
(12) United States Patent
Fouladi et al.

USO080982.55B2

US 8,098,255 B2
Jan. 17, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(62)

(60)

(51)

(52)
(58)

GRAPHICS PROCESSING SYSTEM WITH
ENHANCED MEMORY CONTROLLER

Inventors: Farhad Fouladi, Los Altos Hills, CA
(US); Winnie W. Yeung, San Jose, CA
(US); Howard Cheng, Sammamish, WA
(US)

Assignee: Nintendo Co., Ltd., Kyoto (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 12/470,712

Filed: May 22, 2009

Prior Publication Data

US 2009/022.5094A1 Sep. 10, 2009

Related U.S. Application Data

Division of application No. 09/726.220, filed on Nov.
28, 2000, now Pat. No. 7,538,772.

Provisional application No. 60/226,894, filed on Aug.
23, 2000.

Int. C.
G09G 5/36 (2006.01)
G06F I3/18 (2006.01)
G06F I3/00 (2006.01)
U.S. Cl. 345/558:345/535; 34.5/536
Field of Classification Search 345/519,

345/530,531,535,536,542, 558, 559; 711/154,
711/158, 167, 137, 5, 113, 106, 100, 163,

711/151,156, 140, 141; 365/222; 709/235;
710/240, 100, 310, 105, 117

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,275,413 A 6/1981 Sakamoto et al.
4,357,624 A 1 1/1982 Greenberg
4,388,620 A 6, 1983 Sherman
4.425,559 A 1/1984 Sherman
4,463,380 A 7/1984 Hooks, Jr.
4,491,836 A 1/1985 Collmeyer et al.
4,570,233 A 2f1986 Yan et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP O 637 813 A2 2, 1995

(Continued)
OTHER PUBLICATIONS

“5.13.1 How to Project a Texture.” from web site: www.sgi.com, 2
pageS.

(Continued)
Primary Examiner — Joni Hsu
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
(57) ABSTRACT
A graphics system including a custom graphics and audio
processor produces exciting 2D and 3D graphics and Sur
round sound. The system includes a graphics and audio pro
cessor including a 3D graphics pipeline and an audio digital
signal processor. A memory controller performs a wide range
of memory control related functions including arbitrating
between various competing resources seeking access to main
memory, handling memory latency and bandwidth require
ments of the resources requesting memory access, buffering
writes to reduce bus turn around, refreshing main memory,
and protecting main memory using programmable registers.
The memory controller minimizes memory read/write
Switching using a "global write queue which queues write
requests from various diverse competing resources. In this
fashion, multiple competing resources for memory writes are
combined into one resource from which write requests are
obtained. Memory coherency issues are addressed both
within a single resource that has both read and write capabili
ties and among different resources by efficiently flushing
write buffers associated with a resource.

8 Claims, 16 Drawing Sheets

6

DSP
memosp RWr ---

64

He mem wi WRead

82.

memo

829

500
TCRead
e

memtc

Arbitration
20 Control

25 CPEad men op

7

823
7 PWrite mempe 82

15

PRd Wr
e-e mempi memextct

US 8,098.255 B2
Page 2

4,586,038
4,600.919
4,615,013
4,625,289
4,653,012
4,658,247
4,692,880
4,695,943
4,710,876
4,725,831
4,768,148
4,785,395
4,790,025
4,808.988
4,812.988
4,817, 175
4,829,295
4,829,452
4,833,601
4,855,934
4,862,392
4,866,637
4,888,712
4,897,806
4,901.064
4,907,174
4.914,729
4,918,625
4,935,879
4,945,500
4,965,751
4,974, 176
4,974,177
4,975,977
4,989,138
5,003,496
5,016, 183
5,018,076
5,043,922
5,056,044
5,062,057
5,086,495
5,091967
5,097.427
5,136,664
5,144,291
5,163,126
5,170,468
5,179,638
5,204,944
5,224.208
5,239,624
5,241,658
5.255.353
5,268,995
5,268,996
5,278,948
5,307.450
5,315,692
5,345,541
5,353,424
5,357,579
5,361,386
5,363.475
5,377,313
5,392,385
5,392,393
5,394,516
5,402,532
5,404445
5,408,650
5,412,796
5,415,549
5,416,606
5,421,028
5,422,997
5.432,895
5.432,900

U.S. PATENT DOCUMENTS

4, 1986
T. 1986
9, 1986

11, 1986
3, 1987
4, 1987
9, 1987
9, 1987

12, 1987
2, 1988
8, 1988

11, 1988
12, 1988
2, 1989
3, 1989
3, 1989
5, 1989
5, 1989
5, 1989
8, 1989
8, 1989
9, 1989

12, 1989
1, 1990
2, 1990
3, 1990
4, 1990
4, 1990
6, 1990
7, 1990

10, 1990
11, 1990
11, 1990
12, 1990
1, 1991
3, 1991
5, 1991
5, 1991
8, 1991

10, 1991
10, 1991
2, 1992
2, 1992
3, 1992
8, 1992
9, 1992

11, 1992
12, 1992
1, 1993
4, 1993
6, 1993
8, 1993
8, 1993

10, 1993
12, 1993
12, 1993
1, 1994
4, 1994
5, 1994
9, 1994

10, 1994
10, 1994
11, 1994
11, 1994
12, 1994
2, 1995
2, 1995
2, 1995
3, 1995
4, 1995
4, 1995
5, 1995
5, 1995
5, 1995
5, 1995
6, 1995
7, 1995
7, 1995

Sims et al.
Stern
Yan et al.
Rockwood
Duffy et al.
Gharachorloo
Merz et al.
Keeley et al.
Cline et al.
Coleman
Keeley et al.
Keeley
Inoue et al.
Burke et al.
Duthuit et al.
Tenenbaum et al.
Hiroyuki
Kang et al.
Barlow et al.
Robinson
Steiner
Gonzalez-Lopez et al.
Barkans et al.
Cook et al.
Deering
Priem
Omori et al.
Yan
Ueda
Deering
Thayer et al.
Buchner et al.
Nishiguchi
Kurosu et al.
Radochonski
Hunt, Jr. et al.
Shyong
Johary et al.
Matsumoto
Frederickson et al.
Blacken et al.
Gray et al.
Ohsawa
Lathrop et al.
Bersacket al.
Nishizawa
Einkaufetal.
Shah et al.
Dawson et al.
Wolberg et al.
Miller, Jr. et al.
Cook et al.
Masterson et al.
Itoh
Diefendorff et al.
Steiner et al.
Luken, Jr.
GroSSSman
Hansen et al.
Kelley et al.
Partoviet al.
Buchner et al.
Watkins et al.
Baker et al.
Scheibl
Evangelisti et al.
Deering
Winser
Epstein et al.
Matsumoto
Arsenault
Olive
Logg
Katayama et al.
Swanson
Nagashima
Myers
Rhodes et al.

5.438,663
5.448,689
5.457.775
5,461,712
5,467,438
5,467.459
5,469,535
5,473,736
5,475,803
5.487,146
5.490,240
5,495,563
5,504,499
5,504,917
5,506,604
5,535,374
5,543,824
5,544,292
5,548,709
5,553,228
5,557,712
5,559,954
5,561,746
5,561,752
5,563,989
5,566,285
5,569,935
5,573.402
5,579,456
5,586,234
5,593,350
5,594,854
5,600,763
5,606,650
5,607,157
5,608424
5,608,864
5,616,031
5,621,867
5,628,686
5,638,535
5,644,364
5,649,082
5,650,955
5,651,104
5,657,045
5,657.443
5,657.478
5,659,671
5,659,673
5,659,715
5,661,311
5,664,162
5,666.439
5,666.494
5,678,037
5,682,522
5,684.941
5,687,304
5,687,357
5,691,746
5,694, 143
5,696,892
5,701,444
5,703,806
5,706,481
5,706,482
5,714.981
5,721,947
5,724,561
5,726,689
5,726,947
5,727, 192
5,734,386
5,739,819
5,740,343
5,740,383
5,740,406
5,742,749

8, 1995
9, 1995

10, 1995
10, 1995
11, 1995
11, 1995
11, 1995
12, 1995
12, 1995
1, 1996
2, 1996
2, 1996
4, 1996
4, 1996
4, 1996
T/1996
8, 1996
8, 1996
8, 1996
9, 1996
9, 1996
9, 1996

