A 2/2000 Willig 6,181,352 Bl 1/2001 Kirk et al.
6,035,360 A 3/2000 Doidge et al. 6,191,794 Bl 2/2001 Priem et al.
6,037,948 A 3/2000 Licpa 6,198,488 B1 3/2001 Lindholm et al.
6,037,949 A 3/2000 DeRose el al. 6,200,253 Bl 3/2001 Nishiumi et al.
6,038,031 A 3/2000 Murphy 6,204,851 B1 3/2001 Netschke et al.
6,038,348 A~ 3/2000 Carley 6,215,496 Bl 4/2001 Szeliski et al.
6,040,843 A 3/2000 Monroe et al. 6,215,497 Bl 4/2001 Leung
6,040,844 A 3/2000 Yamaguchi et al. 6,226,012 Bl 5/2001 Priem et al.
6,041,010 A~ 3/2000 Puar et al. 6,226,713 Bl 5/2001 Mehrotra
6,043,804 A 3/2000 Greene 6232981 Bl 52001 Gossett
6,043,821 A 3/2000 Sprague et al. 6,236,413 Bl 5/2001 Gossett et al.
6,046,746 A 4/2000 Deering 6,239,810 Bl 5/2001 Van Hook et al.
6,046,747 A 4/2000 Saunders et al. 6,252,608 Bl 6/2001 Snyder et al.
6,046,752 A 4/2000 Kirkland et al. 6,252,610 B1 6/2001 Hussain
6,049337 A 4/2000 Van Overveld 6,264,558 Bl 7/2001 Nishiumi et al.
6,049.338 A 4/2000 Anderson et al. 6,268,861 Bl 7/2001 Sanz-Pastor et al.
6,052,125 A 4/2000 Gardiner et al. 6,275,235 Bl 8/2001 Morgan, 111
6,052,126 A 4/2000 Sakuraba et al. 6,285,779 Bl 9/2001 Lapidous et al.
6,052,127 A 4/2000 Vaswani et al. 6,292,194 B1 9/2001 Powll, III
6,052,129 A 4/2000 Fowler et al. 6,329,997 Bl 12/2001 We et al.
6,052,133 A~ 4/2000 Kang 6,331,856 Bl 12/2001 Van Hook et al.
6,054,993 A 4/2000 Devic et al. 6,339,428 Bl 1/2002 Fowler et al.
6,054,999 A 4/2000 Strandberg 6,342,802 Bl 1/2002 Van Hook et al.
6,057,847 A 52000 Jenkins 6,353,438 Bl 3/2002 Van Hook
6,057,849 A 5/2000 Haubner et al. 6,356,497 Bl 3/2002 Puar et al.
6,057,851 A~ 52000 Luken et al. 6408362 Bl 6/2002 Arimilli et al.
6,057,852 A 5/2000 Krech, Jr. 6,417,858 Bl 7/2002 Bosch et al.
6,057,859 A 5/2000 Handelman et al. 6,426,747 Bl 7/2002 Hoppe et al.
6,057,861 A 5/2000 Lee et al. 6,437,781 Bl /2002 Tucker et al.
6,057,862 A 52000 Margulis 6,459,420 Bl 10/2002 Deering
6,057,863 A 52000 Olarig 6,466,223 Bl * 10/2002 Dorbie et al. 345/582
6,061,462 A 5/2000 Tostevin et al. 6,469,707 Bl 10/2002 Voorhies
6,064,392 A 52000 Rohner 6,476,808 Bl 11/2002 Kuo et al.
6,067,098 A 52000 Dye 6.476,822 Bl 11/2002 Burbank
6,070,204 A~ 52000 Poisner 6,496,187 Bl 12/2002 Deering et al.
6,072,496 A 6/2000 Guenter et al.
6,075,543 A 6/2000 Akeley FOREIGN PATENT DOCUMENTS
6,075,546 A 6/2000 Hussain et al.
6078311 A 6/2000 Pelkey EP 1075 146 2/2001
6,078,333 A 6/2000 Wittig et al. EP 1081 649 3/2001
6,078,334 A 6/2000 Hanaoka et al. P 9-330230 12/1997
6,078,338 A 6/2000 Horan et al. P 11053580 2/1999
6,081,274 A 6/2000 Shiraishi P 11076614 3/1999
6,088,035 A 7/2000 Sudarsky et al. P 11161819 6/1999
6,088,042 A 7/2000 Handelman et al. P 11203500 7/1999
6,088,487 A 7/2000 Kurashige P 11226257 8/1999
6,088,701 A 7/2000 Whaley et al. P 11259671 9/1999
6,091,431 A 7/2000 Saxena et al. P 11259678 9/1999
6,092,124 A 7/2000 Priem et al. P 2000-66985 3/2000
6,092,158 A 7/2000 Harriman et al. P 2000-92390 3/2000
6,094,200 A 7/2000 Olsen et al. P 2000-132704 5/2000
6,097,435 A 8/2000 Stanger et al. P 2000-132706 5/2000
6097437 A 82000 Hwang P 2000-149053 5/2000

US 6,707,458 Bl
Page 5

JpP 2000-156875 6/2000
JpP 2000-182077 6/2000
JpP 2000-207582 7/2000
JpP 2000-215325 8/2000
WO WO0/93/04429 3/1993
WO WO 94/10641 5/1994

OTHER PUBLICATIONS

White paper, Huddy, Richard, “The Efficient Use of Vertex
Buffers,” (Nov. 01, 2000).

White paper, Spitzer, John, et al., “Using G1_NV__array__
range and GL_NV_ Fence on GEForce Products and
Beyond” (Aug. 01, 2000).

White paper, Rogers, Douglas H., “Optimizing Direct3D for
the GeForce 256” (Jan. 3, 2000).

Hook, Brian, “An Incomplete Guide to Programming
DirectDraw and Direct3D Immediate Mode (Release 0.46),”
printed from web site: www.wksoftware.com, 42 pages.
Thompson, Tom, “Must—See 3—D Engines,” BYTE Maga-
zine, printed from web site www.byte.com, 10 pages (Jun.
1996).

Thompson, Nigel, “Rendering with Immediate Mode,”
Microsoft Interactive Developer Column: Fun and Games,
printed from web site msdn.microsoft.com, 8 pages (Mar.
1997).

“HOWTO: Animate Textures in Direct3D Immediate
Mode,” printed from web site support.microsoft.com, 3
pages (last reviewed Dec. 15, 2000).

INFO: Rendering a Triangle Using an Execute Buffer,
printed from web site support.microsoft.com, 6 pages (last
reviewed Oct. 20, 2000).

U.S. application Ser. No. 09/337,293, filed Jun. 21, 1999,
Multi-Format Vertex Data Processing Apparatus and
Method [issued as U.S. Pat. No. 6,501,479 B1 on Dec. 31,
2002].

Datasheet, SGS-Thomson Microelectronics, nVIDIA™,
RIVA 128™ 128-Bit 3D Multimedia Accelerator (Oct.
1997).

Product Presentation, “RIVA128™ Leadership 3D Accel-
eration,” 2 pages.

ZDNet Reviews, from PC Magazine, “Other Enhance-
ments,” Jan. 15, 1999, wysiwyg://16/http://
www4.zdnet.com . . . ies/reviews/0,4161,2188286,00.html.
ZDNet Reviews, from PC Magazine, “Screen Shot of
Alpha—channel Transparency,” Jan. 15, 1999, wysiwyg://16/
http://www4.zdnet.com ies/reviews/0,4161,2188286,
00.html.

Alpha (transparency) Effects, Future Technology Research
Index, http://www.futuretech.vuurwerk.n1/alpha.html.
Blythe, David, 5.6 Transparency Mapping and Trimming
with Alpha, http://toolbox.sgi.com/TasteOfDT/d . . . penGL/
advanced98/notes/node41.html, Jun. 11, 1998.

10.2 Alpha Blending, http://www.sgi.com/software/opengl/
advanced98/notes/node146.html.

10.3 Sorting, http://www.sgi.com/software/opengl/ad-
vanced98/notes/node 147 html.

10.4 Using the Alpha Function, http:www.sgi.com/software/
opengl/advanced98/notes/node 148.html.

Winner, Stephanie, et al., “Hardware Accelerated Rendering
Of Antialiasing Using a Modified A-buffer Algorithm,”
Computer Graphics Proceedings, Annual Conference Series,
1997, pp. 307-316.

Debevec, Paul, et al, “Efficient View—Dependent
Image—Based Rendering with Projective Texture—Map-
ping,” University of California at Berkeley.

Gibson, Simon, et al, “Interactive Rendering with
Real-World Illumination,” Rendering Techniques 2000;
11th Eurographics Workshop on Rendering, pp. 365-376
(Jun. 2000).

Segal, Mark, et al., “Fast Shadows and Lighting Effects
Using Texture Mapping,” Computer Graphics, 26, 2, pp.
249-252 (Jul. 1992).

White paper, Kilgard, Mark J., “Improving Shadows and
Reflections via the Stencil Buffer” (Nov. 03, 1999).
“OpenGL Projected Textures,” from web site: HTTP:// reali-
ty.sgi.com, 5 pages.

“5.13.1 How to Project a Texture,” from web site: www.s-
gi.com, 2 pages.

Arkin, Alan, email, subject: “Texture distortion problem,”
from web site: HTTP://reality.sgi.com (Jul. 1997).

Moller, Tomas et al., “Real-Time Rendering,” pp. 179-183
(AK Peters Ltd., 1999).

Williams, Lance, “Casting Curved Shadows on Curved
Surfaces,” Computer Graphics (SIGGRAPH °78 Proceed-
ings), vol. 12, No. 3, pp. 270-274 (Aug. 1978).

Woo et al.,, “A Survey of Shadow Algorithms,” IEEE Com-
puter Graphics and Applications, vol. 10, No. 6, pp. 13-32
(Nov. 1990).

Heidrich et al., “Applications of Pixel Textures in Visual-
ization and Realistic Image Synthesis,” Proceedings 1999
Symposium On Interactive 3D Gaphics, pp. 127-134 (Apr.
1999).

Hourcade et al, “Algorithms for Antialiased Cast Shadows”,
Computers and Graphics, vol. 9, No. 3, pp. 260-265 (1985).
Michael McCool, “Shadow Volume Reconstruction from
Depth Maps”, ACM Transactions on Graphics, vol. 19, No.
1, Jan. 2000, pp. 1-26.

RenderMan Artist Tools, PhotoRealistic RenderMan 3.8
User’s Manual, Pixar (Aug. 1998).

RenderMan Interface Version 3.2 (Jul. 2000).

White paper, Dietrich, Sim, “Cartoon Rendering and
Advanced Texture Features of the GeForce 256 Texture
Matrix, Projective Textures, Cube Maps, Texture Coordinate
Generation and DOTPRODUCT3 Texture Blending” (Dec.
16, 1999).

Peter J. Kovach, Inside Direct 3D, “Alpha Testing,” pp.
289-291 (1999).

Web site information, CartoonReyes, REM Infografica,
http://www.digimotion.co.uk/cartoonreyes.htm.

Raskar, Ramesh et al., “Image Precision Silhouette Edges,”
Symposium on Interactive 3D Graphics 1999, Atlanta, 7
pages (Apr. 26-29, 1999).

Schlechtweg, Stefan et al., Rendering Line—Drawings with
Limited Resources, Proceedings of GRAPHICON °96, 6th
International Conference and Exhibition on Computer
Graphics and Visualization in Russia, (St. Petersburg, Jul.
1-5, 1996) vol. 2, pp. 131-137.

Haeberli, Paul et al., “Texture Mapping as a Fundamental
Drawing Primitive,” Proceedings of the Fourth Eurograph-
ics Workshop on Rendering, 11pages, Paris, France (Jun.
1993).

Schlechtweg, Stefan et al., “Emphasising in Line—draw-
ings,” Norsk samarbeid innen grafisk databehandling: NOR-
SIGD Info, medlemsblad for NORSIGD, Nr 1/95, pp. 9-10.
Markosian, Lee et al., “Real-Time Nonphotorealistic Ren-
dering,” Brown University site of the NSF Science and
Technology Center for Computer Graphics and Scientific
Visualization, Providence, RI, 5 pages (undated).

US 6,707,458 B1
Page 6

Feth, Bill, “Non—Photorealistic Rendering,” wif3 @ cor-
nell.edu, CS490—Bruce Land, 5 pages (Spring 1998).
Elber, Gershon, “Line Art Illustrations of Parametric and
Implicit Forms,” IEEE Transactions on Visualization and
Computer Graphics, vol. 4, No. 1, Jan.—Mar. 1998.
Zeleznik, Robert et al. “SKETCH: An Interface for Sketch-
ing 3D Scenes,” Computer Graphics Proceedings, Annual
Conference Series 1996, pp. 163—170.

Computer Graphics World, Dec. 1997.

Reynolds, Craig, “Stylized Depiction in Computer Graphics,
Non-Photorealistic, Painterly and *Toon Rendering,” an
annotated survey online resources, 13 pages, last update
May 30, 2000, http://www.red.com/cwr/painterly.html.
Render Man Artist Tools, Using Arbitrary Output Variables
in Photorealistic Renderman (With Applications), PhotoRe-
alistic Renderman Application Note #24, 8 pages, Jun. 1998,
http://www.pixar.com/products/renderman/toolkit/Toolkit/
AppNotes/appnote.24.html.

Decaudin, Philippe, “Cartoon-Looking Rendering of 3D
Scenes,” Syntim Project Inria, 6 pages, http:// www—syn-
tim.inria.fr/syntim/recherche/decaudin/cartoon—eng. html.
Hachigian, Jennifer, “Super Cel Shader 1.00 Tips and
Tricks,” 2 pages, wysiwyg://thePage.13/http://member-
s.xoom.com/ XMCM . jarvia/3D/celshade.html.
Digimation Inc., “The Incredible Comicshop,” info sheet, 2
pages, http://www.digimation.com/asp/product/asp?prod-
uct_id=33.

Softimage/3D Full Support, “Toon Assistant,” 1998 Avid
Technology, Inc., 1 page, http://www.softimage.com/3dsup-
port/techn . . . uments/3.8/features3.8/rel__notes.56.html.
Cambridge Animo—Scene III, info sheet, Cambridge Ani-
mation Systems, 2 pages, http:/www.cam—ani.co.uk/
casweb/products/software/Scenelll.htm.

Mulligan, Vikram, “Toon,” info sheet, 2 pages, http://digi-
talcarversguild.com/products/toon/toon.thml.

Toony Shaders, “Dang I’'m tired of photorealism,” 4 pages,
http://www.visi.com/~mcdonald/toony.html.

“Cartoon Shading, Using Shading Mapping,” 1 page, http://
www.goat.com/alias/shaders.html#toonshad.

web site information, CartoonReyes, http://www.zentertain-
ment.com/zentropy/review/cartoonreyes.html.