10, 1996
10, 1996
10, 1996
10, 1996
10, 1996
11, 1996
11, 1996
12, 1996
1/1997
1/1997
2, 1997
2, 1997
3, 1997
3, 1997
3, 1997
4, 1997
4, 1997
5, 1997
6, 1997
7/1997
7/1997
7/1997
7/1997
8, 1997
8, 1997
8, 1997
8, 1997
8, 1997
8, 1997
8, 1997
9, 1997
9, 1997
9, 1997

10, 1997
10, 1997
11/1997
11/1997
11/1997
11/1997
12, 1997
12, 1997
12, 1997
12, 1997
1, 1998
1, 1998
2, 1998
2, 1998
3, 1998
3, 1998
3, 1998
3, 1998
3, 1998
4, 1998
4, 1998
4, 1998
4, 1998
4, 1998

Matsumoto et al.
Matsuo et al.
Johnson, Jr. et al.
Chelstowski et al.
Nishio et al.
Alexander et al.
Jarvis et al.
Young
Stearns et al.
Guttaget al.
Foran et al.
Winser
Horie et al.
Austin
Nally et al.
Olive
Priem et al.
Winser
Hannah et al.
Erb et al.
Guay
Sakoda et al.
Murata et al.
Jevans
Billyard
Okada
Takemura et al.
Gray
Cosman
Sakuraba et al.
Bouton et al.
Baldwin et al.
Greene et al.
Kelley et al.
Nagashima
Takahashi et al.
Bindlish et al.
Logg
Murata et al.
Svancarek et al.
Rosenthal et al.
Kurtze et al.
Burns
Puar et al.
Cosman
Katsura et al.
Krech, Jr.
Recker et al.
Tannenbaum et al.
Nonoshita
Wu et al.
Takemura et al.
Dye
Ishida et al.
Mote, Jr.
Osugi et al.
Huang et al.
Dye
Kiss
Priem
Shyu
Fielder et al.
Redmann et al.
Baldwin
Puar et al.
Hannah et al.
Matsushima et al.
Scott-Jackson et al.
Priem et al.
Tarolli et al.
Negishi et al.
Yamazaki et al.
Baldwin
Cosman
Bar-Nahum
Tarolli et al.
Nally et al.
Rosenthal et al.
Foran et al.

US 8,098.255 B2
Page 3

5,742,788 A 4, 1998 Priem et al. 5,894,300 A 4/1999 Takizawa
5,745,118 A 4, 1998 Alcornet al. 5,900,881 A 5, 1999 Ikedo
5,745,125 A 4/1998 Deering et al. 5,903,283 A 5/1999 Selwan et al.
5,748,199 A 5, 1998 Palm 5,909,218 A 6/1999 Naka et al.
5,748,986 A 5, 1998 Butterfield et al. 5,909,225 A 6/1999 Schinnerer et al.
5,751,291 A 5, 1998 Olsen et al. 5,912,675 A 6/1999 Laperriere
5,751.292 A 5, 1998 Emmot 5,912,676 A 6/1999 Malladi et al.
5,751,295 A 5, 1998 Becklund et al. 5,914,721 A 6, 1999 Lim
5,751,930 A 5, 1998 Katsura et al. 5,914,725 A 6/1999 Mcinnnis et al.
5,754,191 A 5, 1998 Mills et al. 5,914,729 A 6/1999 Lippincott
5,757,382 A 5, 1998 Lee 5,917,496 A 6/1999 Fujita et al.
5,758,182 A 5, 1998 Rosenthal et al. 5,920,326 A 7/1999 Rentschler et al.
5,760,783 A 6/1998 Migdal et al. 5,920,876 A 7/1999 Ungaret al.
5,764,228 A 6, 1998 Baldwin 5,923,332 A 7, 1999 Izawa
5,764,237 A 6, 1998 Kaneko 5,923,334 A 7/1999 Luken
5,767.856 A 6, 1998 Peterson et al. 5,926, 182 A 7/1999 Menon et al.
5,767,858 A 6, 1998 Kawase et al. 5,926,647 A 7/1999 Adams et al.
5,768,626 A 6, 1998 Munson et al. 5,933,150 A 8/1999 Ngo et al.
5,768,629 A 6, 1998 Wise et al. 5,933,154 A 8, 1999 Howard et al.
5,774,133 A 6, 1998 Neave et al. 5,933,155 A 8/1999 Akeley
5,777,623 A 7, 1998 Small 5,933,529 A 8, 1999 Kim
5,777,629 A 7, 1998 Baldwin 5,936,641 A 8, 1999 Jain et al.
5,781,927 A 7, 1998 Wu et al. 5,936,683 A 8, 1999 Lin
5,791,994. A 8, 1998 Hirano et al. 5,940,086 A 8, 1999 Rentschler et al.
5,798,770 A 8, 1998 Baldwin 5,940,089 A 8/1999 Dilliplane
5,801,706 A 9/1998 Fujita et al. 5,940,538 A 8/1999 Spiegel et al.
5,801,711 A 9, 1998 KOSS et al. 5,943,058 A 8/1999 Nagy
5,801,716 A 9, 1998 Silverbrook 5,943,060 A 8, 1999 Cosman et al.
5,801,720 A 9, 1998 Norrod et al. 5,945,997 A 8, 1999 Zhao et al.
5,805,175 A 9, 1998 Priem 5,949,421 A 9/1999 Ogletree et al.
5,805,868 A 9/1998 Murphy 5,949,423. A 9, 1999 Olsen
5,808,619 A 9, 1998 Choi et al. 5,949,428 A 9, 1999 Toelle et al.
5,808,630 A 9, 1998 Pannell 5,949,440 A 9/1999 Krech, Jr. et al.
5,809,219 A 9, 1998 Pearce et al. 5,956,042 A 9, 1999 Tucker et al.
5,809,278 A 9, 1998 Watanabe et al. 5,956,043 A 9, 1999 Jensen
5,815,165 A 9, 1998 Blixt 5,958,020 A 9/1999 Evoy et al.
5,815,166 A 9, 1998 Baldwin 5,959,640 A 9, 1999 Rudin et al.
5,818,456 A 10, 1998 Cosman et al. 5,963,220 A 10, 1999 Lee et al.
5,819,017 A 10/1998 Akeley et al. 5,966,134 A 10, 1999 Arias
5,821,940 A 10/1998 Morgan et al. 5,969,726 A 10, 1999 Rentschler et al.
5,821,949 A 10/1998 Deering 5,977,979 A 1 1/1999 Clough et al.
5,822,516 A 10/1998 Krech, Jr. 5,977,984. A 11, 1999 Omori
5,828,382 A 10, 1998 Wilde 5,982,376 A 11/1999 Abe et al.
5,828,383 A 10/1998 May et al. 5,982,390 A 1 1/1999 Stoneking et al.
5,828.416 A 10/1998 Ryan 348,512 5,986.286 A 11/1999 Yamazaki et al.
5,828,907 A 10, 1998 Wise et al. 5,986,659 A 1 1/1999 Gallery et al.
5,831,624 A 11/1998 Tarolli et al. 5,986,663 A 11, 1999 Wilde
5,831,625 A 11/1998 Rich et al. 5,986,677 A 11/1999 Jones et al.
5,831,640 A 1 1/1998 Wang et al. 5,987,567 A 11/1999 Rivard et al.
5,835,096 A 11/1998 Baldwin 5.990,903. A 11/1999 Donovan
5,835,792 A 11/1998 Wise et al. 5,995, 120 A 11/1999 Dye
5,838,334 A 11/1998 Dye 5,995,121 A 11/1999 Alcokrn et al.
5,844,576 A 12/1998 Wilde et al. 5.999,189 A 12/1999 Kajiya et al.
5,850,229 A 12/1998 Edelsbrunner et al. 5.999,196 A 12/1999 Storm et al.
5,852.451 A 12/1998 Cox et al. 5.999, 198 A 12/1999 Horan et al.
5,856,829 A 1/1999 Gray, III et al. 6,002,407 A 12/1999 Fadden
5,859,645 A 1/1999 Latham 6,002,410 A 12, 1999 Battle
5,861,888 A 1/1999 Dempsey 6,005,582 A 12/1999 Gabriel et al.
5,861,893 A 1/1999 Strugess 6,005,583 A 12/1999 Morrison
5,867,166 A 2/1999 Myhrvold et al. 6,005,584 A 12/1999 Kitamura et al.
5,870,097 A 2/1999 Snyder et al. 6,007,428 A 12/1999 Nishiumi et al.
5,870,098 A 2f1999 Gardiner 6,008,820 A 12/1999 Chauvin
5,870,102 A 2f1999 Tarolli et al. 6,010,924 A 1/2000 Takemura et al.
5,870,109 A 2f1999 McCormacket al. 6,011,562 A 1/2000 Gagne et al.
5,870,587 A 2f1999 Danforth et al. 6,011,565 A 1/2000 Kuo et al.
5,872,902 A 2f1999 Kuchkuda et al. 6,014, 144 A 1/2000 Nelson et al.
5,874,969 A 2f1999 Storm et al. 6,016, 150 A 1/2000 Lengyel et al.
5,877,741 A 3, 1999 Chee et al. 6,016,151 A 1/2000 Lin
5,877,770 A 3, 1999 Hanaoka 6,018,350 A 1/2000 Lee et al.
5,877,771 A 3, 1999 Drebinet al. 6,020,931 A 2/2000 Bilbrey et al.
5,880,736 A 3/1999 Peercy et al. 6,021,417 A 2/2000 Massarksy
5,880,737 A 3, 1999 Griffen et al. 6,022,274 A 2/2000 Takeda et al.
5,883,638 A 3, 1999 Rouet et al. 6,023,261 A 2/2000 Ugajin
5,886,701 A 3, 1999 Chauvin et al. 6,023,738 A 2/2000 Priem et al.
5,886,705 A 3, 1999 Lentz 6,025,853. A 2/2000 Baldwin
5,887,155 A 3/1999 Laidig 6,026,182 A 2/2000 Lee et al.
5,890, 190 A 3, 1999 Rutman 6,028,608 A 2/2000 Jenkins
5,892,517 A 4, 1999 Rich 6,028,611 A 2/2000 Anderson et al.
5,892,974 A 4/1999 Koizumi et al. 6,031,542 A 2/2000 Wittig