VIDI Presenter 3D Repository, “Shaders.” 2 pages,
http://www.webnation.com/vidirep/panels/renderman/shad-
ers/toon.phtml.

The RenderMan Interface Version 3.1, (Sep. 1989).
“Renderman Artist Tools, PhotoRealistic RenderMan Tuto-
rial,” Pixar (Jan. 1996).

Web site materials, “Renderman Artist Tools, PhotoRealistic
RenderMan 3.8 User’s Manual,” Pixar.

NVIDIA.com, technical presentation, “AGDC Per—Pixel
Shading” (Nov. 15, 2000).

NVIDIA.com, technical presentation, Introduction to DX8
Pixel Shaders (Nov. 10, 2000).

NVIDIA.com, technical presentation, “Advanced Pixel
Shader Details” (Nov. 10, 2000).

“Developer’s Lair, Multitexturing with the ATI Rage Pro,”
(7 pages) from ati.com web site (2000).

Slide Presentation, Sébastien Dominé, “nVIDIA Mesh Skin-
ning, OpenGI”.

Singh, Karan et al, “Skinning Characters
Surface—Oriented Free—Form Deformations,”
Canada.

“Hardware Technology,” from ATl.com web site, 8 pages
(2000).

using
Toronto

“Skeletal Animation and Skinning,” from ATI.com web site,
2 pages (Summer 2000).

“Developer Relations, ATT Summer 2000 Developer News-
letter,” from ATT.com web site, 5 pages (Summer 2000).
Press Releases, “ATT’s RADEON family of products deliv-
ers the most comprehensive support for the advance graph-
ics features of DirectX 8.0,” Canada, from ATl.com web
site, 2 pages (Nov. 9, 2000).

“ATT RADEON Skinning and Tweening,” from ATI.com
web site, 1 page (2000).

Hart, Evan et al, “Vertex Shading with Direct3D and
OpenGL,” Game Developers Conference 2001, from ATI-
.com web site (2001).

Search Results for: skinning, from ATl.com web site, 5
pages (May 24, 2001).

Hart, Evan et al., “Graphics by rage,” Game Developers
Conference 2000, from ATI.com web site (2000).

Efficient Command/Data Interface Protocol For Graphics,
IBM TDB, vol. 36, issue 9A, Sep. 1, 1993, pp. 307-312.
Shade, Jonathan et al., “Layered Depth Images,” Computer
Graphics Proceedigs, Annnual Conference Series, pp.
231-242 (1998).

Videum Conference Pro (PCI) Specification, product of
Winnov (Winnov), published Jul. 21, 1999.

Hoppe, Hugues, “Optimization of Mesh Locality for Trans-
parent Vertex Caching,” Proceedings Of Siggraph, pp.
269-276 (Aug. 8-13, 1999).

Whitepaper: Implementing Fog in Direct3D, Jan. 3, 2000,
www.nvidia.com.

Akeley, Kurt, “Reality Engine Graphics”, 1993, Silicon
Graphics Computer Systems, pp. 109-116.

Photograph of Sony PlayStation II System.

Photograph of Sega Dreamcast System.

Photograph of Nintendo 64 System.

Whitepaper: 3D Graphics Demystified, Nov. 11, 1999,
www.nvidia.com.

Whitepaper: “Z Buffering, Interpolation and More
W-Buffering”, Doug Rogers, Jan. 31, 2000, www.nvidi-
a.com.

Whitepaper: Using GL._ NV__vertex_ fence, posted Aug. 1,
200, www.nvidia.com.

Whitepaper: Anisotropic Texture Filtering in OpenGL,
posted Jul. 17, 2000, www.nvidia.com.

Whitepaper: Mapping Texels to Pixels in D3D, posted Apr.
5, 2000, www.nvidia.com.

Whitepaper: Guard Band Clipping, posted Jan. 31, 2000,
www.nvidia.com.

Whitepaper: Cube Environment Mapping, posted Jan. 14,
2000, www.nvidia.com.

Whitepaper: Color Key in D3D, posted Jan. 11, 2000,
www.nvidia.com.

Whitepaper: Vertex Blending Under DX7 for the GeForce
256, Jan. 5, 2000, www.nvidia.com.

Whitepaper: Optimizing Direct3D for the GeForce 256, Jan.
3, 2000, www.nvidia.com.

Whitepaper: Dot Product Texture Blending, Dec. 3, 1999,
www.nvidia.com.

Whitepaper: Technical Brief: AGP 4X with Fast Writes,
Nov. 10, 1999, www.nvidia.com.

Technical Brief: Transform and Lighting, Nov. 10, 1999,
www.nvidia.com.

Technical Brief: What’s New With Microsoft DirectX7,
posted Nov. 10, 1999, www.nvidia.com.

US 6,707,458 B1
Page 7

Mitchell et al, “Multitexturing in DirectX6”, Game Devel-
oper, Sep. 1998, www.gdmag.com.

VisionTek, “GeForce2 GS Graphics Processing Unit”,
©2000 www.visiontek.com.

Jim Bushnell et al. “Advanced Multitexture Effects With
Direct3D and OpenGL”, Pyramid Peak Design & ATI
Research, Inc., GameDevelopers Conference, ©1999.
Sony PlayStation II Instruction Manual, Sony Computer
Entertainment Inc., ©2000.

Stand and Be Judged, Next Generation, May 2000.
PlayStation II: Hardware Heaven or Hell?, Next Generation,
Jan. 2000.

Chris Charla, “Play Station II: The Latest News”, Next
Generation, Sep. 1999.

“First PlayStation II Gameplay Screens Revealed!”, Next
Generation, Sep. 1999.

Game Enthusiast Online Highlights, Mar. 18, 1999.

Game Enthusiast Online Highlights, Mar. 19, 1999.

Game Enthusiast Online Highlights, Mar. 17, 1999.

Game Enthusiast Onling Highlights, Oct. 20, 1999.

Joel Easley, “PlayStation II Revealed”, Game Week, Sep.
29, 1999.

Inside Sony’s Next Generation Playstation, ©1999.

Press Releases, Mar. 18, 1999.

Chris Johnston, “PlayStation Part Deux”, Press Start,
©1999.

Nikkei Shimbun, “Sony Making SME, Chemical and SPT
into Wholly—Owned Subsidiaries”, Mar. 9, 1999.

AM News: Japanese Developers Not All Sold on PS2, Next
Generation, Mar. 16, 1999.

Sony To Turn PlayStation Maker Into Wholly Owned
Unit-Nikkei, Dow Jones News Service, Mar. 8, 1999.
Yumiko Ono, Sony Antes Up Its Chips In Bet On New Game
System, Down Jones News Service, Mar. 4, 1999.
MacWeek.Com Gets Inside Story on Conectix VGS for
Windows; Controversial Emulator of Sony PlayStation
Games Cureently Available for Macs Only, Business Wire,
Mar. 12, 1999.

“DexDrive Bridges Gap”, The Tampa Tribune, Mar. 12,
1999.

A Microprocessor With a 128b CPU, 10 Floating—Point
MAC’s, 4 Floating—Point Dividers, and an MPEG2
Decoder, 1999 1EEE International Solid-State Conference,
Feb. 16, 1999.

Dreamcast Instruction Manual, Sega Enterprises, Ltd.,
©1998.

“Sega To Launch Video Camera for Dreamcast”, Reuters
Business News, Feb. 16, 2000.

David Pescovitz, “Dream On”, Wired, Aug. 1999.

Randy Nelson, “Dreamcast 101: Everything You Ever
Wanted To Know About Sega’s Powerful New Console”,
Official Sega Dreamcast Magazine, Jun. 1999.

2D/3D Graphics Card User Manual, Guillemot ©1999.
Nintendo 64 Instruction Booklet, Nintendo of America,
1998.

Steven Levy, “Here Comes PlayStation II”, Newsweek, Mar.
6, 2000.

David Sheff, “Sony Smackage: Test Driving The PlayStation
11”7, Wired, Nov. 1999.

Introducing The Next Generation PlayStation, Sony Com-
puter Entertainment Inc., ©1999.

Leadtek GTS, Aug. 3, 2000, www.hexus.net.

Voodoo 5 5500 Review, Jul. 26, 2000, www.hexus.net.

ATT Radeon 64 Meg DDR OEM, Aug. 19, 2000, www.hex-
us.net.

Microsoft Xbox—The Future of Gaming, Microsoft Xbox
Performance Sheet, www.xbox.com.

Robert L. Cook, “Shade Trees”, Computer Graphics, vol. 18,
No. 3, Jul. 1984.

Wang et al., “Second-Depth Shadow Mapping”, Depart-
ment of Computer Science, Univ. N.C, Chapel Hill, N.C. pp.
1-7.

Peercy et al., “Efficient Bump Mapping Hardware”, Com-
puter Graphics Proceedings, Annual Conference Series,
1997.

Gustavo Oliveira, “Refractive Texture Mappig, Part One”,
www.gamasutra.com, Nov., 10, 2000.

John Schlag, Fast Embossing Effects on Raster Image Data,
Graphics Gems IV, Edited by Paul S. Heckbert, Computer
Science Department, Carnegie Mellon University, Academic
Press, Inc., 1994,pp. 433-437.

James F. Blinn, “Simulationof Wrinkled Surfaces,” Caltech/
JPL, pp. 286-292, SIGGRAPH 78 (1978).

Tomas Méller and Eric Haines “Real-Time Rendering”, AK
Peters, Ltd., ©1999, pp. 127-142.

Technical Presentation: Vertex Buffers, posted Jun. 12,
2000, www.nvidia.com.

Technical Presentation: Hardware Transtorm and Lighting,
www.nvidia.com, posted Jun. 12, 2000.

Technical Presentation: Hardware Bump-mapping Choices
and Concepts, Jun. 07, 2000, www.nvidia.com.

Technical Presentation: How to Bump Map a Skinned
Polygonal Model, Jun. 7, 2000, www.nvidia.com.
Technical Presentation: Computations for Hardware Light-
ing and Shading, Mar. 17, 2000, www.nvidia.com.
Technical Presentation: Practical Bump-mapping for
Today’s GPUs, Mar. 17, 2000 www.nvidia.com.

Technical Presentation: Shadows, Transparency, & Fog,
Mar. 17, 2000 www.nvidia.com.

Technical Presentation: GeForce 256 Register Combiners,
Mar. 17, 2000,www.nvidia.com.

Technical Presentation: TexGen & The Texture Matrix, Mar.
15, 2000 www.nvidia.com.

Technical Presentation: Toon Shading, Mar. 15, 2000,
www.nvidia.com.

Technical Presentation: D3D 7 Vertex Lighting, Mar. 15,
2000, www.nvidia.com.

Technical Presentation: Per—Pixel Lighting (by S. Dietrich)
Mar. 14, 2000 www.nvidia.com.

Technical Presentation: GeForce 256 and RIVA TNT Com-
biners, Dec. 8, 1999, www.nvidia.com.

Technical Presentation: Vertex Cache Optimization, Nov.
12, 1999, www.nvidia.com.

Technical Presentation: Vertex Blending, Nov. 12, 1999,
www.nvidia.com.

Technical Presentation: Hardware Transtorm and Lighting,
Nov. 12, 1999, www.nvidia.com.

Technical Presentation: GeForce 256 Overview, Nov. 12,
1999, www.nvidia.com.

Technical Presentation: DirectX 7 and Texture Management,
Nov. 12, 1999 www.nvidia.com.

Technical Presentation: Dot Product Lighting, Nov. 12,
1999, www.nvidia.com.

Technical Presentation: Texture Coordinate Generation,
Nov. 3, 1999, www.nvidia.com.

US 6,707,458 B1
Page 8

Technical Presentation: Phong Shading and Lightmaps, Nov.
3, 1999, www.nvidia.com.

Technical Presentation: The ARB_ multitexture Extension,
Nov. 3, 1999 www.nvidia.com.

Technical Presentation: Multitexture Combiners, Nov. 3,
1999, www.nvidia.com.

Technical Presentation: Emboss Bump Mapping, Nov. 3,
1999, www.nvidia.com.

Technical Presentation: Hardware Accelerated Anisotropic
Lighting, Nov. 3, 1999 www.nvidia.com.

Technical Presenttion: Guard Band Clipping, Nov. 3, 1999,
www.nvidia.com.

The RenderMan Interface, Stephan R. Keith, Version 3.1,
Pixar Animation Studies, Sep. 1989.

The RenderMan Interface, Version 3.2, Pixar Animation
Studios, Jul. 2000, www.pixar.com.

NVIDIA Product Overview, “GeForce2Ultra”, NVIDIA
Corporation, Aug. 21, 2000, www.nvidia.com.

Duke, “Dreamcast Technical Specs”, Sega Dreamcast
Review, Sega, 2/99, www.game—revolution.com.

Marlin Rowley, “GeForce 1 & 2 GPU Speed Tests”, May,
11, 2000, www.g256.com.

“Dreamcast: The Full Story”, Next Generation, Sep. 1998.

DirectX 7.0 Programmer’s Reference, Microsoft Corpora-
tion,1995-1999 (as part of the DirectX 7.0 SDK on the
Companion CD included with “Inside Direct3D”, Microsoft
Programming Series, Peter J. Kovach, Microsoft Press,
1999).

“Inside Direct3D”, Microsoft Programming Series, Peter J.
Kovach, Microsoft Press, 1999.

“OpenGL Programming Guide, The Official Guide to Learn-
ing OpenGL, Release 17, Jackie Nieder, Tom David, Mason
Woo, Addision—Wesley Publishing Co., 1993.

“Procedural Elements for Computer Graphics,” Second Edi-
tion, David F. Rogers, McGraw Hill, 1998.

“Real-Time Rendering,” Tomas Molleir, Eric Haines, AK
Peters, 1999.

“Computer Graphics, Principles and Practice,” Second Edi-
tion, The Systems Programming Series, Foley, van Dam,
Fiener, Hughes, Addison Wesley, 1990.

“Principles of Three—Dimensional Computer Animation”,
Revised Edition, Michael O’Rourke, W.W. Norton & Com-
pany, 1998.

* cited by examiner

U.S. Patent Mar. 16, 2004 Sheet 1 of 37 US 6,707,458 B1

x< =)
=] ;
e
\/‘
2. O
l&')\E_

Vat

US 6,707,458 Bl

Sheet 2 of 37

Mar. 16, 2004

U.S. Patent

8€L NIoMiaN 9
oipne
@ Buweans
¢ DI 0%l N oIy .-
Aowspy 114 801A8(] $5903y
yse|d USpon WOHd abei0)g ssew
A A
R OEly v
\zgf snqidS 4 & snq jajjesed
. EmO NVRJ
Aloway snq 1ds ‘™3 Ve
VVN\ \ 2 Y @NNJ
(shajjonuoy | ., | Mowapy opny
- puey i S U1 WVHGS
u c_g<4v|_|b\u %’ :

- > bhl AN
no/uy 99p09 | !
oipny [<— o_%é < 105530014 OIDNY fa—ifml WVHO

- - ue sonydes |

419 Hect - 221’ PUE SINUTE!D :
19 1921 . spoauy | Aloway ureiy

- 03piA - | Wvda
66 021’ 0 a1’
0
% 108532014 LBy v/
0§

US 6,707,458 Bl

Sheet 3 of 37

Mar. 16, 2004

U.S. Patent

0v1 Aowap use 90!
9¢1 wepoly 8ol 8JIA3(] $S30IY ut oipny
bl pre Aowapy pEl s_om» sillojuo) abelols ssely Guweans
108592014 01 ! +
0 oucm_ olpny 19}j01U079
ccl saydeln [esaydisag
29p07) 0Ipny ' Ny
woi4/o] -+ c9l
\
JOXIN R
921 1 Julopny
Alowapy opny 091 {
wol4yfo; ¥
aoeIa)u|
Aiowap opny
A
\ fmﬁ
0cl d5d
13poau3 0} oppny
N 03PIA =
0o | F@& 01t
otk o »| J3jonuo 19]103)U07) 105532014 LRy
Riowap urewy = " \@_heé_w_ Redsig [~ BBJ IO 1 d—s- wiy/0}
Wol4/0l ¢ > fowapy $9) 105539044
m&\ %_K
Smmauoi
SIYaesn (1€
bl bt — e ‘DI 4

US 6,707,458 Bl

Sheet 4 of 37

Mar. 16, 2004

U.S. Patent

95
Aejdsig _ _
m "
llllllllllllllllll 1
_ _ el 8|
| | L |l
| b9l | AT
_ SM_%%“&@%_> _ fowap
_ a9 [eubip] e _ uew
“ ‘ I e o
251
_ 18
uo | Jajonuo)
_ 0€1 uoneIgly 1sanbay Alowsa sodery TR0BL
U N S Aowap
| N2 v }
A Y 009 005 "
| 2UIBU3 i O 00¥ 00¢ | 002
| joxig < wouivoinug [+ - (o] Pesede{] mﬂw%mwm - 051
_ m E anixa, alnjxal fdmag LHOJSURI| m /3.9 0B} I8l
_ VR aupadig soudesbag " 105530014
| o >
e ¥
pll \\x
abrei0lg
1 euiapg
0S rel

0Ll
10S39014
urely

U.S. Patent US 6,707,458 B1

Mar. 16, 2004 Sheet 5 of 37

112
f

114
Main Memory
216 g0 posifon 3002 position”)
GXAFD . FIFO /J noma) Transform normal‘ D%S;Jl:loc;n -
210 Command |/ |color y ——— channels
From Processing b > Lighting >~
Display Lists Call Matrix \
CPUS) oy FIF ™~ Memory 300e
218 y position, normal ¥ ¥ tex’
Vertex Arrays Vertex tex coords Texture | coords’
214 Cache ™1 Coordinate
b 300c Generation
. 220
: Clipping 400 7008
: : 1 Culling |~fRasterize |-={ 7 compare
113 | External Frame ~| Setup Y
N B_nyfer or 300d Fra‘r;1 702
exture - |] e
;) C(;py Buffer —
' ' 4
504 | 502
Texture 700c
Textures ~ Mem/ V Y
Cache
5006
[v 00 I
- Texture Coordinate/ | Texture lad T,
Bump Processing Envi%t#rrr?ent 09 | Z Gompare | Blend
indirect Texture | 227 \600a 7002 7000
Data Processing
"~ 500d

Fig. 5 exampLe Graprics PRoCESSOR FLOW

.

9 'bi-

US 6,707,458 Bl

(A31) 1epeys jexid
(S)S¥010D (1-M)0 viva

10 ¥iva 09 viva)

Buisseooid ainyxa | 1pauipu jo wesbeiq yoolg jeoibo
10109 _wx_n_ jeuld

sdn-4007 @injxa] Joaiiq JO JaquINN = y

g0 § B S8SSaIPPY aIN)xa |
PN e — Jo3.1q Jo JequunN =
o wn | ee | 10NN 0D Hun S81N}X3 | 108J|puf JO JequInN = N
= !
- alnixa | aInixa] amjxa | A
0L09
3 "% < Ay
= (bM)0¥aav)) 1o¥adav 09 ¥aav,
[] spidog
aInjxa] pajndwon
3 / 1O SJ8S M 10s$8201d SS8IPpY 8imxa |
& (1-W)8 ¥ag / 18 ¥aav 08 ¥aay (1-NV viva IV ViVvd 0V Viva |
2 Y 8009/ R | i
s A"_._uw< oo | tviun | | oviun
ainxa | ainxa} alnyxa) 2009
Ve 9009,, t “yoog |
- (s)M0109 (1-W)s yaav)) 18 y¥aay 08 ¥aay, (I-NV¥aav)] 1v daav ov ¥aay,
S 9Zlie)se i
3 paziisised S$ajeulpioon lozusjsey Sejeulpioon
= ain)xa] j081Q aIN)xa | jo0auipuy)
=¥ | oSS W JOSI8S N
7 117
7 0009—"
-]

U.S. Patent Mar. 16,2004 Sheet 7 of 37 US 6,707,458 B1

900 950
Regular '/ ~

(non-indirect) ———
Texture Coord. Texture Color Data TEV
Lookup ’

Texture Map ID ———»

Fig. 7A

REGULAR TEXTURE LOOKUP

’/ 901 952
/./

Indirect Retrieved
etrieve
Texture Coord.—™ Indirect Data
Indirect Texture
Texture Map 1D — Lookup

903 909 905

X vV~ 950

Regular [~
(non-indirect) —— Op
Texture Coord. Texture Color Data
Lookup TEV
Texture Map ID >
907/
Fig. 7B

INDIRECT TEXTURE LOOKUP

US 6,707,458 Bl

Sheet 8 of 37

Mar. 16, 2004

U.S. Patent

g b

100 jexid feuly

ﬁ

Joj0)) pazusisey

}
Buissaooid aimxe Jos1ipuj pue Jo81iq Jo weibelq yooig feaisAyd (A3L))
i8peyg [axid
910,/
A B4} &g 197 &é 8 VIV Y (Moviva 10 VIva Y 00 vive ——
| 1oxg >y ——— o I\,
Nm\ oa_v /32
nn
amnpa] (‘2104
$8JEUINI00) Easoo SojeuIpIo07) pajndion \ oﬂ«. 810,/
s - _ J, IS oo N010/
: W waav 10 ¥oav Y 00 daay Y (N0 %98 10 HOQY ¥ 007HOQY |~
- | oy ™y —)] Bmmmoo_n_ 3|
: (e1eUIpI00D) -l L
eJeq ainpxe], jaapu) smoe:%@us SSAIpPY AINXa m m
4 _ _ _ N _ _ — TN l ”
. %_.zz viva | u@ viva Y ovvivo * (1N ﬁéo) wvivaY ovviva) 8002/ El
A
- = = (o] jar
1) x x a g 40 187yaa ~ 8
(W)g yaav \gyaavy og waay Y (-we yaay g yaav X 0d ¥aay 093] (o) mm
= | 1ong ~ o_sil.llv O4id (OFF wld
— ejeq pioo] [lo | o
Sejeuiploo) pang mss_p_so paig ¥00.—~{ 10811pUy; pang | |& m
900, /
S8JBUIPIO0D 03 joang S|EUPI00) 0 1981pu| 0S m._v<
- //NCQN
-+ X waov

~— i 8xd

OV 40V :% m%g_x!m daav Y og %%xe MY %ﬁ_@a W yaay Y ov’ %i

0 19xid

- |

lezue)se
ooos\h Hosed

e

U.S. Patent Mar. 16, 2004 Sheet 9 of 37 US 6,707,458 B1

DATA_A ADDR B

7008 l

f(a,b,c) ~~—7009

T—]J

ADDR_C

Fig. 9

U.S. Patent Mar. 16, 2004 Sheet 10 of 37 US 6,707,458 B1

PX0 DiRect Coords
PX0 INDir. Coords Retrieved
Indirect Texture Data
FIFO
7002 (iFIFQ)
/
so]
Direct
Coordinate ~~—TN
FIFO
(dFIFQ)
Direct Indirect
Coordinate Data
FIFO Buffer FIFO Buffer
, [d
7006 ~ ‘ ; ~ 7004
Texture Address
Processor i /7008
| v
1 ____‘7010
Texture 7012
Retrieval _/
Unit
l 7014
s2 -

To Pixel
Shader

Fig. 10A

U.S. Patent Mar.16,2004 Sheet 11 of 37 US 6,707,458 Bl
. Retrieved
Indlrect;;?:xéure Data
7302 (IFIFO)
S0
] i .
Direct ‘
Coordinate N\
FIFO
(dFIFO)
IPX0 DIRect Coords
[f ‘
7006 Y \ 7004
Te;ture Address
rocessor 008
51 7010
PX0 INDir. Coords f==-----=--- %
Texture
Retrieval 4 7012
Unit _—
S2 17014
To Pixel
Shader

Fig. 10B

U.S. Patent Mar. 16, 2004

Sheet 12 of 37

US 6,707,458 Bl

Retrieved
Indirectg;gxct)ure Data
7002 (IFIFO)
S0
Direct
Coordinate ~—TN
FIFO
(dFIFQ)
| PX0 DiRect Coards
| aany / .
7008 N 7004
Texture Address
Processor — 7008
S1 +— 7010
Texture
Retrieval L 7012
Unit
PX0Data }---- l
7014
S2 —
To Pixel
Shader

Fig. 10C

U.S. Patent Mar. 16, 2004 Sheet 13 of 37 US 6,707,458 B1

PX49 DiRect Coords

PX2 DiRect Coords
PX1 DIRect Coords
Retrieved

lndirectg;f___xéure Data
7@2 (iFlFQ)

S0

Direct —_r ‘ ‘

Coordinate ~TN
FIFO
(dFIFQ)

IPXO DiRect Coords I | PX0 Data '
7006 . I I :7004

Texture Address
Processor 7008

4 l

S1

!

Texture
Retrieval
Unit

!

S2

:

To Pixel
Shader

Fig. 10D

U.S. Patent

Fig. 10E

Mar. 16, 2004 Sheet 14 of 37 US 6,707,458 B1
Retrieved
Indirect Texture Data
7002 FIFO
y; (IFIFO)
S0]
— ;
Direct
Coordinate
FFO | }|PX49 DiRect Coords
(dFIFO)
PX2 DiRect Coords
PX1 DIRect Coords
7006 $ \ 7004
Texture Address
Processor —— 7008
S1 7010
PX0 Comp Coords f====v===ux i
Texture 2012
Retrieval N
Unit
S2 \\
l 7014
To Pixel
Shader

U.S. Patent Mar. 16, 2004 Sheet 15 of 37

US 6,707,458 Bl

PX50 DIRect Coords
PX50 INDir. Coords
Retrieved
Indirect Texture Data
7002 FIFO
(iIFIFQ)
SO
Direct {
Coordinate
FIFO || P49 DIRect Coords
(dFIFO)

PX3 DIRect Coords

PX2 DiRect Coords
_—____J_
7006 I L\ 7004
Texture Address
Processor gy 7008
’ l
s1 Y7010
PX1 DIRect Coords }~--=---~---- i
Texture 012
Retrieval N—
Unit
S2 \
N\ 7014
PX0 TexColor +-~--- i
To Pixel
Shader

Fig. 10F

U.S. Patent Mar. 16, 2004 Sheet 16 of 37 US 6,707,458 B1

Retrieved
lndirect;'"e:xéure Data
7
voz (FIFO)
S0
Dire:ct
Cogggate N| PX50 DiRect Coords
(dFIFO) PX49 DiRect Coords
PX3 DIRect Coords
PX2 DiRect Coords |
“j*_
7006 : ‘ ‘ \ 7004
Texture Address
Processor {_ 7008
S1 N—7010
PX50 INDir. Coords ------------ i
Texture
Retrieval N 7012
Unit-
S2 \|
PX1 Tex Color ---- i \ 7014
To Pixel
Shader

Fig. 10G

U.S. Patent Mar. 16, 2004 Sheet 17 of 37 US 6,707,458 B1

Retrieved
Indirectf':l;'e:xoture Data
7002
P (iFIFO)
so]
Dire_c’t l [
COE;ggafe ~NN| PX50 DIRect Coords
(dFIFO) PX49 DIRect Coords
PX4 DIRect Coords
PX3 DIRect Coords A
/ —
7006 { ¢ K 7004
Texture Address
Processor L 7008
S1 T~ 7010
PX2 DIRect Coords |===========n==nu- ‘
Texture
Retrieval - 7072
Unit
S2 \]
l N 714
To Pixel /
Shader PX50 Data

Fig. 10H

H/joy/723-849-Fig 10H.dwg

U.S. Patent Mar. 16, 2004 Sheet 18 of 37 US 6,707,458 B1

Retrieved
Indirect;}ie:xéure Data
o0z (FIFO)
s6
Dire_ct l I
COg;g'gate ~N/ PX50 DIRect Coords
(dFIFO) PX49 DIRect Coords
PX5 DIRect Coords
PX4 DIRect Coords }L PX50 Data
L
7006 - $ ‘ \ 7004
Texture Address
Processor 7008
S1 ™~ 7010
PX3 DIRect Coords f--=-===-=-- i
Texture
Retrieval - 012
Unit.
S2 N
AN
PX2 Tex Color f---- 7014
To Pixel
Shader

Fig. 10l

U.S. Patent Mar. 16,2004 Sheet 19 of 37 US 6,707,458 B1
Retrieved
Indirect;'l?__xoture Data
7002 (iFIFO)
SO
— &
Dirqct
C°g;ggafe ~N| PX50 DIRect Coords
(dFIFQ) PX49 DiRect Coords
PX6 DiRect Coords
PX5 DIRect Coords PX50 Data
7006 & ‘ N\ 7004
Texture Address
Processor L 7008
S1 ~— 7010
PX4 DIRect Coords f---==-=====-o-=-- i
Texture
Retrieval - 7012
Unit
S2
PX3 TexColor f----=------ i 7014
To Pixel
Shader

Fig. 10

U.S. Patent Mar. 16, 2004 Sheet 20 of 37 US 6,707,458 B1

. Retrieved
Indirect Texture Data
7002 FIFO
y; (iIFIFQ)
S
—]
Direct
Coordinate
Aro .
(dFIFO)
PX50 DIRect Coords , LL PX50 Data
7006 1 ¢ ™\ 7004
Texture Address
Processor 7008
st T~ 7010
PX49 DiRect Coords f-~-====nua-- i
Texture
Retrieval N 7012
Unit '
S2 \
PX48 Tex Color |---- i N 7014
To Pixel
Shader

Fig. 10K

U.S. Patent

Mar. 16, 2004 Sheet 21 of 37

801 é

US 6,707,458 Bl

Define/store texture images/maps
in main memory

&

Specify indirect texture
coordinates for performing
indirect texture lookup

Identify texture map(s)
(GXTexMapiD)