US 8,098.255 B2
Page 4

6,035,360 A 3/2000 Doidge et al. 6,215,497 B1 4/2001 Leung
6,037,948 A 3/2000 Liepa 6,226,012 B1 5, 2001 Priem et al.
6,037,949 A 3, 2000 DeRose et al. 6,226,713 B1 5, 2001 Mehrotra
6,038,031 A 3/2000 Murphy 6,232,981 B1 5, 2001 Gossett
6,038,348 A 3/2000 Carley 6,236,413 B1 5, 2001 Gossett et al.
6,040,843 A 3, 2000 Monroe et al. 6,239,810 B1 5, 2001 Van Hook et al.
6,040,844 A 3/2000 Yamaguchi et al. 6,252,608 B1 6/2001 Snyder et al.
6,041,010 A 3, 2000 Puar et al. 6,252,610 B1 6/2001 Hussain
6,043,804 A 3, 2000 Greene 6,264,558 B1 7/2001 Nishiumi et al.
6,043,821 A 3/2000 Sprague et al. 6,268,861 B1 7/2001 Sanz-Pastor et al.
6,046,746 A 4/2000 Deering 6,275,235 B1 8/2001 Morgan, III
6,046,747 A 4/2000 Saunders et al. 6,285,779 B1 9/2001 Lapidous et al.
6,046,752 A 4/2000 Kirkland et al. 6,292,194 B1 9/2001 Powll, III
6,049,337 A 4/2000 Van Overveld 6,329,997 B1 12/2001 Wu et al.
6,049,338 A 4/2000 Anderson et al. 6,330,647 B1 * 12/2001 Jeddeloh et al. T11 158
6,052,125 A 4/2000 Gardiner et al. 6,331,856 B1 12/2001 Van Hook et al.
6,052,126 A 4/2000 Sakuraba et al. 6,339,428 B1 1/2002 Fowler et al.
6,052,127 A 4/2000 Vaswani et al. 6,342,892 B1 1/2002 Van Hook et al.
6,052,129 A 4/2000 Fowler et al. 6,348,368 B1 2/2002 Yamazaki et al.
6,052,133 A 4/2000 Kang 6,353,438 B1 3/2002 Van Hook
6,054,993 A 4/2000 Devic et al. 6,356,497 B1 3/2002 Puar et al.
6,054,999 A 4/2000 Strandberg 6,408,362 B1 6/2002 Arimilli et al.
6,057,847. A 5, 2000 Jenkins 6,417,858 B1 7/2002 Bosch et al.
6,057,849 A 5, 2000 Haubner et al. 6.426,747 B1 7/2002 Hoppe et al.
6,057,851 A 5, 2000 Luken et al. 6,437,781 B1 8, 2002 Tucker et al.
6,057,852 A 5/2000 Krech, Jr. 6,452,600 B1 9, 2002 Parikh et al.
6,057,859 A 5/2000 Handelman et al. 6.459,429 B1 10/2002 Deering
6,057,861 A 5, 2000 Lee et al. 6,466.223 B1 10/2002 Dorbie et al.
6,057,862 A 5/2000 Margulis 6,469,707 B1 10/2002 Voorhies
6,057,863. A 5/2000 Olarig 6,476,808 B1 11/2002 Kuo et al.
6,061.462 A 5, 2000 ToStevin et al. 6,476,822 B1 11/2002 Burbank
6,064,392 A 5, 2000 Rohner 6,496,187 B1 12/2002 Deering et al.
6,067,098 A 5/2000 Dye 6,501.479 B1 12/2002 Root et al.
6,070,204 A 5, 2000 Poisner 6,564,304 B1 5/2003 Van Hook et al.
6,072,496 A 6, 2000 Guenter et al. 6,580,430 B1 6/2003 Hollis et al.
6,075,543 A 6/2000 Akeley 6,606,689 B1 8/2003 Cheng et al.
6,075,546 A 6/2000 Hussain et al. 6,609,977 B1 8/2003 Shimizu et al.
6,078,311 A 6/2000 Pelkey 6,618,048 B1 9, 2003 Leather
6,078.333 A 6/2000 Wittig et al. 6,636.214 B1 10/2003 Leather et al.
6,078.334 A 6/2000 Hanaoka et al. 6,639,595 B1 10/2003 Drebin et al.
6,078.338 A 6, 2000 Horan et al. 6,664,958 B1 12/2003 Leather et al.
6,081,274 A 6, 2000 Shiraishi 6,664,962 B1 12/2003 Komsthoeft et al.
6,088,035 A 7/2000 Sudarsky et al. 6,700,586 B1 3/2004 Demers
6,088,042 A 7/2000 Handelman et al. 6,707.458 B1 3/2004 Leather et al.
6,088.487 A 7/2000 Kurashige 6,717,577 B1 4/2004 Cheng et al.
6,088,701 A 7/2000 Whaley et al. 6,811489 B1 11/2004 Shimizu et al.
6,091,431 A 7/2000 Saxena et al. 6.825,072 B2 11/2004 Yamazaki et al.
6,092,124. A 7/2000 Priem et al. 6,825,851 B1 11/2004 Leather
6,092,158 A * 7/2000 Harriman et al. T11 151 6,867,781 B1 3/2005 Van Hook et al.
6,094,200 A 7/2000 Olsen et al. 6,937,245 B1 8, 2005 Van Hook et al.
6,097.435 A 8/2000 Stanger et al. 6,980,218 B1 12/2005 Demers et al.
6,097.437 A 8/2000 Hwang 6,999,100 B1 2/2006 Leather et al.
6,104,415. A 8, 2000 Gossett 7,002,591 B1 2/2006 Leather et al.
6,104,417 A 8, 2000 Nielsen et al. 7,034,828 B1 4/2006 Drebinet al.
6,105,094. A 8/2000 Lindeman 7,061502 B1 6/2006 Law et al.
6,108,743 A 8/2000 Debs et al. 7,119,813 B1 10/2006 Hollis et al.
6,111,582 A 8, 2000 Jenkins 7,184,059 B1 2/2007 Fouladiet al.
6,111,584. A 8/2000 Murphy 7,196,710 B1 3/2007 Fouladiet al.
6,115,047 A 9/2000 Deering
6,115,049 A 9, 2000 Winner et al. FOREIGN PATENT DOCUMENTS
6,118,462 A 9/2000 Margulis
6,128,026 A 10/2000 Brothers, III EP 1 O74945 2, 2001

EP 1 O75 146 2, 2001 6,144,365. A 11/2000 Young et al. EP 1 081 649 3, 2001
6,144,387 A 11/2000 Liu et al. JP 07-066424 3, 1995
6,151,602 A 1 1/2000 Helsberg et al. f
6,154,600 A * 1 1/2000 Newman et al. 386/4 P 08-022954 E.
6,155,926. A 12/2000 Miyamoto et al. JP 08-204206 8, 1996

JP 9-330230 12/1997
6,157,387 A 12/2000 Kotani JP 11-05.358O 2, 1999
6,166,748 A 12/2000 Van Hook et al.