1
|
I

(GXSetIndTexOrder)

Specify indirect-texture
referencing operations/parameters

{GXSetTevindirect)

- 806

i
i
1

Assaciate a texture
with each indirect-texture map ID

(GXTexMapliD)

P 808

|
1
-

Associate a set of texture coords
with an indirect-texture map

(GXTexCoord.)

i

Compute new coordinates for
texture lookup

- 812

i

Use computed coordinates for
mapping texture(s) to polygon

- 814

Fig. 11

US 6,707,458 Bl

Sheet 22 of 37

Mar. 16, 2004

U.S. Patent

ONISSIO0Hd FHNLXTL (LOFHIANI-NON)YYINDIY

. ()sebergrawnnasyy

Gl

{ap

—

N[oo~ oolon| 2

- -

aam A

- — ——

0

T‘

AR

(J1ep1onatiagxp

|

T [|) o oy

O|v=lcujmir i oo | o= lv

8Inxe|

sefiejg Buissanoiy _ sigjawerey dnyooy

\ A3l
016

sdnyoor einjxe)

/Na

sal dYWX3L XD

O[NNI OKOIN] «

O =N LOKOIN] + ¢ &

sQl gHO09X3L XD

V/Em

o
i ONISSTOOMd FHNLXIL
0 103HIAGNI ANV 4V1N9D3Y
N . sal dYWXAL X9
= €l b4 “
et . ()sebeisaag unNjasxD .
= : : (MepionaLiasxD m
G |--——- 51 S
4} - —— 4] p
E - ! E
- - cl [4
oy i |- Ll |
= 0f | --—- 0l 0
S ; — : .
Q M - - — — : .
= -— L L
- 9 Je-—-—-| 9 9 f/ 916
w g e—— G g
R e v
L | — 3 £
< [- - ¢ — 4
= | |e---] "] !
Q 0 — 0 0
= sabejg Buissasolg | siajowesey . ()sebeigpujwnie : -
- AL dnyooy : SPUIWNNISSXD s0I HO0JXIL XD
= seinbay £ - £
\\ 116 pue soadg 4 - A (/ l/ 16
016 uoneladg ; -~ 3
) 1a1py| m__zmmm em“om_m_mn_
= sdnyoo| ainixal dmyooq dnyoo ()1ep10xaLpupesxn
P, rejnbay
- 1anpu 1091pu|
S (Zoaupujrajiagxn
A~ sdnyoo anxap / €16
7 10aJipu}
-]

US 6,707,458 Bl

Sheet 24 of 37

Mar. 16, 2004

U.S. Patent

LINN ONISSIO0Hd FLYNIGHOO0D
FHNIXIL/HNNEG FTINVYXT

AR IE

ejep dnyoo| ainixa) 1981pu;

HUN 91M}xa} WoJj

—— \]Emn 80 ejep dnyoo)
4 o | . aInjxe} 108J1pu|
615 SR - uwal |
216~ (LTI WETVE - E:o\l\
016~ 3o~ | weupuy £0S CS
: —5u] . sigisiber
e ﬁ_mw__“_ WL o 2160j j0A)u0d 05 84S —
! o160| _||'V[|l 9JEMpIeH
Buisseoosd Bz G § _~ waup/waipuy|
- elep | -0Jyoufs lmom\(1S
T o001 =*5u5] dnoo [+ weens N WA\
nwn | g Buiziu | eeqg . 105
amnxa) wAx 1 1 ogufs whx | amnixa) B 044 0160
o | o wesns ™ g5 | WaMpU [Hs = [pwo] EEp Burzu elEp "pIo0d
-~ Bleq |e—r pue PI00Y | o -olyouks [19811p/19911pul
! 1S | areuipioon oUAs jaig pwo | weals PWI " eoindurys
paig ~— eled pue joxoed
A = WwAx isysibas se
jouhs - > 0ouhs ynduy wAx
7 001d ®jep ‘piood ang - M1 o4i4p T seulwIBlep Wy
A vos - — 208
90059005)

\

EJep "PI00D 1281IpY|

Jun Buissaooud ejep ainixa) 198.ipu) pue
dwnq/sieuipiooa ssaippe ainixa)

O190T ONISSIO0¥d VIVd dNXHOOT
FHUNLXFL-LDIHIANI TIdNVYXT

Gl b4

US 6,707,458 Bl

028
ok ele Jaysibay
eydie dwng « + « 21607 jonuo)
~ \ . TN
o \ 454 ng _
e 1q
a 18)nq "211994 XN 18]9S 5q
3 Indino ebejs duing XN eydje dwing 615 (005 LUN emixey
7 dnyoo 0 - ./ woyj pajokoal)
payipow X JEWI0] t-t 05 Bjep dnyooj
ﬁ 10} £26 1 y, aInxa}/10811pu|
- SpI00d 926 525 4 mm_m 125
m m:.wxmh 9[eag TS N——
& ~— (oInpow) desp R p o 198 10 G'p'g
— nn 10 xny ssedAg qge
2 ene < 0010} I's ejep
s o6 | e mwm | * : ‘PI000 JoauIQ
el 109]9S Sac_ XLEW 225~ ¥ 7 ienbay
L o0l | o16o) Buissaooid amnxa} panpu
[- "p1002 JoalIpU|

U.S. Patent

U.S. Patent Mar. 16, 2004 Sheet 26 of 37 US 6,707,458 B1

Matrix A
$/256 t/256
0 0
0 0
M V.
5 ma mb s Matrix B
=Imc mdj|*|t 0 0
t me mf u s/256 t/256
Fig. 16A .
EXAMPLE TEXTURE Fig. 16B
OFFSET MATRICES EXAMPLE TEXTURE
OFFSET MATRICES
MTXA; [s; (1:0) mb; (10:0) ma; (10:0)
MTXB; |s; (32| md; (10:0) mc; (10:0)
MTXC; s (5:4) mf; (10:0) me; (10:0)
cMDi 77t A wi [swi| m 7 bias][imt] bt

imask (7:0)
GEN MODE //////] nbmp ntev ntex
Fig. 17
EXAMPLE CONTROL

LOGIC REGISTERS

US 6,707,458 Bl

Sheet 27 of 37

Mar. 16, 2004

U.S. Patent

(S3¥NLXFL FUL g-€ 0ANISd)

dagl ‘b4
— JYI SNOLLINI3 T11L JYIV XIONI 3111 WOY4 SHALINVHYA JOVIHNS
o S— — WOW4 ST1IL - 5135440 ONISN SIIVNIGHO0D | WOYA SILYNIGHO0D |a———
S1axid | ONI8 | ST qynixa 4G uivaNvigo | SALYNIGHOOD JHN1X3L AJIGOW SIVNIGHO0D | 3y x3) 31vyanay | SIOUYIA
—~ —~ > JHNIX3L QIICON - HALXAL >
BLv} vl pipL ZIpl 0Lpl
(QOHL3IW ONITIL LDIHIANI)
vgl b1
JYW SNOLLINI3Q 3111 dVIV X3ONI T111 HOKA S135440 SHALINVHYA 3DVIHNS
NS fe——— oY - DNISN SAIYNICHO0D {—————1 WOW4 STIYNIQHOOD |e————
$1Xd | qupawnixarnvigo | SIYNIGHOOD HNIXIL AIGOW SIIVNIGHOOD | 3ynix3; Javyangp | STOULU3A
~ HNLXAL 03100 DAL
90vl - < -
poL 2001 oovl

U.S. Patent Mar. 16, 2004

Sheet 28 of 37

START ‘

Y

Y

US 6,707,458 Bl

1500\ DEFINE INDIRECT DEFINE DEFINITIONS | 1502
TILE INDEX MAP TILE MAP —
Y y
1504 INPUT INDIRECT INPUT DIRECT 1512
\4 TEXTURE COORDINATES TEXTURE COORDINATES |
(SO, TO) (S1,T1)
Y
1506 1514
g SCALE INDIRECT PERFORM WRAPPING |
TEXTURE COORDINATES OPERATION ON S1, T1
Y
1508 PERFORM INDIRECT
o TEXTURE LOOK-UP
TO OBTAIN OFFSETS
(AS, AT)
A 4
1510\ SCALE TILE OFFSETS
(AS, AT)
\ 4
COMBINE OFFSETSWITH | 1516
| WRAPPED St1, T1 TO OBTAIN |~
> MODIFIED TEXTURE
COORDINATES (S', T)
\4
1518
__| PERFORM DIRECT TEXTURE
LOOKUPWITHS', T
1520 Y
OUTPUT TEXTURE

(TILING METHOD 1)

US 6,707,458 Bl

Sheet 29 of 37

Mar. 16, 2004

U.S. Patent

$713xX3L
s

h

;17

I
1
T
|
t
l
|
I

S13X3t
clS

|
¥
|
|
'
|
I
I
1

=4 = =~ H= =~ -

e | o e | S | R | S

sy
NYILIVd JT1L #091
ONILINS3Y

(L QOHLIW ONITIL)

voZ Olid

S13x3L

+—— 96 ——>

SpEhy

|
|
|
|
L
|
|
! “] 0
~L
\

-~ 1AL —

96z | _

_ _

L ——1

(S13X3L) dviN] 0
SNOILINI3Q L /’
\
2091

909t

!

(d0) LINn dWng

An_ aav TI_ dVHM _AI

-
-— 1L
IS
31voS SAHo09
103410
$135440
103138 TL
ot o1 { oo | o
oogt—_] Yo | v o] oL
~"os
el o'r | oo | 0t SQY00)D
103HIaNI
00| 11|10 11
dVIN X3aNI
Hzm_%cm:\
1934iaNI

U.S. Patent

1602

0=

e =
DEFINITIONS
TEXTURE , _

MAP
(REGULAR
TEXTURE 5 _

MAP) ©°°

Mar. 16, 2004

- 54 —

TEXELS

TILE

U e

Sheet 30 of 37

US 6,707,458 Bl

256 TEXELS
TILE
2
TILE
3 | S0, 70 INDIRECT
TEXTURE
MAP
: A
: 3 | 3 1
|
I
i 2 | o | o p—1600
|
| s | o | o
|
' 1 1 3
1602 S1,TH
e L
° " ILE SELECT
. o |- OFFSETS
¢ 5
1606 RESULTS
o) °
1604
e @] |-
el @

(2ND EXAMPLE OF TILING METHOD 1)

US 6,707,458 Bl

Sheet 31 of 37

Mar. 16, 2004

U.S. Patent

e YIS 1ax3L 9l ﬁo&ﬁ% (1 poyraw Buyy jo ajdwex3 pe)
- S TVET
— 1ndLno
|
vl L . ‘T1L13X3L 8IX81
(0v9)1Ls » (070LIS 40 7131X31 91X91 HANNI TSN
(0'v)o1s (0'0JoLs :
(;»dHI VA HOS "T1L 30 NIDIHO OL
o 13AX3Ls) Q3INIOd (L+MOH.8I ‘1 +100.81)
(812 T (81 ‘0) 0L 13S 34V 1 VI13Q ANV S VI13a
SNOLLINLL3a a‘f/z& | 10/ 3ynixan
SN r\\k 30HN0S X3l
2d 00d b'y) (v 0
(0°22) \ (0'0) (ted) [lotd) | (ord) | (12d)
2000 61'ss | 1’6k | 161 | 6128 ——
(1 V1130 'S vI13a) (+1d) | (00d) | (0Od) | (11d) hz_o&m
¢ 6r'6t | 1L | 't |6i'6l 0 JUNLX3L
(1L -Q3ddYHM (11d) | (ood) | lood) | (1id) |~ 39unos
‘1S-03ddvHM) 6L'6L] 1Lt 1L fi6'6l
[(0ed) | (01d) | (01d) | (02d)
_e_m__mow; oo (s [us | ver|vze |)avm
K7) 00 3JunixaL
9091 LO3HIaNI
(LL1S) (01 ‘09)

(L QOHL3IW ONITIL)

i¢ OId

US 6,707,458 Bl

SAYO09 LOIHIA = SAHOO0? Hian | 0L = HL
F9YLS INO ONISN 3SYD WIDIdS | 05 = 1§ Lot

& 2091 |
i % q80L1
~ N dvam |,
= amﬁmc 011 (1L Q3ddvym) uoINnaow | 11 SQHO0D
g AL = SNOILINI43d o T dvem | i
75 T — (1S g3ddvum) A YOINAOW IS
©90/| Bg0.L1 ~
dn Y001 ~ dvHm
s JUNLX3L UYINDIY ux 009} Qd003 qgos4
4 q90/1 f w
o A
< <« Ui A TTVIS |« 0L
= v dVW X3aNI 4009
= JHnIx3l 193HIAN!
1o3asam sV — -
ML soqan ONNIVOS N&E ﬁ
aydoo09 001

voL1L

U.S. Patent

U.S. Patent Mar. 16,2004 Sheet 33 of 37 US 6,707,458 B1

1800
N DEFINE INDIRECT TILE INDEX MAP

1802 Y
N INPUT INDIRECT TEXTURE
COORDINATES (S0, T0)

1804 y
\] PERFORM INDIRECT TEXTURE LOOK-UP
TO GET OFFSET AND BLEND FACTOR

1806 4
~ DEFINE TILE DEFINITIONS STACK

1808 4
N INPUT DIRECT
TEXTURE COORDINATES
1810 Y

\ OBTAIN FIRST SET OF MODIFIED
TEXTURE COORDINATES (S, T)
USING OFFSET

1812 4

\] OBTAIN SECOND SET OF MODIFIED
TEXTURE COORDINATES (S, T

USING OFFSET AND BIAS FACTOR

1814 A
\ PERFORM DIRECT TEXTURE

LOOK-UP USING (S, T) TO

OBTAIN FIRST TEXTURE

1816 y
\ PERFORM DIRECT TEXTURE
LOOK-UP USING (S, T TO

OBTAIN SECOND TEXTURE
1818 4
\ BLEND FIRST TEXTURE
AND SECOND TEXTURE
USING BLEND FACTOR
1820 r
\ OUTPtTJgXRT%sRUEmNG FIG. 2 2

(TILING METHOD 2)

US 6,707,458 Bl

Sheet 34 of 37

Mar. 16, 2004

U.S. Patent

(NOILINI430 S HIAV) « 60

+(NOILINI43Q ¥ HIAVY) « 1O =6}

9061

g

66 | 2L | 6V

S8 | 99 | €V

€L | ¥ | 6¢
SINS3H

c061

(S3YNLX3L ¢ - 0anIsd)

' 60 HOLOV4 aNTIE 3SN
S ANV ¥ SHIAVT LOT1IS =6V

(Z QOHL3W ONITIL)
L
IS
¢l 6 9 £
061 ﬁ
H 8 S Z V/
<-— 1 d0
0l l b i W
$13S440 10T3s I
6 9 £ 0
SNOILINIZ3A HIAV]
OovLs 31w

)

66 | 2L | 6 [008
58 | 99 [£ |<—g
€L | ¥s | s¢
103138 HIAVT /ﬂ
dvW X3aNI
ENTEENTRET]

US 6,707,458 Bl

Sheet 35 of 37

Mar. 16, 2004

U.S. Patent

0c61

indino
I
(3ZISIHINAS

4

HO1OV4
anNag ™

¢X3l

aNT1g

IX3L~

(S3HNLX3L gt - 0anasd)
(2 AOHLIW ONITLL)

v¢Old

4\22

2061 q9i6t uEa-J
ﬁ dVHM
| uOINAON
ey [, (@3ddvum) |
\J 103HIaldYW | v < VUM
AOVIS FIL | S (Q3ddvam) s U OTNaon
o161 ~
29161 ariel J
A M\ dviM |
JUNLXIL | + (a3ddvum) 1 Y 0naon
—{ to3uidawn | 4 L [+
MOVIS T1L [dvim
§ (03ddvum) s u O INAOW
7
2061
qcc6! BY pﬂ
XNW 1937138
VHJY dng uy
©2Z6!
J svid
WAX -
- ux I+ M 90161
No— 9261 0061 A
ave6l BbZ6l A
- "OVH4 B 'DIIN/M [+ U/} A8 FTvDS
"OVH4 | INl | dYW X3aN|
q8161}
(LINN dWng N ~ 7
Y0014 . LlYIWHO4,) dN X007 DNMVYIS
JUNLXIL LOIFHIONI aHo0)

) saboon
103410

<+— (S

IS -JOVLS pug

\ 8061

0L } squo09

103HIaNI
-JOVLIS 181

BOI61

US 6,707,458 Bl

Sheet 36 of 37

Mar. 16, 2004

U.S. Patent

P ————

(¥s1a Tvo1Ld0
10

WOY)

9JeM]J0g

c9

(821n05)
spuewwoy
oIpny‘X4H

CRIEE

(92.n0g)
uonoanJisuj
yd184

£oel

\ATAVE
(196ey)
—— SPUBWILLOY
0IpNY‘X49
(186se))
(s)uonannsuy
(PN
10 ‘OYIN
lojejnw o Y
Jejnw3 24 69)
WHO41V1d
1SOH

US 6,707,458 Bl

Sheet 37 of 37

Mar. 16, 2004

U.S. Patent

qse ‘b1 G121 1zl
c¢Sll ;
Y31NdIN0) |
JL0N3Y
WHOMLIN il e S I RN NN, S |
w <mm<mc_g " thh — [+] _u_uuuu_u_uu WQNRJ “
0911 e =l
851 £1215 60215 N WvH904d || |
Iovavan | [3ovaea NOLLYIddY] |
JIVIHILINI JOV4HILNI JOV4HILINI A 33l . |
HOMLIN *7i| HHOMIIN | | 140 WIH3S | | WOY-00 | |y kddoy QvH e “
V34V V301 mmﬁ BYANTTA 52215 £zz1> 1z21> AR m
“ I Wvgo0dd || |
ez | , D R T y |_nolvortddy || !
_ WILSAS |
$~ | _ ONI¥H3d0 __/\z&
“ _ (Nd) LINN W
, HiLdvay QUYD | Joau AN) pr——— 1
HOLINOW | 1™ 03aIA Nnos| | ONISSII0k gszs S0l || | s
_ | WHINID
_ Goz1—> . Im £021—> o) |~
“ 6cei " RIOWIR RIS !
! I
ﬁ/lhcmh
PLXA!

US 6,707,458 B1

1

METHOD AND APPARATUS FOR TEXTURE
TILING IN A GRAPHICS SYSTEM

SPECIFICATION

This application is filed in accordance with 35 U.S.C.
§119(e)(1) and claims the benefit of the provisional appli-
cation Ser. No. 60/227,033 filed on Aug. 23, 2000, entitled
“Method And Apparatus For Texture Tiling In A Graphics
System.”

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the following co-pending
applications identified below (by title and attorney docket
number), which focus on various aspects of the graphics
system described herein. Each of the following applications
are hereby incorporated herein by reference.

provisional Application No. 60/161,915, filed Oct. 28,

1999 and its corresponding utility application Ser. No.
09/465,754, filed Dec. 17, 1999, both entitled “Vertex
Cache For 3D Computer Graphics”,

provisional Application No. 60/226,912, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/726,215, filed Nov. 28, 2000 , both entitled “Method
and Apparatus for Buffering Graphics Data in a Graph-
ics System”,

provisional Application No. 60/226,889, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/722,419, filed Nov. 28, 2000, both entitled “Graph-
ics Pipeline Token Synchronization”,

provisional Application No. 60/226,891, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/722,382, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Direct and Indirect Texture Pro-
cessing In A Graphics System”,

provisional Application No. 60/226,888, filed Aug. 23,

2000 and its corresponding utility application Ser. No.
09/722,367, filed Nov. 28, 2000 , both entitled “Recir-
culating Shade Tree Blender For A Graphics System”,
provisional Application No. 60/226,892, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,218, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Efficient Generation Of Texture
Coordinate Displacements For Implementing Emboss-
Style Bump Mapping In A Graphics Rendering
System”,

provisional Application No. 60/226,893, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,381 filed Nov. 28, 2000. , both entitled “Method
And Apparatus For Environment-Mapped Bump-
Mapping In A Graphics System”,

provisional Application No. 60/227,007, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,216, filed Nov. 28, 2000, both entitled “Achro-
matic Lighting in a Graphics System and Method”,
provisional Application No. 60/226,900, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,226, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Anti-Aliasing In A Graphics
System”,

provisional Application No. 60/226,910, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,380, filed Nov. 28, 2000, both entitled “Graph-
ics System With Embedded Frame Buffer Having
Reconfigurable Pixel Formats”,

10

15

20

25

30

35

40

45

50

55

60

65

2

utility Application Ser. No. 09/585,329, filed Jun. 2, 2000,
entitled “Variable Bit Field Color Encoding”,

provisional Application No. 60/226,890, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,227, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Dynamically Reconfiguring The
Order Of Hidden Surface Processing Based On Ren-
dering Mode”,

provisional Application No. 60/226,915, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,212 filed Nov. 28, 2000, both entitled “Method
And Apparatus For Providing Non-Photorealistic Car-
toon Outlining Within A Graphics System”,

provisional Application No. 60/227,032, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,225, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Providing Improved Fog Effects In
A Graphics System”,

provisional Application No. 60/226,885, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,664, filed Nov. 28, 2000, both entitled “Con-
troller Interface For A Graphics System”,

provisional Application No. 60/226,899, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,667, filed Nov. 28, 2000, both entitled “Method
And Apparatus For Pre-Caching Data In Audio
Memory”,

provisional Application No. 60/226,913, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,378, filed Nov. 28, 2000, both entitled
“Z-Texturing”,

provisional Application No. 60/227,031, filed Aug. 23,
2000 entitled “Application Program Interface for a
Graphics System”,

provisional Application No. 60/227,030, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,663, filed Nov. 28, 2000, both entitled “Graph-
ics System With Copy Out Conversions Between
Embedded Frame Buffer And Main Memory”,

provisional Application No. 60/226,886, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,665, filed Nov. 28, 2000, both entitled “Method
and Apparatus for Accessing Shared Resources”,

provisional Application No. 60/226,894, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/726,220, filed Nov. 28, 2000, both entitled “Graph-
ics Processing System With Enhanced Memory
Controller”,

provisional Application No. 60/226,914, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,390, filed Nov. 28, 2000, both entitled “Low
Cost Graphics System With Stitching Hardware Sup-
port For Skeletal Animation”, and

provisional Application No. 60/227,0006, filed Aug. 23,
2000 and its corresponding utility application Ser. No.
09/722,421, filed Nov. 28, 2000, both entitled “Shadow
Mapping In A Low Cost Graphics System”.

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more particularly to interactive graphics systems such as
home video game platforms. Still more particularly this
invention relates to an improved texture tiling method and
apparatus which uses indirect texture index maps to refer-
ence texture tiles in a tile definition map and map the texture

US 6,707,458 B1

3

tiles onto a rendered primitive. The invention further enables
synthesized (blended) texture tiles to be created from a tile
definitions map and mapped onto a primitive in a manner
which prevents the appearance of repeating texture patterns.

BACKGROUND AND SUMMARY OF THE
INVENTION

Many of us have seen films containing remarkably real-
istic dinosaurs, aliens, animated toys and other fanciful
creatures. Such animations are made possible by computer
graphics. Using such techniques, a computer graphics artist
can specify how each object should look and how it should
change in appearance over time, and a computer then models
the objects and displays them on a display such as your
television or a computer screen. The computer takes care of
performing the many tasks required to make sure that each
part of the displayed image is colored and shaped just right
based on the position and orientation of each object in a
scene, the direction in which light seems to strike each
object, the surface texture of each object, and other factors.

Because computer graphics generation is complex,
computer-generated three-dimensional graphics just a few
years ago were mostly limited to expensive specialized flight
simulators, high-end graphics workstations and supercom-
puters. The public saw some of the images generated by
these computer systems in movies and expensive television
advertisements, but most of us couldn’t actually interact
with the computers doing the graphics generation. All this
has changed with the availability of relatively inexpensive
3D graphics platforms such as, for example, the Nintendo
64® and various 3D graphics cards now available for
personal computers. It is now possible to interact with
exciting 3D animations and simulations on relatively inex-
pensive computer graphics systems in your home or office.

A problem graphics system designers confronted in the
past was how to create realistic looking surface detail on a
rendered object without resorting to explicit modeling of the
desired details with polygons or other geometric primitives.
Although surface details can be simulated, for example,
using myriad small triangles with interpolated shading
between vertices, as the desired detail becomes finer and
more intricate, explicit modeling with triangles or other
primitives places high demands on the graphics system and
becomes less practical. An alternative technique pioneered
by E. Catmull and refined by J. F. Blinn and M. E. Newell
is to “map” an image, either digitized or synthesized, onto a
surface. (See “A Subdivision Algorithm for Computer Dis-
play of Curved Surfaces” by E. Catmull, Ph.D. Thesis,
Report UTEC-CSc-74-133, Computer Science Department,
University of Utah, Salt Lake City, Utah., December 1994
and “Texture and Reflection in Computer Generated
Images” by J. F. Blinn and M. E. Newell, CACM, 19(10),
October 1976, 452-457). This approach is known as texture
mapping (or pattern mapping) and the image is called a
texture map (or simply referred to as a texture).
Alternatively, the texture map may be defined by a proce-
dure rather than an image.

Typically, the texture map is defined within a 2D rectan-
gular coordinate space and parameterized using a pair of
orthogonal texture coordinates such, as for example, (u, v)
or (s, t). Individual elements within the texture map are often
called texels. At each rendered pixel, selected texels are used
either to substitute for or to scale one or more material
properties of the rendered object surface. This process is
often referred to as texture mapping or “texturing.”

Most 3-D graphics rendering systems now include a
texturing subsystem for retrieving textures from memory

10

15

20

25

30

35

40

45

50

55

60

65

4

and mapping the textures onto a rendered object surface. A
problem confronting graphics system designers is how to
provide more sophisticated texture related effects such as
“texture tiling” in an efficient and advantageous manner.
Texture tiling generally involves mapping textures in the
form of texture tiles on a tile-by-tile basis onto a rendered
object surface, such as a 2-D surface. A texture tile can be
defined by a tile shaped portion of a texture stored in texture
memory. An array or matrix of different tiles can be defined
in texture memory. The size and shape of the tile can be
selected to facilitate mapping of the tile onto a particular
rendered surface. The tile size can vary and can be defined
such that numerous tiles are required to cover a rendered
surface. Once defined, texture tiles can be placed in specific
locations over the rendered surface to create a textured
surface.

This tiling effect has been achieved in the past by, for
example, drawing a polygon for each desired tile. However,
this technique can be expensive in terms of processing
overhead and memory usage. In addition, a problem result-
ing from prior art tiling techniques is that the tiled surface
can have a repeating pattern that can be visually perceived
by the viewer. Repeating patterns result from the fact that
there is generally a limited number of different texture tiles
available to the programmer when tiling a surface. Thus,
large surfaces, such as walls, floors, ground cover or the like,
will use the same texture tiles numerous times in order to
completely cover the surface. Such repeated use of the same
tiles can detract from the realism of a rendered scene, due to
the fact that, in many instances, the human eye can pick up
on and see the repeating texture pattern resulting from the
tiling process. A further problem confronting graphics sys-
tems designers is how to take advantage of indirect texturing
processing to perform texture tiling operations. Thus, while
significant work has been done in the past in connection with
texture tiling, further improvements are possible and desir-
able.

The present invention solves this problem by providing
techniques and arrangements that can be used to efficiently
implement texture tiling in a graphics system. The present
invention further enables more realistic texture tiled surfaces
to be created that reduce or even eliminate the ability of a
viewer of the displayed textured surface to notice any
repeating patterns in the texture. The invention also enables
pseudo-3D textures to be created by blending between
textures tiles. The invention further enables indirect texture
processing hardware to be used in an efficient and effective
manner to achieve texture tiling.

In accordance with one aspect provided by the invention,
the texture tiling method includes:

generating texture coordinates;

modifying the texture coordinates using an indirect tile

index map;

using the modified texture coordinate to select a texture

tile from a tile definitions map; and

displaying the selected texture tile.