JP 11-076614 3, 1999
6,172,678 B1 1/2001 Shiraishi JP 11-161819 6, 1999
6,173,367 B1 1/2001 Aleksic et al. JP iii.58s 7, 1999
6,177,944 B1 1/2001 Fowler et al. JP 11-203500 7, 1999
6,181,352 B1 1/2001 Kirk et al. JP 11-226257 8, 1999
6, 191,794 B1 2/2001 Priem et al. JP 11-259671 9, 1999
6, 198488 B1 3, 2001 Lindholm et al. JP 11-259678 9, 1999
6,200,253 B1 3, 2001 Nishiumi et al. JP 2000-66985 3, 2000
6,202,101 B1* 3/2001 Chin et al. 710.5 JP 2000-923.90 3, 2000
6,204,851 B1 3, 2001 Netschke et al. JP 2000-132704 5, 2000
6,215,496 B1 4/2001 SZeliski et al. JP 2000-1327O6 5, 2000

US 8,098.255 B2
Page 5

JP 2000-149053 5, 2000
JP 2000-1568.75 6, 2000
JP 2000-182O77 6, 2000
JP 2000-207582 T 2000
JP 2000-2153.25 8, 2000
WO 93,04429 3, 1993
WO 94/10641 5, 1994

OTHER PUBLICATIONS

10.2 Alpha Blending. http://www.sgi.com/software/openglad
vanced98/notes/node 146.html.
10.3 Sorting, http://www.sgi.com/software/openg Vadvanced 98/
notes/node 147.html.
10.4. Using the Alpha Function. http://www.sgi.com/software/
opengl/advanced 98/notes/node 148.html.
2D/3D Graphics Card User Manual, Guillemot, Copyright 1999.
A Microprocessor With a 128b CPU, 10 Floating-Point MACs, 4
Floating-Point Dividers, and an MPEG2 Decoder, 1999 IEEE Inter
national Solid-State Circuits Conference, Feb. 16, 1999.
Akeley, Kurt, “Reality Engine Graphics”, 1993, Silicon Graphics
Computer Systems, pp. 109-116.
Alpha (transparency) Effects, Future Technology Research Index,
http://www.futuretech. Vuurwerk.nl/alpha.html.
AM News: Japanese Developers Not All Sold on PS2. Next Genera
tion, Mar. 16, 1999.
Arkin, Alan, email, subject: “Texture distortion problem.” from web
site: HTTP://reality.sgi.com (Jul 1997).
ATI Radeon 64 Meg DDR OEM, Aug. 19, 2000, www.hexus.net.
Blinn, James F. “Simulationof Wrinkled Surfaces.” Caltech/JPL, pp.
286-292, SIGGRAPH 78 (1978).
Blythe, David, 5.6 Transparency Mapping and Trimming with Alpha,
http://toolbox.sgi.com/Taste0fDT/d... penGL/advanced98/notes/
node41.html, Jun. 11, 1998.
Bushnell, et al. "Advanced Multitexture Effects With Direct3D and
OpenGL. Pyramid Peak Design & ATI Research, Inc.,
GameDevelopers Conference, COPYRGT, 1999.
Cambridge Animo—Scene III, info sheet, Cambridge Animation
Systems, 2 pages, http://www.cam-ani.co.uk/casweb/products soft
ware/SceneII.htm.
"Cartoon Shading. Using Shading Mapping.' 1 page, http://www.
goat.com/alias/shaders.html#toonshad.
Charla, Chris, “PlayStation II: The Latest News'. Next Generation,
Sep. 1999.
Computer Graphics World, Dec. 1997.
Cook, Robert L., “Shade Trees”. Computer Graphics, vol. 18, No. 3,
Jul. 1984.
Datasheet, SGS-Thomson Microelectronics, nVIDIATM RIVA
128TM 128-Bit 3D Multimedia Accelerator (Oct. 1997).
Debevec, Paul, et al., “EfficientView-Dependent Image-Based Ren
dering with Projective Texture-Mapping.”University of California at
Berkeley.
Decaudin, Philippe, "Cartoon-Looking Rendering of 3D Scenes.”
Syntim Project Inria, 6 pages, http://www-syntim.inria.fr/syntim?
recherchef decaudin/cartoon-eng.html.
“Developer Relations, ATI Summer 2000 Developer Newsletter.”
from ATI.com web site, 5 pages (Summer 2000).
“Developer's Lair, Multitexturing with the ATI Rage Pro.” (7 pages)
from ati.com web site (2000).
“DexDrive Bridges Gap', The Tampa Tribune, Mar. 12, 1999.
Digimation Inc., “The Incredible Comicshop.” info sheet, 2 pages,
http://www.digimation.com/asp/product?.asp?product id=33.
DirectX 7.0 Programmer's Reference, Microsoft Corporation, 1995
1999 (as part of the DirectX 7.0 SDK on the Companion CD included
with "Inside Direct3D, Microsoft Programming Series, Peter J.
Kovach, Microsft Press, 1999).
Dreamcast Instruction Manual, Sega Enterprises, Ltd., COPYRGT.
1998.
“Dreamcast: The Full Story'. Next Generation, Sep. 1998.
Duke, “Dreamcast Technical Specs”. Sega Dreamcast Review, Sega,
Feb. 1999, www.game-revolution.com.
Easley, Joel, “PlayStation II Revealed”. Game Week, Sep. 29, 1999.
Efficient Command/Data Interface Protocol for Graphics, IBMTDB,
vol. 36, issue 9A, Sep. 1, 1993, pp. 307-312.