In accordance with another aspect of the invention, the
pseudo-3D tiling method includes:

defining a set of direct texture coordinates;

defining a set of indirect texture coordinates;

using the indirect texture coordinates to obtain an offset

value;

combining the offset value with at least one of the direct
texture coordinates to produce a first set of modified
texture coordinates;

US 6,707,458 B1

5

using the first set of modified texture coordinates to obtain
a first texture tile from a tile definitions map

biasing the offset value;

modifying the direct texture coordinates using the biased
offset value;

combining the modified offset value with at least one of
the direct texture coordinates to produce a second set of
modified texture coordinates;

using the second set of modified texture coordinates to
obtain a second texture tile from the tile definitions
map; and

blending the first texture tile and the second texture tile to
produce a synthesized texture tile.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention will be better and more completely understood by
referring to the following detailed description of presently
preferred embodiments in conjunction with the drawings, of
which:

FIG. 1 is an overall view of an example interactive
computer graphics system;

FIG. 2 is a block diagram of the FIG. 1 example computer
graphics system;

FIG. 3 is a block diagram of the example graphics and
audio processor shown in FIG. 2;

FIG. 4 is a block diagram of the example 3D graphics
processor shown in FIG. 3;

FIG. § is an example logical flow diagram of the FIG. 4
graphics and audio processor;

FIG. 6 is block diagram illustrating a logical overview of
indirect texture processing in accordance with the present
invention;

FIG. 7A1is a functional block diagram illustrating a simple
basic example of a regular (non-indirect) texture lookup;

FIG. 7B is a functional block diagram illustrating a simple
basic example of an indirect texture lookup in accordance
with the present invention;

FIG. 8 is a block diagram illustrating an overview of an
example physical configuration for implementing indirect
texture processing in accordance with the present invention;

FIG. 9 is a block diagram illustrating a logical overview
of the texture address (coordinate/data) processor operation;

FIGS. 10A-10K are a series of block diagrams illustrating
the relative progression of pixel direct coordinate data and
pixel indirect texture data in the example texturing pipeline
implementation as a result of interleaved direct and indirect
texture processing;

FIG. 11 is a flow chart illustrating example steps for
implementing indirect texture processing in accordance with
the present invention;

FIG. 12 is a functional operations diagram illustrating an
example of regular (non-indirect) texture processing in
accordance with the present invention;

FIG. 13 is a functional operations diagram illustrating an
example of both regular (non-indirect) and indirect texture
processing in accordance with the present invention;

FIG. 14 is a block diagram showing a detailed example of
the texture coordinate/bump processing unit shown in FIG.
5;

FIG. 15 is a block diagram showing a detailed example of
the indirect texture lookup data/coordinate processing logic
(proc) shown in FIG. 14;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 16A and 16B show example texture offset matrices
used by processing logic circuit (proc) of FIG. 15;

FIG. 17 is a block diagram illustrating example data field
formats of control logic registers for controlling the opera-
tions within the processing circuitry of FIG. 18;

FIG. 18a is a general functional block diagram of a first
tiling method in accordance with a preferred embodiment of
the instant invention;

FIG. 18b is a general functional block diagram of a
second tiling method in accordance with a preferred embodi-
ment of the instant invention;

FIG. 19 is a more detailed functional block diagram of the
first tiling method of FIG. 18a;

FIGS. 20a-20c¢ show three examples of the first tiling
method of the instant invention;

FIG. 21 is an example logical block diagram of the first
tiling method of the instant invention;

FIG. 22 is a flowchart of the second tiling method of FIG.
14b;

FIG. 23 is an example of the second tiling method of the
present invention;

FIG. 24 is an example logical block diagram of the second
tiling method of the instant invention;

FIGS. 25A and 25B show example alternative compatible
implementations.

DETALED DESCRIPTION OF EXAMPLE
EMBODIMENTS OF THE INVENTION

FIG. 1 shows an example interactive 3D computer graph-
ics system 50. System 50 can be used to play interactive 3D
video games with interesting stereo sound. It can also be
used for a variety of other applications.

In this example, system 50 is capable of processing,
interactively in real time, a digital representation or model of
a three-dimensional world. System 50 can display some or
all of the world from any arbitrary viewpoint. For example,
system 50 can interactively change the viewpoint in
response to real time inputs from handheld controllers 524,
52b or other input devices. This allows the game player to
see the world through the eyes of someone within or outside
of the world. System 50 can be used for applications that do
not require real time 3D interactive display (e.g., 2D display
generation and/or non-interactive display), but the capability
of displaying quality 3D images very quickly can be used to
create very realistic and exciting game play or other graphi-
cal interactions.

To play a video game or other application using system
50, the user first connects a main unit 54 to his or her color
television set 56 or other display device by connecting a
cable 58 between the two. Main unit 54 produces both video
signals and audio signals for controlling color television set
56. The video signals are what controls the images displayed
on the television screen 59, and the audio signals are played
back as sound through television stereo loudspeakers 61L,
61R.

The user also needs to connect main unit 54 to a power
source. This power source may be a conventional AC
adapter (not shown) that plugs into a standard home elec-
trical wall socket and converts the house current into a lower
DC voltage signal suitable for powering the main unit 54.
Batteries could be used in other implementations.

The user may use hand controllers 52a, 52b to control
main unit 54. Controls 60 can be used, for example, to
specify the direction (up or down, left or right, closer or

US 6,707,458 B1

7

further away) that a character displayed on television 56
should move within a 3D world. Controls 60 also provide
input for other applications (e.g., menu selection, pointer/
cursor control, etc.). Controllers 52 can take a variety of
forms. In this example, controllers 52 shown each include
controls 60 such as joysticks, push buttons and/or directional
switches. Controllers 52 may be connected to main unit 54
by cables or wirelessly via electromagnetic (e.g., radio or
infrared) waves.

To play an application such as a game, the user selects an
appropriate storage medium 62 storing the video game or
other application he or she wants to play, and inserts that
storage medium into a slot 64 in main unit 54. Storage
medium 62 may, for example, be a specially encoded and/or
encrypted optical and/or magnetic disk. The user may oper-
ate a power switch 66 to turn on main unit 54 and cause the
main unit to begin running the video game or other appli-
cation based on the software stored in the storage medium
62. The user may operate controllers 52 to provide inputs to
main unit 54. For example, operating a control 60 may cause
the game or other application to start. Moving other controls
60 can cause animated characters to move in different
directions or change the user’s point of view in a 3D world.
Depending upon the particular software stored within the
storage medium 62, the various controls 60 on the controller
52 can perform different functions at different times.

Example Electronics of Overall System

FIG. 2 shows a block diagram of example components of
system 50. The primary components include:

a main processor (CPU) 110,

a main memory 112, and

a graphics and audio processor 114.

In this example, main processor 110 (e.g., an enhanced
IBM Power PC 750) receives inputs from handheld control-
lers 108 (and/or other input devices) via graphics and audio
processor 114. Main processor 110 interactively responds to
user inputs, and executes a video game or other program
supplied, for example, by external storage media 62 via a
mass storage access device 106 such as an optical disk drive.
As one example, in the context of video game play, main
processor 110 can perform collision detection and animation
processing in addition to a variety of interactive and control
functions.

In this example, main processor 110 generates 3D graph-
ics and audio commands and sends them to graphics and
audio processor 114. The graphics and audio processor 114
processes these commands to generate interesting visual
images on display 59 and interesting stereo sound on stereo
loudspeakers 61R, 61L or other suitable sound-generating
devices.

Example system 50 includes a video encoder 120 that
receives image signals from graphics and audio processor
114 and converts the image signals into analog and/or digital
video signals suitable for display on a standard display
device such as a computer monitor or home color television
set 56. System 50 also includes an audio codec (compressor/
decompressor) 122 that compresses and decompresses digi-
tized audio signals and may also convert between digital and
analog audio signaling formats as needed. Audio codec 122
can receive audio inputs via a buffer 124 and provide them
to graphics and audio processor 114 for processing (e.g.,
mixing with other audio signals the processor generates
and/or receives via a streaming audio output of mass storage
access device 106). Graphics and audio processor 114 in this
example can store audio related information in an audio

10

15

20

25

30

35

40

45

50

55

60

65

8

memory 126 that is available for audio tasks. Graphics and
audio processor 114 provides the resulting audio output
signals to audio codec 122 for decompression and conver-
sion to analog signals (e.g., via buffer amplifiers 128L,
128R) so they can be reproduced by loudspeakers 61L, 61R.

Graphics and audio processor 114 has the ability to

communicate with various additional devices that may be
present within system 50. For example, a parallel digital bus
130 may be used to communicate with mass storage access
device 106 and/or other components. A serial peripheral bus
132 may communicate with a variety of peripheral or other
devices including, for example:

a programmable read-only memory and/or real time clock
134,

a modem 136 or other networking interface (which may
in turn connect system 50 to a telecommunications
network 138 such as the Internet or other digital
network from/to which program instructions and/or
data can be downloaded or uploaded), and

flash memory 140.

A further external serial bus 142 may be used to communi-
cate with additional expansion memory 144 (e.g., a memory
card) or other devices. Connectors may be used to connect
various devices to busses 130, 132, 142.

Example Graphics And Audio Processor

FIG. 3 is a block diagram of an example graphics and
audio processor 114. Graphics and audio processor 114 in
one example may be a single-chip ASIC (application spe-
cific integrated circuit). In this example, graphics and audio
processor 114 includes:

a processor interface 150,

a memory interface/controller 152,

a 3D graphics processor 154,

an audio digital signal processor (DSP) 156,

an audio memory interface 158,

an audio interface and mixer 160,

a peripheral controller 162, and

a display controller 164.

3D graphics processor 154 performs graphics processing
tasks. Audio digital signal processor 156 performs audio
processing tasks. Display controller 164 accesses image
information from main memory 112 and provides it to video
encoder 120 for display on display device 56. Audio inter-
face and mixer 160 interfaces with audio codec 122, and can
also mix audio from different sources (e.g., streaming audio
from mass storage access device 106, the output of audio
DSP 156, and external audio input received via audio codec
122). Processor interface 150 provides a data and control
interface between main processor 110 and graphics and
audio processor 114.

Memory interface 152 provides a data and control inter-
face between graphics and audio processor 114 and memory
112. In this example, main processor 110 accesses main
memory 112 via processor interface 150 and memory inter-
face 152 that are part of graphics and audio processor 114.
Peripheral controller 162 provides a data and control inter-
face between graphics and audio processor 114 and the
various peripherals mentioned above. Audio memory inter-
face 158 provides an interface with audio memory 126.

Example Graphics Pipeline

FIG. 4 shows a more detailed view of an example 3D
graphics processor 154. 3D graphics processor 154 includes,

US 6,707,458 B1

9

among other things, a command processor 200 and a 3D
graphics pipeline 180. Main processor 110 communicates
streams of data (e.g., graphics command streams and display
lists) to command processor 200. Main processor 110 has a
two-level cache 115 to minimize memory latency, and also
has a write-gathering buffer 11 for uncached data streams
targeted for the graphics and audio processor 114. The
write-gathering buffer 111 collects partial cache lines into
full cache lines and sends the data out to the graphics and
audio processor 114 one cache line at a time for maximum
bus usage.

Command processor 200 receives display commands
from main processor 110 and parses them—obtaining any
additional data necessary to process them from shared
memory 112. The command processor 200 provides a stream
of vertex commands to graphics pipeline 180 for 2D and/or
3D processing and rendering. Graphics pipeline 180 gener-
ates images based on these commands. The resulting image
information may be transferred to main memory 112 for
access by display controller/video interface unit 164—
which displays the frame buffer output of pipeline 180 on
display 56.

FIG. § is a logical flow diagram of graphics processor
154. Main processor 110 may store graphics command
streams 210, display lists 212 and vertex arrays 214 in main
memory 112, and pass pointers to command processor 200
via bus interface 150. The main processor 110 stores graph-
ics commands in one or more graphics first-in-first-out
(FIFO) buffers 210 it allocates in main memory 110. The
command processor 200 fetches:

command streams from main memory 112 via an on-chip
FIFO memory buffer 216 that receives and buffers the
graphics commands for synchronization/flow control
and load balancing,

display lists 212 from main memory 112 via an on-chip
call FIFO memory buffer 218, and

vertex attributes from the command stream and/or from
vertex arrays 214 in main memory 112 via a vertex
cache 220.

Command processor 200 performs command processing
operations 2004 that convert attribute types to floating point
format, and pass the resulting complete vertex polygon data
to graphics pipeline 180 for rendering/rasterization. A pro-
grammable memory arbitration circuitry 130 (see FIG. 4)
arbitrates access to shared main memory 112 between graph-
ics pipeline 180, command processor 200 and display
controller/video interface unit 164.

FIG. 4 shows that graphics pipeline 180 may include:

a transform unit 300,

a setup/rasterizer 400,

a texture unit 500,

a texture environment unit 600, and

a pixel engine 700.

Transform unit 300 performs a variety of 2D and 3D
transform and other operations 300z (see FIG. 5). Transform
unit 300 may include one or more matrix memories 3005 for
storing matrices used in transformation processing 300a.
Transform unit 300 transforms incoming geometry per ver-
tex from object space to screen space; and transforms
incoming texture coordinates and computes projective tex-
ture coordinates (300¢). Transform unit 300 may also per-
form polygon clipping/culling 300d. Lighting processing
300e also performed by transform unit 3005 provides per
vertex lighting computations for up to eight independent
lights in one example embodiment. Transform unit 300 can

10

15

20

25

30

35

40

45

50

55

60

65

10

also perform texture coordinate generation (300c¢) for
embossed type bump mapping effects, as well as polygon
clipping/culling operations (3004).

Setup/rasterizer 400 includes a setup unit which receives
vertex data from transform unit 300 and sends triangle setup
information to one or more rasterizer units (400b) perform-
ing edge rasterization, texture coordinate rasterization and
color rasterization.

Texture unit 500 (which may include an on-chip texture
memory (TMEM) 502) performs various tasks related to
texturing including for example:

retrieving textures 504 from main memory 112,

texture processing (5004) including, for example, multi-

texture handling, post-cache texture decompression,
texture filtering, embossing, shadows and lighting
through the use of projective textures, and BLIT with
alpha transparency and depth,

bump map processing for computing texture coordinate

displacements for bump mapping, pseudo texture and
texture tiling effects (5005), and

indirect texture processing (500c)

FIGS. 6 through 17 illustrate example texture processing
for performing regular (non-indirect) and indirect texture
lookup operations. A more detailed description of the
example graphics pipeline circuitry and procedures for per-
forming regular and indirect texture look-up operations is
disclosed in commonly assigned co-pending patent
application, Ser. No. 60/226,891, entitled “Method And
Apparatus For Direct And Indirect Texture Processing In A
Graphics System”, the entire contents of which are incor-
porated herein by reference.

Texture unit 500 outputs filtered texture values to the
texture environment unit 600 for texture environment pro-
cessing (600q). Texture environment unit 600 blends poly-
gon and texture color/alpha/depth, and can also perform
texture fog processing (600b) to achieve inverse range based
fog effects. Texture environment unit 600 can provide mul-
tiple stages to perform a variety of other interesting
environment-related functions based for example on color/
alpha modulation, embossing, detail texturing, texture
swapping, clamping, and depth blending. For more details
concerning the texture environment unit 600, see concur-
rently filed commonly assigned application Ser. No. 60/226,
888 entitled “Recirculating Shade Tree Blender for a Graph-
ics System”, incorporated by reference herein.

Pixel engine 700 performs depth (z) compare (700a) and
pixel blending (700b). In this example, pixel engine 700
stores data into an embedded (on-chip) frame buffer memory
702. Graphics pipeline 180 may include one or more embed-
ded DRAM memories 702 to store frame buffer and/or
texture information locally. Z compares 7004’ can also be
performed at an earlier stage in the graphics pipeline 180
depending on the rendering mode currently in effect (e.g., z
compares can be performed earlier if alpha blending is not
required). The pixel engine 700 includes a copy operation
700c¢ that periodically writes on-chip frame buffer 702 to
main memory 112 for access by display/video interface unit
164. This copy operation 700c can also be used to copy
embedded frame buffer 702 contents to textures in the main
memory 112 for dynamic texture synthesis effects. Anti-
aliasing and other filtering can be performed during the
copy-out operation. The frame buffer output of graphics
pipeline 180 (which is ultimately stored in main memory
112) is read each frame by display/video interface unit 164.
Display controller/video interface 164 provides digital RGB
pixel values for display on display 102.

Overview of Example Texture Tiling Procedures

The instant invention provides two different tiling
methods, both of which preferably use indirect texture tile

US 6,707,458 B1

11

maps. The first method provides an indirect texture tiling
method, and the second method enables unique texture tiles
to be created by blending between multiple tiles to achieve,
for example, a pseudo-3D texture effect.

FIG. 18a shows an example procedure for the indirect
texture tiling method of the instant invention. In accordance
with this exemplary first procedure, texture coordinates are
generated from surface parameters of a rendered object
(block 1400). An tile index map is used to obtain tile select
offsets which are used to modify the texture coordinates
(block 1402). The modified texture coordinates are then used
to select a texture tile from a tile definitions map (block
1404). The texture tile may contain any type of texture that
is desired for use in a tiling operation, such as bricks, grass,
or any other suitable pattern or portion of a larger pattern.
The resulting tile textured image is then displayed (block
1406).

FIG. 18b shows an example procedure for the texture
blending or pseudo 3-D texture method of the instant
invention. In accordance with this exemplary second
procedure, texture coordinates are also generated from sur-
face parameters (block 1410). The texture coordinates are
then used to obtain at least one texture select offset which is
used to modify the texture coordinates (block 1412). The
modified texture coordinates are then used to select multiple
texture tiles from a tile definitions map (block 1414). The
tiles are then blended together to form a synthesized tile
texture (block 1416). The resulting synthesized tile textured
image is then displayed (Block 1418).

Both of the above described tiling methods of the present
invention will be described separately in greater detail
below. Both of the tiling methods described herein are
preferably implemented through the use of the indirect
texture processing system as described in the above-
referenced co-pending patent application. However, any
suitable processing system incorporating, for example,
recirculating, multiple parallel channel or other processing
circuitry can be used in accordance with the instant inven-
tion.

Example Indirect Texture Tiling (First Tiling
Method)

FIG. 19 shows a more detailed exemplary block diagram
of the instant indirect texture tiling method as shown in FIG.
18a. In accordance with this method, an indirect tile index
map and a tile definitions map are defined (blocks 1500,
1501). The tile definitions map holds the base definitions for
a variety of tiles. The indirect tile index map identifies
specific locations for specific tiles on the surface of the
object being textured. In order to map the tiles on the object
in this manner, a pair of indirect texture coordinates (S0,T0)
are generated (block 1504). In this example, the indirect
texture coordinates are based on a scale for the textured
surface not the index map. This advantageously enables the
same texture coordinates to be used for the direct texture
coordinates and the indirect texture coordinates. Thus, the
indirect texture coordinates are appropriately scaled to the
index map by, for example, dividing the coordinates by the
respective dimensions of the tiles being used (block 1506).
The scaled texture coordinates are then used to perform a
look-up operation in the texture index map to obtain appro-
priate tile select offsets (AS, AT) for the current texture
coordinates (block 1508). The tile select offsets are then
rescaled to the subject texture scale by, for example, mul-
tiplying the offsets by the respective dimensions of the tiles
being used (block 1510).

10

15

20

25

30

35

40

45

50

55

60

65

12

Aset of direct texture coordinates (S1,T1) are also defined
(block 1512). As explained above, the indirect and direct
texture coordinates are actually the same in this example
embodiment. A wrapping operation is performed on the
direct texture coordinates (block 1514). In this example, the
wrapping operation is modulo n wrap, where n is the
dimension of the tile being used.

Once the appropriately scaled tile offsets (AS, AT) and
wrapped texture coordinates (S1, T1) are obtained, they are
combined (block 1516) to produce a set of modified texture
coordinates (S',T"). The modified texture coordinates (S',T")
are then used to perform a look-up operation in the tile
definitions map (block 1518), in order to obtain the desired
texture tile for the current texture coordinates. The selected
texture tile is then output for display (block 1520) (or
possibly for use in further texture processing operations).

FIG. 20a shows a first example of the indirect tiling
method of the instant invention. As shown in FIG. 20a, a
texture tile index map 1600 is defined which identifies
specific tiles in a tile definitions map 1602 for each tile
location on a resulting texture 1604. In this example, a two
dimensional (2x2) tile definitions map 1602 is used. Thus,
the tile definition map includes four tiles which, in this
example, each comprise a different and complimentary
portion of a larger intended texture pattern. In this example,
the resulting pattern 1604 is 512x512 texels in size. The
indirect tile index map 1600 is a 4x4 matrix, wherein each
matrix element identifies one of the four tiles in the tile
definitions map 1602. Each tile in the tile definitions map is
128x128 texels in size. Thus, by using each of the 16 indexes
in the index map 1600 to map a tile, the resulting image 1604
will include 16 tiles (512x512 texels) in the desired con-
figuration as determined by the tile index map. As can be
seen in FIG. 20a, the resulting tile pattern 1604 in this
example includes a pattern containing four squares made up
of 16 texture tiles.

As explained above, certain scaling, wrapping and/or
adding operations are performed on the direct and indirect
coordinates as indicated by the bump unit (OP) block 1606
in FIG. 20a. In this example, the indirect texture is initially
scaled down by dividing the indirect texture coordinates by
128 (the dimension of the tiles) in order to address the 4x4
index matrix 1600 and obtain the offsets for the particular
texture coordinates. The offsets are then scaled up by
multiplying the offsets by 128 (the dimension of the tiles).
The scaled up offsets are then combined with the results of
the wrapping operation on the texture coordinates in order to
obtain the modified texture coordinates for use in obtaining
a texture from the tile definitions map 1602.

FIG. 20b shows a second example of the indirect tiling
method of the present invention, wherein like reference
numerals correspond to similar parts as described above. In
this example, the tile definitions map 1602 is a one dimen-
sional map instead of the two dimensional map as used in the
first example of FIG. 20a. As a result, the indirect texture
map 1600 only uses single offset values rather than a pair of
offsets values as in the first example. Thus, the particular
offset value selected can be used to modify either the
wrapped S1 or T1 values (S1 in this example), depending on
how the tile definitions map is constructed (vertically or
horizontally stacked). In this example, the textures tiles are
64x64 tiles in size. Thus, the wrapping and scaling param-
eters used in the bump unit 1606 (OP) are 64 rather than 128
as in the first example. It is noted that any suitable size
texture tiles can be used depending on the particular appli-
cation in which the invention is used. In addition, any
suitably sized indirect texture map and resulting texture can
be defined using the instant invention.

US 6,707,458 B1

13

FIG. 20c shows a third example of the indirect tiling
method of the present invention, which again uses like
reference numerals to designate similar parts as described
above. This example uses a 2x4 tile definitions map 1602
containing eight 18x18 texel tiles. The indirect tile index
map 1600 is similar to the index map of the first example
above. In this example, however, only the inner 16x16 texels
of the 18x18 texel tiles are used in creating the resulting tile
pattern 1604. Thus, as this example demonstrates, any
suitable tile size can be used, regardless of the size of the tile
definitions.

FIG. 21 shows a logical block diagram of the exemplary
indirect tiling method described above with respect to FIGS.
19 and 20a—20c. As can be seen in FIG. 21, the instant tiling
method can take advantage of using the same initial texture
coordinates for the direct coordinates and the indirect coor-
dinates (i.e. S1=S0 and T1=T0). However, other arrange-
ments are possible where the coordinates are not the same.
For example, indirect texture coordinates may be used
which do not need to be scaled in order to properly address
the tile index map. However, when the same texture coor-
dinates are used, as in this example, the indirect texture
coordinates 1700 (S0,T0) are first scaled, as indicated by
scaling blocks 1702a and 1702b, in order to conform to the
scale of the indirect texture index map 1600. The properly
scaled indirect coordinates are then used to perform a look
up operation in the tile index map in order to obtain the tile
select offsets 1704 (AS, AT). For tiling the desired texture
coordinate scale is the tile size multiplied by the size of the
indirect tile index map. The tile size is then divided out for
use in accessing the indirect map.

The tile select offsets are scaled up to the original scale to
correspond with the scale of the direct texture coordinates,
as indicated by multipliers 1706a and 1706b. The offsets are
then ready to be combined with the regular texture coordi-
nates 1701 (S1, T1), after the direct coordinates are
wrapped, as indicated by the modulo n wrapping blocks
1708a and 1708b. The wrapped direct coordinates and the
scaled offsets are then combined by adders 1710a and
17105, thereby producing the modified texture coordinates
1712 (S',T"). The modified texture coordinates are then used
to perform the regular textures look up in the tile definition
map 1602, thereby selecting a tile for output as a texture to
the TEV unit. It is noted that the logical block diagram of
FIG. 21 shows an embodiment where offsets are provided
for both the S1 and T1 coordinates which, in this example,
enables a two dimensional tile definitions map to be used.
However, other arrangements are possible in accordance
with the invention where only a one dimensional tile index
map is used, such as in the example of FIG. 20b.

Example Pseudo 3D Texture Tiling (Second Tiling
Method)

FIG. 22 shows a more detailed block diagram of the
second indirect tiling method of the instant invention (see
FIG. 18b), which is referred to herein as pseudo 3D textures.
This second method enables multiple indirectly indexed tiles
to be blended together to form synthetic tiles that are
mapped onto a surface. In other words, in this method the
tiling mapping can be extended to provide a pseudo-3D
effect. In this method, all of the tiles are considered to be part
of a stack. Rather than selecting a single tile from the tile
definitions map, as in the first example above, in this
example, one can select multiple tiles (2 adjacent tiles in the
example below) and blend the tiles together in order to
produce a synthesized texture tile. This technique can be
used, for example, to cover a large surface with non-

10

15

20

25

30

35

40

45

50

55

60

65

14

repeating patterns that blend smoothly together. By allowing
blending of texture tiles, the programmer is not limited to
specific tiles in a tile definitions map when covering a
surface. Instead new tiles can be synthesized from existing
tiles in order to greatly increase the number of possible
texture tiles that can be used to cover a surface, without
requiring larger texture definition maps. By using synthe-
sized tiles, the appearance of repeating texture patterns can
by avoided, thereby improving the realism of the image.
This method can be used, for example, to cover a beach with
a tiled texture where the layers vary in appearance from fine
sand to small pebbles to large rocks. The blending feature
can be used to provides a pseudo-3D appearance for the
resulting texture.

As shows in FIG. 22, a indirect tile index map is defined
which includes indexes to tiles in the tile definitions stack
(block 1800). Indirect texture coordinates are defined (block
1802) to obtain a texture select offset and a blending factor
(block 1804). The texture tile definitions are defined in the
form of a stack (block 1806). If pseudo-3D effects are
desired, the tiles are preferably defined, in this example,
such that adjacent tiles will blend well together to provide a
layering effect, as will be further understood from the
description below. Of course, as explained above, the indi-
rect coordinates may be scaled prior to performing the
indirect look up operation, such as when the one desires to
have the indirect coordinates equal to the direct coordinates.

Direct coordinates are defined (block 1808), and are
combined with the offset to produce a first set of modified
texture coordinates (s, t') (block 1810). The offset is then
modified (biased) in a predetermined manner, such as by
incrementing the offset by one tile, and a second set of
modified texture coordinates (s, t") (block 1812) is then
defined by combining the modified offset with the direct
texture coordinates. A first texture is then looked up in the
tile definitions stack using the first set of modified texture
coordinates (s,t') to obtain a first texture tile (block 1814). A
second texture is then looked up in the tile definitions stack
using the second set of modified texture coordinates (s,t™) to
obtain a second texture tile (block 1816). The first and
second texture tiles are then blended to create a synthesized
texture (block 1818). In this example, the blending factor for
use in the blending operation is obtained along with the tile
select offset(s) from the tile index map. The synthetic texture
is then output for display (Block 1820) (or possibly for use
in further texture processing operations).

FIG. 23 shows an example of the pseudo-3D texturing
method of the instant invention. In this example, the texture
tile index map 1900 includes indexes to the tile stack 1902
as well as a blending factor. Specifically, in this example, the
tile index map includes indexes including an integer com-
ponent and a fraction component. For example, the lower
left hand corner element in the index map 1900 is “4.9”. In
this example embodiment, the integer component (i.e. “4”)
provides the layer select offset, and the fractional component
(i.e. “0.9”) provides the blending factor. Thus, the indirect
texture coordinates are used to look up a layer select offset
and a blending factor. The offset is then scaled (if necessary
for the particular implementation) and combined with the
direct texture coordinates (after being wrapped), using bump
block 1904, to produce a first set of modified texture
coordinates. The first set of modified texture coordinates are
then used in a look up operation in the tile definition stack
1902 to obtain a first texture tile. The bump unit also
generates a second set of modified coordinates by perform-
ing a biasing operation on the tile select offset and combin-
ing the biased offset with the wrapped direct texture coor-

US 6,707,458 B1

15

dinates. The biasing operation may simply increase the
offset by a given amount, such as by one tile, or it may
perform any other suitable operation in the offset so that the
resulting tile will be different from the resulting tile without
the biasing. The second set of modified texture coordinates
are then used to look up a second tile from the tile definitions
stack 1902. The two selected tiles are then blended together
using the blending factor provided by the indirect index tile
index map 1900, thereby producing a synthesized texture
tile for use in the resulting texture 1906. In this example, the
resulting texture 4.9 indicates that the layer definition 4 and
layer definition 5 are blended together using a blending
factor 0.9, i.e. 4.9=0.1* (layer 4 definition)+0.9* (layer 5
definition). It is noted that in this example, a only one offset
is provided. Thus, in this example, the tile definitions map is
treated as a one dimensional stack and the offset is used to
modify the S1 or T1 component of the direct texture
coordinates. Other arrangements are possible where the
index map provides a pair of offsets, as well as a blending
factor. In other embodiments, the blending factor may be a
constant or otherwise defined in a manner other than by the
tile index map 1900. However, by enabling the blending
factor to be programmed into the tile index map, different
blending factors can be conveniently defined to create large
variety of synthetic tiles. It is also noted that in this example,
the bias factor for the offset is one tile. Thus, once the
primary tile is defined, the secondary tile is defined as the
next tile in the stack. Other arrangements are possible where
the bias causes the second tile to have a different relationship
to the first tile.

FIG. 24 shows and exemplary logical block diagram of
this second tiling method described above in connection
with FIGS. 22 and 23. As shown in FIG. 24, the indirect
coordinates (S0, TO0) are determined and then appropriately
scaled, as indicated by scaling blocks 1910a and 19105. The
scaling is done for the same reasons explained above in
connection with the first method of the invention. This
example also takes advantage of using the same values for
the direct and indirect texture coordinates However, as
explained above, other arrangements are possible and the
scaling operations can be adjusted or eliminated depending
on the particular implementation. In this example, the scaled
indirect coordinates 1908 (S0,T0) are used to perform a look
up operation in the indirect texture index map 1900 in order
to obtain an integer 1918a representing a tile select offset
and a fraction (1918b) representing a blending factor. The
integer (offset) is then rescaled, as indicated by multiplier
1922, and sent to adder 19164 for use as a modifier for the
direct texture coordinates. The direct texture coordinates
1912 (S1,T1) are wrapped, as indicated by modulo n wrap
blocks 1914a and 1914b. The offset is then combined with
the t component of the wrapped coordinates to produce a
first set of modified texture coordinates (s,t"), which are then
used to perform a look up in the tile definitions stack 1902
to obtain a first texture tile (Tex1).