Elber, Gershon, “Line Art Illustrations of Parametric and Implicit
Forms.” IEEE Transactions on Visualization and Computer Graphics,
vol. 4, No. 1, Jan.-Mar. 1998.
Feth, Bill, “Non-Photorealistic Rendering.” wif3(a)cornell.edu,
CS490—Bruce Land, 5 pages (Spring 1998).
“First PlayStation II Gameplay Screens Revealed.” Next Genera
tion, Sep. 1999.
Foley, van Dam, Fiener, Hughes, Addison Wesley, “Computer Graph
ics, Principles and Practice.” Second Edition, The Systems Program
ming Series, 1990.
Game Enthusiast Online Highlights, Mar. 17, 1999.
Game Enthusiast Online Highlights, Mar. 18, 1999.
Game Enthusiast Online Highlights, Mar. 19, 1999.
Game Enthusiast Online Highlights, Oct. 20, 1999.
GDC 2000: Advanced OpenGL Game Development, “A Practical
and Robust Bump-mapping Technique for Today's GPUs.” by Mark
Kilgard, Jul. 5, 2000, www.nvidia.com.
Gibson, Simon, et al., “Interactive Rendering with Real-World Illu
mination.” Rendering Techniques 2000; 11th Eurographics Work
shop on Rendering. pp. 365-376 (Jun. 2000).
Gustavo Oliveira, "Refractive Texture Mappig, Part One', www.
gamasutra.com, Nov. 10, 2000.
Hachigian, Jennifer, “Super Cel Shader 1.00 Tips and Tricks,” 2
pages, wysiwyg://thepage. 13/http://members.Xoom.com/. Sub
XMCM..jarvia/3D/celsha- de.html.
Haeberli, Paul et al., “Texture Mapping as a Fundamental Drawing
Primitive.” Proceedings of the Fourth Eurographics Workshop on
Rendering, 11 pages, Paris, France (Jun. 1993).
“Hardware Technology.” from ATI.com web site, 8 pages (2000).
Hart, Evan et al., “Graphics by rage.” Game Developers Conference
2000, from ATI.com web site (2000).
Hart, Evan et al., “Vertex Shading with Direct3D and OpenGL.”
Game Developers Conference 2001, from ATI.com web site (2001).
Heidrich et al., “Applications of Pixel Textures in Visualization and
Realistic Image Synthesis.” Proceedings 1999 Symposium on Inter
active 3D Graphics, pp. 127-134 (Apr. 1999).
Hook, Brian, “An Incomplete Guide to Programming DirectlDraw
and Direct3D Immediate Mode (Release 0.46).” printed from web
site: www.wkSoftware.com, 42 pages.
Hoppe, Hugues, "Optimization of Mesh Locality for Transparent
Vertex Caching.” Proceedings of SIGGRAPH, pp. 269-276 (Aug.
8-13, 1999).
Hourcade et al., “Algorithms for Antialiased Cast Shadows”. Com
puters and Graphics, vol. 9, No. 3, pp. 259-265 (1985).
“HOWTO: AnimateTextures in Direct3D Immediate Mode.” printed
from web site Support, microsoft.com, 3 pages (last reviewed Dec. 15,
2000).
INFO: Rendering a Triangle Using an Execute Buffer, printed from
web site Support.microsoft.com, 6 pages (last reviewed Oct. 20.
2000).
Inside Sony's Next Generation PlayStation, COPYRGT, 1999.
Introducing The Next Generation PlayStation, Sony Computer
Entertainment Inc., COPYRGT. 1999.
Johnston, Chris, “PlayStation Part Deux”, Press Start, COPYRGT.
1999.
Kovach, Peter J., “Inside Direct3D, Microsoft Programming Series,
Microsoft Press, 1999.
Kovach, Peter J., INSIDE DIRECT3D, “Alpha Testing.” pp. 289-291
(1999).
Leadtek GTS, Aug. 3, 2000, www.hexus.net.
MacWeek.Com Gets Inside Story on Connectix VGS for Windows;
Controversial Emulator of Sony PlayStation Games Cureently Avail
able for Macs Only, Business Wire, Mar. 12, 1999.
Markosian, Lee et al., “Real-Time Nonphotorealistic Rendering.”
Brown University site of the NSF Science and Technology Center for
Computer Graphics and Scientific Visualization, Providence, RI, 5
pages (undated).
Marlin Rowley, “GeForce 1 & 2 GPU Speed Tests”, May 11, 2000,
www.g256.com.
McCool, Michael, "Shadow Volume Reconstruction from Depth
Maps'. ACM Transactions on Graphics, vol. 19, No. 1, Jan. 2000, pp.
1-26.

US 8,098.255 B2
Page 6

Microsoft Xbox The Future of Gaming, Microsoft Xbox Perfor
mance Sheet, www.xbox.com.
Mitchell et al., “Multitexturing in DirectX6', Game Developer, Sep.
1998, www.gdmag.com.
Moller, Tomas et al., “Real-Time Rendering.” pp. 179-183 (AK
Peters Ltd., 1999).
Mulligan, Vikram, “Toon, info sheet, 2 pages,
digitalcarversguild.com/products/toon/toon...thml.
Nelson, Randy, “Dreamcast 101: Everything You Ever Wanted to
Know About Sega's Powerful New Console”. Official Sega
Dreamcast Magazine, Jun. 1999.
Nieder, Jackie, David, Tom, Woo, Mason, “OpenGL Programming
Guide, The Official Guide to Learning OpenGL, Release 1.” Addi
sion-Wesley Publishing Co., 1993.
Nikkei Shimbun, “Sony Making SME, Chemical and SPT into
Wholly-Owned Subsidiaries', Mar. 9, 1999.
Nintendo 64 Instruction Booklet, Nintendo of America, 1998.
NVIDIA Product Overview, “GeForce2Ultra”, NVIDIA Corpora
tion, Aug. 21, 2000, www.nvidia.com.
NVIDIA.com, technical presentation, "Advanced Pixel Shader
Details” (Nov. 10, 2000).
NVIDIA.com, technical presentation, “AGDC Per-Pixel Shading”
(Nov. 15, 2000).
NVIDIA.com, technical presentation, Introduction to DX8 Pixel
Shaders (Nov. 10, 2000).
“OpenGL Projected Textures.” from web site:HTTP:/I reality.sgi.
com, 5 pages.
O'Rourke, Michael, “Principles of Three-Dimensional Computer
Animation”, Revised Edition, W.W. Norton & Company, 1998.
Peercy et al., “Efficient Bump Mapping Hardware'. Computer
Graphics Proceedings, Annual Conference Series, 1997.
Pescovitz, David, “Dream on'. Wired, Aug. 1999.
Photograph of Nintendo 64 System.
Photograph of Sega Dreamcast System.
Photograph of Sony PlayStation II System.
PlayStation II: Hardware Heaven or Hell?, Next Generation, Jan.
2000.
Press Releases, "ATI's RADEON family of products delivers the
most comprehensive Support for the advance graphics features of
DirectX 8.0.” Canada, from ATI.com web site, 2 pages (Nov. 9.
2000).
Press Releases, Mar. 18, 1999.
Product Presentation, “RIVA128TMLeadership 3D Acceleration.” 2
pageS.
Raskar, Ramesh et al., “Image Precision Silhouette Edges.” Sympo
sium on Interactive 3D Graphics1999, Atlanta, 7 pages (Apr. 26-29,
1999).
Render Man Artist Tools. Using Arbitrary Output Variables in
Photorealistic Renderman (With Applications), PhotoRealistic
Renderman Application Note #24, 8 pages, Jun. 1998, http://www.
pixar.com/products/renderman? toolkit/Toolkit AppNotestappnote.
24.html.
“Renderman Artist Tools, PhotoRealistic RenderMan Tutorial.”
Pixar (Jan. 1996).
RenderMan Artist Tools, PhotoRealistic RenderMan 3.8 User's
Manual, Pixar (Aug. 1998).
Reynolds, Craig, “Stylized Depiction in Computer Graphics, Non
Photorealistic, Painterly and Toon Rendering” an annotated Survey
of online resources, 13 pages, last update May 30, 2000, http://www.
red.com/cwr/painterly.html.
Rogers, David F., “Procedural Elements for Computer Graphics.”
Second Edition, McGraw Hill, 1998.
Schlag, John, Fast Embossing Effects on Raster Image Data, Graph
ics Gems IV, Edited by Paul S. Heckbert, Computer Science Depart
ment, Carnegie Mellon University, Academic Press, Inc., 1994, pp.
433-437.
Schlechtweg, Stefan et al., “Emphasising in Line-drawings.” Norsk
samarbeid innen grafisk databehandling: NORSIGD Info,
medlemsblad for NORSIGD, Nr 1/95, pp. 9-10.
Schlechtweg, Stefan et al., Rendering Line-Drawings with Limited
Resources, Proceedings of GRAPHICON '96, 6th International Con
ference and Exhibition on Computer Graphics and Visualization in
Russia, (St. Petersburg, Jul. 1-5, 1996) vol. 2, pp. 131-137.

http://

Search Results for: skinning, from ATI.com web site, 5 pages (May
24, 2001).
"Sega to Launch Video Camera for Dreamcast'. Reuters Business
News, Feb. 16, 2000.
Segal, Mark, et al., “Fast Shadows and Lighting Effects Using Tex
ture Mapping.” Computer Graphics, 26, 2, pp. 249-252 (Jul. 1992).
Shade, Jonathan et al., “Layered Depth Images. Computer Graphics
Proceedings, Annnual Conference Series, pp. 231-242 (1998).
Shaders, Toony, "Dang I'm tired of photorealism.” 4 pages, http://
www.visi.com/-mcdonald?toony.html.
Sheff, David, “Sony Smackage: Test Driving the PlayStation II”,
Wired, Nov. 1999.
Singh, Karan et al., "Skinning Characters using Surface-Oriented
Free-Form Deformations.” Toronto Canada.
"Skeletal Animation and Skinning.” from ATI.com web site, 2 pages
(Summer 2000).
Slide Presentation, Sébastien Dominé, “nVIDIA Mesh Skinning,
OpenGl”.
Softimage/3D Full Support, “Toon Assistant.” 1998 Avid Technol
ogy, Inc., 1 page, http://www.Softimage.com/3dsupport/techn...
uments, 3.8/features3.8/rel notes. 56.html.
Sony PlayStation II Instruction Manual, Sony Computer Entertain
ment Inc., COPYRGT. 2000.
Sony to Turn PlayStation Maker Into Wholly Owned Unit-Nikkei,
Dow Jones News Service, Mar. 8, 1999.
Stand and Be Judged. Next Generation, May 2000.
Steven Levy, “Here Comes PlayStation II”, Newsweek, Mar. 6, 2000.
Technical Brief Transformand Lighting, Nov. 10, 1999, www.nvidi
aCO.

Technical Brief: What's New With Microsoft DirectX7, posted Nov.
10, 1999, www.nvidia.com.
Technical Presentation: Computations for Hardware Lighting and
Shading, Mar. 17, 2000, www.nvidia.com.
Technical Presentation: D3D 7 Vertex Lighting, Mar. 15, 2000, www.
nvidia.com.
Technical Presentation: DirectX 7 and Texture Management, Nov.
12, 1999 www.nvidia.com.
Technical Presentation: Dot Product Lighting, Nov. 12, 1999, www.
nvidia.com.
Technical Presentation: Emboss Bump Mapping, Nov. 3, 1999,
www.nvidia.com.
Technical Presentation: GeForce 256 and RIVA TNT Combiners,
Dec. 8, 1999, www.nvidia.com.
Technical Presentation: GeForce 256 Overview, Nov. 12, 1999,
www.nvidia.com.
Technical Presentation: GeForce 256 Register Combiners, Mar. 17.
2000, www.nvidia.com.
Technical Presentation: Guard Band Clipping, Nov. 3, 1999, www.
nvidia.com.
Technical Presentation: Hardware Accelerated Anisotropic Lighting,
Nov. 3, 1999 www.nvidia.com.
Technical Presentation: Hardware Bump-mapping Choices and Con
cepts, Jun. 7, 2000, www.nvidia.com.
Technical Presentation: Hardware Transform and Lighting, Nov. 12,
1999, www.nvidia.com.
Technical Presentation: Hardware Transform and Lighting, www.
nvidia.com, posted Jun. 12, 2000.
Technical Presentation: How to Bump Map a Skinned Polygonal
Model, Jun. 7, 2000, www.nvidia.com.
Technical Presentation: Multitexture Combiners, Nov. 3, 1999,
www.nvidia.com.
Technical Presentation: Per-Pixel Lighting (by S. Dietrich) Mar. 14.
2000 www.nvidia.com.
Technical Presentation: Phong Shading and Lightmaps, Nov. 3, 1999,
www.nvidia.com.
Technical Presentation: Practical Bump-mapping for Today's GPUs,
Mar. 17, 2000 www.nvidia.com.
Technical Presentation: Shadows, Transparency, & Fog, Mar. 17.
2000 www.nvidia.com.
Technical Presentation: TexGen & the Texture Matrix, Mar. 15, 2000
www.nvidia.com.
Technical Presentation: Texture Coordinate Generation, Nov. 3,
1999, www.nvidia.com.

US 8,098.255 B2
Page 7

Technical Presentation: The ARB.Sub-multitexture Extension,
Nov. 3, 1999 www.nvidia.com.
Technical Presentation: Toon Shading, Mar. 15, 2000, www.nvidia.
CO

Technical Presentation: Vertex Blending, Nov. 12, 1999, www.nvidi
aCO.

Technical Presentation: Vertex Buffers, posted Jun. 12, 2000, www.
nvidia.com.
Technical Presentation: Vertex Cache Optimization, Nov. 12, 1999,
www.nvidia.com.
Technical Presentations: “Texture Space Bump Mapping.” Sim
Dietrich, Nov. 10, 2000, www.nvidia.com.
The RenderMan Interface Version 3.1. (Sep. 1989).
The RenderMan Interface, Stephan R. Keith, Version 3.1, Pixar Ani
mation Studios, Sep. 1989.
The RenderMan Interface, Version 3.2, Pixar Animation Studios, Jul.
2000, www.pixar.com.
Thomas Moller and Eric Haines “Real-Time Rendering”. AK Peters,
Ltd., COPYRGT, 1999, pp. 127-142.
Thompson, Nigel, “Rendering with Immediate Mode.” Microsoft
Interactive Developer Column: Fun and Games, printed from web
site msdn microsoft.com, 8 pages (Mar. 1997).
Thompson, Tom, “Must-See 3-D Engines.” Byte Magazine, printed
from web site www.byte.com, 10 pages (Jun. 1996).
Videum Conference Pro (PCI) Specification, product of Winnov
(Winnov), published Jul. 21, 1999.
VIDI Presenter 3D Repository, "Shaders.” 2 pages, http://www.
webnation.com/vidirep/panels/renderman? shaderstoon.phtml.
VisionTek, “GeForce2 GF Graphics Processing Unit', COPYRGT.
2000 www.visiontek.com.
Voodoo 55500 Review, Jul 26, 2000, www.hexus.net.
Wang et al., “Second-Depth Shadow Mapping”. Department of Com
puter Science, Univ. N.C. Chapel Hill, N.C. pp. 1-7.
Web site information, CartoonReyes, http://www.zentertainment.
com/Zentropy/review/cartoonreyes.html.
Web site information, CartoonReyes, REM Infografica, http://www.
digimotion.co.uk/cartoonreyes.htm.
White paper, Dietrich, Sim, “Cartoon Rendering and Advanced Tex
ture Features of the GeForce 256 Texture Matrix, Projective Textures,
Cube Maps, Texture Coordinate Generation and DOTPRODUCT3
Texture Blending” (Dec. 16, 1999).
White paper, Huddy, Richard, “The Efficient Use of Vertex Buffers.”
(Nov. 1, 2000).
White paper, Kilgard, Mark J., “Improving Shadows and Reflections
via the Stencil Buffer” (Nov. 3, 1999).
White paper, Rogers, Douglas H. "Optimizing Direct3D for the
GeForce 256” (Jan. 3, 2000).
White paper, Spitzer, John, et al., “Using GL NV array range and
GL NV Fence on GEForce Products and Beyond” (Aug. 1, 2000).

Whitepaper: "Z Buffering, Interpolation and More W-Buffering”.
Doug Rogers, Jan. 31, 2000, www.nvidia.com.
Whitepaper: 3D Graphics Demystified, Nov. 11, 1999, www.nvidia.
CO.

Whitepaper: Anisotropic Texture Filtering in OpenGL, posted Jul.
17, 2000, www.nvidia.com.
Whitepaper: Color Key in D3D, posted Jan. 11, 2000, www.nvidia.
CO.

Whitepaper: Cube Environment Mapping, posted Jan. 14, 2000,
www.nvidia.com.
Whitepaper: Dot Product Texture Blending, Dec. 3, 1999, www.
nvidia.com.
Whitepaper: Guard Band Clipping, posted Jan. 31, 2000, www.nvidi
aCO.

Whitepaper: Implementing Fog in Direct3D, Jan. 3, 2000, www.
nvidia.com.
Whitepaper: Mapping Texels to Pixels in D3D, posted Apr. 5, 2000,
www.nvidia.com.
Whitepaper: Optimizing Direct3D for the GeForce 256, Jan. 3, 2000,
www.nvidia.com.
Whitepaper: Technical Brief AGP 4X with Fast Writes, Nov. 10,
1999, www.nvidia.com.
Whitepaper: Using GL. Sub. NV. Sub.- vertex. Sub-array and
GL. Sub. N.V.Sub-fence, posted Aug. 1, 2000, www.nvidia.com.
Whitepaper: Vertex Blending Under DX7 for the GeForce 256, Jan.5,
2000, www.nvidia.com.
Whitepapers: “Texture Addressing.” Sim Dietrich, Jan. 6, 2000,
www.nvidia.com.
Williams, Lance, "Casting Curved Shadows on Curved Surfaces.”
Computer Graphics (SIGGRAPH '78 Proceedings), vol. 12, No. 3,
pp. 270-274 (Aug. 1978).
Winner, Stephanie, et al., “Hardware Accelerated Rendering of
Antialiasing Using a Modified A-buffer Algorithm.” Computer
Graphics Proceedings, Annual Conference Series, 1997, pp. 307
316.
Woo et al., “A Survey of Shadow Algorithms.” IEEE Computer
Graphics and Applications, vol. 10, No. 6, pp. 13-32 (Nov. 1990).
Yumiko Ono, Sony Antes Up Its Chips in Beton New Game System,
Dow Jones News Service, Mar. 4, 1999.
ZDNet Reviews, from PCMagazine, “Other Enhancements.” Jan. 15,
1999, wysiwyg://16/http://www4.Zdnet.com...ies/reviews/
0.4161,2188286,00.html.
ZDNet Reviews, from PC Magazine, "Screen Shot of Alpha-channel
Transparency.” Jan. 15, 1999, wysiwyg://16/http://www4.Zdnet.
com...ies/reviews/0,41612188286,00.html.
Zeleznik, Robert et al. “SKETCH: An Interface for Sketching 3D
Scenes. Computer Graphics Proceedings, Annual Conference Series
1996, pp. 163-170.