The tile select offset provided by the integer 1918a is also
used to obtain a second set of modified texture coordinates.
This is done by biasing the offset, as indicated by block
1926. In this example, the biasing involves adding 1 to the
offset prior to resealing the offset at multiplier 19225 . The
biased offset is then sent to adder 1916b. The biased offset
is combined with the wrapped t component of the direct
texture coordinates by adder 19165 in order to produce a
second set of modified texture coordinates (s, t"). The
second set of modified texture coordinates are then used to
perform a second look up in the tile definitions map 1902 in
order to obtain a second texture tile (Tex2).

10

15

20

25

30

35

40

45

50

55

60

16

The first texture tile (tex1) and the second texture tile
(text2) are then sent to the blending block 1920. The fraction
component (1918b) obtained from the indirect texture index
map 1900 is sent through multiplexers 19244 and 1924b for
delivery to the blending block 1920. Thus, the blender then
has the two texture tiles and the appropriate blending factor.
A blending operation is then performed to combine the two
texture tiles based on the blending factor to produce a
synthesized tile for output to the display (or possibly for use
in a further texture processing operation).

Example API Indirect Texture Tiling Function
Commands

As shown in FIGS. 7-9, one or more graphics API
functions are preferably used to set up and initiate indirect
texture look up operations and indirect texture processing.
Example API functions for setting up indirect texture opera-
tions and parameters for performing Indirect texture tiling
and pseudo-3D texture tiling, as described above, may be
defined as follows:

GXSetTevIindTile

This function may be used to implemented tiled texturing
using indirect textures. Note that the regular texture map
only specifies tile definitions. The actual number of texels to
be applied to the polygon is a function of the base tile size
and the size of the indirect map. In order to set the proper
texture coordinate scale, one must call GXSetTexCoord-
ScaleManually. One can also use GXSetlndTexScale in
order to use the same texcoord for the indirect stage as the
regular TEV stage.

Example Arguments

tev__stage The TEV stage that is being affected.

ind_ stage The indirect stage results to use with this TEV stage.
tilesize__s Indicates the size of the tile in the S dimension.
tilesize__t Indicates the size of the tile in the T dimension.

Tilespacing_s
Tilespacing_ t

Indicates the spacing of the tiles in the S dimension.
Indicates the spacing of the tiles in the T dimension.

Format Indicates which indirect texture format to use.

matrix__sel Indicates which indirect matrix and scale value to
multiply the offsets with.

bias__sel Indicates the tile stacking direction for pseudo-3D
textures.

alpha__sel Indicates which offset component will supply the indirect

“bump” alpha, if any (for pseudo-3D textures).

Example Usage

void GXSetTevIndTile(GXTevStagelD tev_stage,
GXIndTexStageID ind_ stage,
ul6 tilesize_s,

ul6 tilesize_t,

ul6 tilespacing_s,

ulé tilespacing_t,
GXIndTexFormat format,
GXIndTexMtxID matrix_ sel,
GXIndTexBiasSel bias_ sel,
GXIndTexAlphaSel alpha_ sel);

The above function can be used to specify the indirect
texture tiling method or the pseudo-3D texture tiling method
described above. It is noted that one can specify tile size and
spacing separately. An exemplary reason for using spacing

US 6,707,458 B1

17

which is larger than the tile size is to allow borders for
mipmapping purposes. depending upon the height of the
mipmap stack, texels outside of the tile area may be included
in the filtering calculations for mipmapping. This function
will set up the matrix and scale value appropriately based
upon the given inputs; one need only specify which matrix
slot to use. The biasSel and alphaSel parameters are used
only for pseudo-3D lookups. They are set to GX_ITB__
NONE and GX_ITBA_OFF (respectively) for normal 2D
tiling. It is noted that texture tiling can take advantage of
using the same texture coordinates for the indirect map and
the regular (direct) map. However, the desired scale values
for the regular texture coordinates are not directly related to
the size of the regular map which contains the tile defini-
tions. Normally, the scale size for a texture coordinate will
be set to the size of the map being looked up, with preference
to the regular map size if a texture coordinate is being
shared. Since with texture tiling, as different scale is needed,
the following functions can be use:

GXSetTexCoordScaleManually

Arguments
GXTexCoordID TexCoord //Name of the texcoord being affected
GXBool enable //GX_True = manual scaling;
//GX_False = automatic scaling
ulé ss //Manual scale value for S dimension
ulé ts //Manual scale value for T dimension.

Once GXSetTexCoordScaleManually has been called
with enable set to GX__True, the given texture coordinate
scale values are fixed until the function is called again. If the
function is called with enable set to GX__False, then auto-
matic texture coordinate scaling takes over once again for
that texcoord. For texture tiling, the desired texture coordi-
nate scale is the tile size times the size of the indirect map.
One then uses GXSetlndTexCoordScale to divide out the tile
size for use in accessing the indirect map.

In order to support pseudo-3D texture lookup, one must,
in this example, call GXSetTevIndTile for two adjacent TEV
stages. The first stage resembles a normal 2D tiling speci-
fication. For the second stage, one specifies a bias select and
alpha select. The bias is used to select the tile stacking
direction. One uses GX__ITB__S when the next tile is offset
in the S dimension, and GX_ ITB_ T when the next tile is
offset in the T dimension. One then chooses a bump alpha in
order to blend between the tile from the first lookup and the
tile from the second lookup. It is noted that in this example,
one cannot use the 8-bit format for pseudo-3D textures.
Instead, one can use the 3, 4 and 5-bit formats. These
formats use a bias value of +1 instead of —128. The +1 bias
is used to get the “next” tile in the second stage.

Other Example Compatible Implementations

Certain of the above-described system components 50
could be implemented as other than the home video game
console configuration described above. For example, one
could run graphics application or other software written for
system 50 on a platform with a different configuration that
emulates system 50 or is otherwise compatible with it. If the
other platform can successfully emulate, simulate and/or
provide some or all of the hardware and software resources
of system 50, then the other platform will be able to
successfully execute the software.

10

15

20

25

30

35

40

45

50

55

60

65

18

As one example, an emulator may provide a hardware
and/or software configuration (platform) that is different
from the hardware and/or software configuration (platform)
of system 50. The emulator system might include software
and/or hardware components that emulate or simulate some
or all of hardware and/or software components of the system
for which the application software was written. For example,
the emulator system could comprise a general purpose
digital computer such as a personal computer, which
executes a software emulator program that simulates the
hardware and/or firmware of system 50.

Some general purpose digital computers (e.g., IBM or
Maclntosh personal computers and compatibles) are now
equipped with 3D graphics cards that provide 3D graphics
pipelines compliant with DirectX or other standard 3D
graphics command APIs. They may also be equipped with
stereophonic sound cards that provide high quality stereo-
phonic sound based on a standard set of sound commands.
Such multimedia-hardware-equipped personal computers
running emulator software may have sufficient performance
to approximate the graphics and sound performance of
system 50. Emulator software controls the hardware
resources on the personal computer platform to simulate the
processing, 3D graphics, sound, peripheral and other capa-
bilities of the home video game console platform for which
the game programmer wrote the game software.

FIG. 25A illustrates an example overall emulation process
using a host platform 1201, an emulator component 1303,
and a game software executable binary image provided on a
storage medium 62. Host 1201 may be a general or special
purpose digital computing device such as, for example, a
personal computer, a video game console, or any other
platform with sufficient computing power. Emulator 1303
may be software and/or hardware that runs on host platform
1201, and provides a real-time conversion of commands,
data and other information from storage medium 62 into a
form that can be processed by host 1201. For example,
emulator 1303 fetches “source” binary-image program
instructions intended for execution by system 50 from
storage medium 62 and converts these program instructions
to a target format that can be executed or otherwise pro-
cessed by host 1201.

As one example, in the case where the software is written
for execution on a platform using an IBM PowerPC or other
specific processor and the host 1201 is a personal computer
using a different (e.g., Intel) processor, emulator 1303
fetches one or a sequence of binary-image program instruc-
tions from storage medium 62 and converts these program
instructions to one or more equivalent Intel binary-image
program instructions. The emulator 1303 also fetches and/or
generates graphics commands and audio commands
intended for processing by the graphics and audio processor
114, and converts these commands into a format or formats
that can be processed by hardware and/or software graphics
and audio processing resources available on host 1201. As
one example, emulator 1303 may convert these commands
into commands that can be processed by specific graphics
and/or or sound hardware of the host 1201 (e.g., using
standard DirectX, OpenGL and/or sound APIs).

An emulator 1303 used to provide some or all of the
features of the video game system described above may also
be provided with a graphic user interface (GUI) that sim-
plifies or automates the selection of various options and
screen modes for games run using the emulator. In one
example, such an emulator 1303 may further include
enhanced functionality as compared with the host platform
for which the software was originally intended.

US 6,707,458 B1

19

In the case where particular graphics support hardware
within an emulator does not include the example indirect
texture referencing features and functions illustrated by
FIGS. 7 through 24, the emulator designer has a choice of
either:

translating the indirect-texture referencing commands
into other graphics API commands the graphics support
hardware understands, or

implementing indirect-texture referencing in software
with a potential corresponding decrease in performance
depending upon the speed of the processor, or

“stubbing” (i.e., ignoring) the indirect-texture referencing
commands to provide a rendered image that does not
include effects utilizing indirect-texture referencing.

While the logical diagrams of FIGS. 21 and 24 can be
implemented entirely in software, entirely in hardware or by
a combination of hardware and software, the preferred
embodiment performs most of the calculations in hardware
(using bump unit 500b) to obtain increased speed perfor-
mance and other advantages. Nevertheless, in other imple-
mentations (e.g. where a very fast processor is available),
some of all of the processing described herein may be
implemented in software to provide similar or identical
imaging results.

FIG. 25B illustrates an emulation host system 1201 suit-
able for use with emulator 1303. System 1201 includes a
processing unit 1203 and a system memory 1205. A system
bus 1207 couples various system components including
system memory 1205 to processing unit 1203. System bus
1207 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory 1207 includes read only memory (ROM) 1252 and
random access memory (RAM) 1254. A basic input/output
system (BIOS) 1256, containing the basic routines that help
to transfer information between elements within personal
computer system 1201, such as during start-up, is stored in
the ROM 1252. System 1201 further includes various drives
and associated computer-readable media. A hard disk drive
1209 reads from and writes to a (typically fixed) magnetic
hard disk 1211. An additional (possible optional) magnetic
disk drive 1213 reads from and writes to a removable
“floppy” or other magnetic disk 1215. An optical disk drive
1217 reads from and, in some configurations, writes to a
removable optical disk 1219 such as a CD ROM or other
optical media. Hard disk drive 1209 and optical disk drive
1217 are connected to system bus 1207 by a hard disk drive
interface 1221 and an optical drive interface 1225, respec-
tively. The drives and their associated computer-readable
media provide nonvolatile storage of computer-readable
instructions, data structures, program modules, game pro-
grams and other data for personal computer system 1201. In
other configurations, other types of computer-readable
media that can store data that is accessible by a computer
(e.g., magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories
(RAMs), read only memories (ROMs) and the like) may also
be used.

A number of program modules including emulator 1303
may be stored on the hard disk 1211, removable magnetic
disk 1215, optical disk 1219 and/or the ROM 1252 and/or
the RAM 1254 of system memory 1205. Such program

5

10

15

20

25

30

35

40

45

50

55

60

65

20

modules may include an operating system providing graph-
ics and sound APIs, one or more application programs, other
program modules, program data and game data. A user may
enter commands and information into personal computer
system 1201 through input devices such as a keyboard 1227,
pointing device 1229, microphones, joysticks, game
controllers, satellite dishes, scanners, or the like. These and
other input devices can be connected to processing unit 1203
through a serial port interface 1231 that is coupled to system
bus 1207, but may be connected by other interfaces, such as
a parallel port, game port Fire wire bus or a universal serial
bus (USB). A monitor 1233 or other type of display device
is also connected to system bus 1207 via an interface, such
as a video adapter 1235.

System 1201 may also include a modem 1154 or other
network interface means for establishing communications
over a network 1152 such as the Internet. Modem 1154,
which may be internal or external, is connected to system
bus 123 via serial port interface 1231. A network interface
1156 may also be provided for allowing system 1201 to
communicate with a remote computing device 1150 (e.g.,
another system 1201) via a local area network 1158 (or such
communication may be via wide area network 1152 or other
communications path such as dial-up or other communica-
tions means). System 1201 will typically include other
peripheral output devices, such as printers and other stan-
dard peripheral devices.

In one example, video adapter 1235 may include a 3D
graphics pipeline chip set providing fast 3D graphics ren-
dering in response to 3D graphics commands issued based
on a standard 3D graphics application programmer interface
such as Microsoft’s DirectX 7.0 or other version. A set of
stereo loudspeakers 1237 is also connected to system bus
1207 via a sound generating interface such as a conventional
“sound card” providing hardware and embedded software
support for generating high quality stereophonic sound
based on sound commands provided by bus 1207. These
hardware capabilities allow system 1201 to provide suffi-
cient graphics and sound speed performance to play soft-
ware stored in storage medium 62.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the scope
of the appended claims.

We claim:

1. A method of texture tiling, comprising;

defining a set of direct texture coordinates;

defining a set of indirect texture coordinates;

using the indirect coordinates to obtain an offset value;

combining the offset value with at least one of the direct
texture coordinates to produce a first set of modified
texture coordinates;

using the first set of modified texture coordinates to obtain
a first texture tile form a tile definitions map;

biasing the offset value;

modifying the direct texture coordinates using the biased
offset value;

combining the modified offset value with at least one of
the direct texture coordinated of produce a second set
of modified texture coordinates;

US 6,707,458 B1

21

using the second set of modified texture coordinates to
obtain a second texture tile form the tile definitions
map; and

blending the first texture tile and the second texture tile to

produce a synthesized texture tile.

2. The method of claim 1, wherein using the indirect
coordinates includes looking up the offset value from an
indirect tile index map.

3. The method of claim 1, wherein the indirect texture
coordinates are the same as the direct texture coordinates.

22

4. The method of claim 1, further including using a
blending factor when blending which determines a ratio of
blend between the first texture tile and the second texture
tile.

5. The method of claim 2, further including obtaining the
blending factor from the indirect texture index map when
performing the looking up step.

6. The method of claim 2, further including defining the
tile definitions map as a tile layer definitions stack.

#* #* #* #* #*