* cited by examiner

US 8,098.255 B2 Sheet 1 of 16 Jan. 17, 2012 U.S. Patent

US 8,098.255 B2 U.S. Patent

US 8,098.255 B2 Sheet 3 of 16 Jan. 17, 2012

ruº|.aero!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3|€ (61-)

U.S. Patent

U.S. Patent Jan. 17, 2012 Sheet 5 of 16 US 8,098.255 B2

position -300a position'
a mem position

ass: 2 x 3 2 x 2 i Saxxxxxxxxxxxxxxxxxxxagaarss

X COOf
". - Charlies.

From a DisplayLists call

tex'
}rds'

fi 'u Coordinate “

-- position, normal
tex coords. Vertex Arrays

24

Clipping
k- Cutling

Setup 13 External Frame
i i - - Frame C2 willo -- T- Buffer

- 8 (i.

r-e Texture - -Fog
Environment

Fig. 5 EXAMPLE GRAPHICS PROCESSOR FLOW

U.S. Patent Jan. 17, 2012 Sheet 6 of 16 US 8,098.255 B2

110

PrOCeSSOr interface

Output
intrace Interface Processor WI

Memory Controller (mem)

152
Memo XE
COntrol 3

Fig.6A

Memo XE
COntrol 2

Memo XE
Control 1

Memory
ACCeSS
Control O

112

US 8,098.255 B2 Sheet 7 of 16 Jan. 17, 2012 U.S. Patent

A /e A A

D> D>

U.S. Patent Jan. 17, 2012 Sheet 8 of 16 US 8,098.255 B2

Main Memory

112
Command
FIFOs)

Vertex Arrays)

Storage Y
O

s W C f

62

Vain
PGCeSSG

3D Graphics
POCeSSOf

N f it Y 154

Fig. 7

U.S. Patent Jan. 17, 2012 Sheet 9 of 16 US 8,098.255 B2

DSP
TC Read Rd/Wr

Arbitration
COntrol

WRead
CP Read

mem memreg

PE Write

mem Wrbuf
MAC
Rd/Wr

PIRd/Wr
mem extct DRAM

Ct

Fig. 8

U.S. Patent Jan. 17, 2012

RQ1
16

entries

Cp mem addr

tic mem addr

vi mem addr

disp mem addr

io mem addr

pi mem addr RQ
6.

entries

pe mem addr
pe mem data
dsp mem addr
dsp mem data

WQO
16

entries iO mem addr
iO mem data

pi mem addr
pi mem data

Sheet 10 of 16

Write addr

US 8,098.255 B2

RQn are the read queues for
reading data from main mem.

mm addr

WQn are the Write queues for
writing data to the main mem.

mm. Write data

Fig. 9
Internal block diagrams

U.S. Patent Jan. 17, 2012 Sheet 11 of 16

GFXbuS

N mem to data Memory
128 mem Cp data ACCeSS

-149/ COntroller
804

System buS
memio data
mem disp data

C 64 A mem. Vi data

CPU buS

memoi data C c) Ol

US 8,098.255 B2

mem read data (127:0)

Fig. 10
Read Data Path

US 8,098.255 B2 U.S. Patent

); (0:09)elep ujgurid

U.S. Patent Jan. 17, 2012 Sheet 13 of 16 US 8,098.255 B2

vimem addr(25:5)
vi mem req

Memory Wide0
COntroller Interace

152 mem viack (VI)
164

mem. Vidata(63:0)

Fig. 12

Cp mem addr(25:5)
Memory Cp mem rep
COntroller mem Cp reqFull CP
152 mem Cp ack

mem Cp data
mem Cp fifoWr

Fig. 13

U.S. Patent Jan. 17, 2012 Sheet 14 of 16 US 8,098.255 B2

mem to reqFull Memory
COntroller
152

mem to ack
mem to data
to mem req
to mem addr

200 Mhz

Fig. 14

pe mem addr(25:5)
pe mem data (127:0)

PE pe mem req Memory
700 mempe reqFull COntroller

pe mem flush
mempe flushAck

Fig.15

US 8,098.255 B2 Sheet 16 of 16 Jan. 17, 2012 U.S. Patent

US 8,098,255 B2
1.

GRAPHICS PROCESSING SYSTEM WITH
ENHANCED MEMORY CONTROLLER

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a divisional of application Ser. No.
09/726,220, filed Nov. 28, 2000, now U.S. Pat. No. 7,538,772
which claims the benefit of provisional application No.
60/226,894, filed on Aug. 23, 2000. The contents of these
applications are incorporated herein in their entirety.

BACKGROUND AND SUMMARY

The present invention relates to computer graphics, and
more particularly to interactive graphics systems such as
home video game platforms. Still more particularly this
invention relates to a memory controller for use in Such an
interactive graphics system that controls resource access to
main memory.
Many of us have seen films containing remarkably realistic

dinosaurs, aliens, animated toys and other fanciful creatures.
Such animations are made possible by computer graphics.
Using Such techniques, a computer graphics artist can specify
how each object should look and how it should change in
appearance overtime, and a computer then models the objects
and displays them on a display Such as your television or a
computer screen. The computer takes care of performing the
many tasks required to make Sure that each part of the dis
played image is colored and shaped just right based on the
position and orientation of each object in a scene, the direc
tion in which light seems to strike each object, the surface
texture of each object, and other factors.

Because computer graphics generation is complex, com
puter-generated three-dimensional graphics just a few years
ago were mostly limited to expensive specialized flight simu
lators, high-end graphics workstations and Supercomputers.
The public saw some of the images generated by these com
puter systems in movies and expensive television advertise
ments, but most of us couldn't actually interact with the
computers doing the graphics generation. All this has
changed with the availability of relatively inexpensive 3D
graphics platforms such as, for example, the Nintendo 64(R)
and various 3D graphics cards now available for personal
computers. It is now possible to interact with exciting 3D
animations and simulations on relatively inexpensive com
puter graphics systems in your home or office.

In generating exciting 3D animations and simulations on
relatively inexpensive computer graphics systems, it is
important to efficiently control access to main memory
among competing resources. Any such access control system
is burdened with considerable constraints. For example, the
main application program executing CPU, which is but one of
many resources seeking access to main memory, must be
granted memory access with a fixed memory read latency
allowing for high speed execution of instructions. Accord
ingly, such a CPU should be awarded high priority access to
main memory. In order to generate exciting graphics, certain
graphics related resources seeking memory access must like
wise be guaranteed high speed access to memory sufficient
for the graphics processing to be rapidly completed.
The present invention is embodied in the disclosed illus

trative memory controller described herein, which performs a
wide range of memory control related functions including
arbitrating between various competing resources seeking
access to main memory. Other tasks performed by the unique
memory controller include handling memory latency and

10

15

25

30

35

40

45

50

55

60

65

2
bandwidth requirements of the resources requesting memory
access, buffering writes to reduce turn around, refreshing
main memory, protecting main memory using programmable
registers, and numerous other functions.

In controlling memory access between resources seeking
to read from and write to main memory, the memory control
ler minimizes Switching between memory reads and memory
writes to avoid wasting memory bandwidth due to idle cycles
resulting from Such Switching and thereby enhancing
memory access time. The illustrative memory controller
minimizes such Switching by incorporating a unique write
buffering methodology that uses a “global write queue
which queues write requests from various diverse competing
resources to reduce read/write Switching. In this fashion,
multiple competing resources for memory writes are com
bined into one resource from which write requests are
obtained.
The memory controller in accordance with the illustrative

embodiment described herein, advantageously optimizes
access to main memory taking into account resource memory
latency and bandwidth requirements.
The memory controller described herein uniquely resolves

memory coherency issues to avoid accessing stale data from
memory due to reading data from a main memory address
location prior to when that same location had been updated by
a write operation. Coherency issues are addressed both within
a single resource that has both read and write capability and
difference resources. The exemplary embodiment addresses
such coherency issues by efficiently flushing buffers associ
ated with a resource. For example, a resource that is writing to
main memory may send a flush signal to the memory control
ler to indicate that the resource's write buffer should be
flushed. In accordance with an exemplary implementation,
the memory controller generates a flush acknowledge hand
shake signal to indicate to competing resources that data
written to main memory is actually stored in main memory
rather than in an associated resource buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention will be better and more completely understood by
referring to the following detailed description of presently
preferred embodiments in conjunction with the drawings, of
which:

FIG. 1 is an overall view of an example interactive com
puter graphics system;

FIG. 2 is a block diagram of the FIG. 1 example computer
graphics System;

FIG. 3 is a block diagram of the example graphics and
audio processor shown in FIG. 2;

FIG. 4 is a block diagram of the example 3D graphics
processor shown in FIG. 3;

FIG. 5 is an example logical flow diagram of the FIG. 4
graphics and audio processor,

FIGS. 6A and 6B are block diagrams depicting memory
controller and competing resources coupled thereto;

FIG. 7 is an exemplary block diagram depicting various
resources accessing main memory.

FIG. 8 is a more detailed block diagram of the memory
controller shown in FIGS. 6A and 6B;

FIG. 9 illustrates a memory controller address path;
FIG. 10 illustrates a memory controller read data path;
FIG. 11 is a block diagram showing an exemplary set of

communication signals exchanged between the memory con
troller and the processor interface (PI);

US 8,098,255 B2
3

FIG. 12 is a block diagram showing an exemplary set of
communication signals exchanged between the memory con
troller and video interface;

FIG. 13 is a block diagram showing an exemplary set of
communication signals exchanged between the memory con
troller and cache/command processor,

FIG. 14 is a block diagram showing an exemplary set of
communication signals exchanged between the memory con
troller and the texture unit 500:

FIG. 15 is a block diagram showing an exemplary set of
communication signals exchanged between the memory con
troller and the pixel engine (PE) 700; and

FIGS. 16A and 16B show example alternative compatible
implementations.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

FIG. 1 shows an example interactive 3D computer graphics
system 50. System 50 can be used to play interactive 3D video
games with interesting Stereo sound. It can also be used for a
variety of other applications.

In this example, system 50 is capable of processing, inter
actively in real time, a digital representation or model of a
three-dimensional world. System 50 can display some or all
of the world from any arbitrary viewpoint. For example,
system 50 can interactively change the viewpoint in response
to real time inputs from handheld controllers 52a, 52b or
other input devices. This allows the game player to see the
world through the eyes of someone within or outside of the
world. System 50 can be used for applications that do not
require real time 3D interactive display (e.g., 2D display
generation and/or non-interactive display), but the capability
of displaying quality 3D images very quickly can be used to
create very realistic and exciting game play or other graphical
interactions.

To play a video game or other application using system 50.
the user first connects a main unit 54 to his or her color
television set 56 or other display device by connecting a cable
58 between the two. Main unit 54 produces both video signals
and audio signals for controlling color television set 56. The
Video signals are what controls the images displayed on the
television screen 59, and the audio signals are played back as
sound through television stereo loudspeakers 61L, 61R.
The user also needs to connect main unit 54 to a power

Source. This power source may be a conventional AC adapter
(not shown) that plugs into a standard home electrical wall
socket and converts the house current into a lower DC voltage
signal suitable for powering the main unit 54. Batteries could
be used in other implementations.

The user may use hand controllers 52a, 52b to control main
unit 54. Controls 60 can be used, for example, to specify the
direction (up or down, left or right, closer or further away) that
a character displayed on television 56 should move within a
3D world. Controls 60 also provide input for other applica
tions (e.g., menu selection, pointer/cursor control, etc.). Con
trollers 52a and 52b can take a variety of forms. In this
example, controllers 52 shown each include controls 60a or
60b such as joysticks, push buttons and/or directional
switches. Controllers 52 may be connected to main unit 54 by
cables or wirelessly via electromagnetic (e.g., radio or infra
red) waves.

To play an application Such as a game, the user selects an
appropriate storage medium 62 storing the video game or
other application he or she wants to play, and inserts that
storage medium into a slot 64 in main unit 54. Storage
medium 62 may, for example, be a specially encoded and/or

5

10

15

25

30

35

40

45

50

55

60

65

4
encrypted optical and/or magnetic disk. The user may operate
a power switch 66 to turn on main unit 54 and cause the main
unit to begin running the video game or other application
based on the software stored in the storage medium 62. The
user may operate controllers 52a, 52b to provide inputs to
main unit 54. For example, operating a control 60a, 60b may
cause the game or other application to start. Moving other
controls 60a, 60b can cause animated characters to move in
different directions or change the user's point of view in a 3D
world. Depending upon the particular software stored within
the storage medium 62, the various controls 60a, 60b on a
controller 52a, 52b can perform different functions at differ
ent times.

Example Electronics of Overall System

FIG. 2 shows a block diagram of example components of
system 50. The primary components include:

a main processor (CPU) 110,
a main memory 112, and
a graphics and audio processor 114.
In this example, main processor 110 (e.g., an enhanced

IBM Power PC 750) receives inputs from handheld control
lers 52 (and/or other input devices) via graphics and audio
processor 114. Main processor 110 interactively responds to
user inputs, and executes a video game or other program
Supplied, for example, by external storage media 62 via a
mass storage access device 106 Such as an optical disk drive.
As one example, in the context of video game play, main
processor 110 can perform collision detection and animation
processing in addition to a variety of interactive and control
functions.

In this example, main processor 110 generates 3D graphics
and audio commands and sends them to graphics and audio
processor 114. The graphics and audio processor 114 pro
cesses these commands to generate dynamic visual images on
display 59 and high quality stereo sound on Stereo loudspeak
ers 61R, 61L or other suitable sound-generating devices.
Example system 50 includes a video encoder 120 that

receives image signals from graphics and audio processor 114
and converts the image signals into analog and/or digital
Video signals Suitable for display on a standard display device
such as a computer monitor or home color television set 56.
System 50 also includes an audio codec (compressor/decom
pressor) 122 that compresses and decompresses digitized
audio signals and may also convert between digital and ana
log audio signaling formats as needed. Audio codec 122 can
receive audio inputs via a buffer 124 and provide them to
graphics and audio processor 114 for processing (e.g., mixing
with other audio signals the processor generates and/or
receives via a streaming audio output of mass storage access
device 106). Graphics and audio processor 114 in this
example can store audio related information in an audio
memory 126 that is available for audio tasks. Graphics and
audio processor 114 provides the resulting audio output sig
nals to audio codec 122 for decompression and conversion to
analog signals (e.g., via buffer amplifiers 128L, 128R) so they
can be reproduced by loudspeakers 61L, 61R.

Graphics and audio processor 114 has the ability to com
municate with various additional devices that may be present
within system 50. For example, a parallel digital bus 130 may
be used to communicate with mass storage access device 106
and/or other components. A serial peripheral bus 132 may

US 8,098,255 B2
5

communicate with a variety of peripheral or other devices
including, for example:

a programmable read-only memory and/or real time clock
134,

a modem 136 or other networking interface (which may in
turn connect system 50 to a telecommunications net
work 138 such as the Internet or other digital network
from/to which program instructions and/or data can be
downloaded or uploaded), and

flash memory 140.
A further external bus 142, which may, by way of example
only, be a serial bus, and may be used to communicate with
additional expansion memory 144 (e.g., a memory card) or
other devices. Connectors may be used to connect various
devices to busses 130, 132, 142.

Example Graphics and Audio Processor

FIG.3 is a block diagram of an example graphics and audio
processor 114. Graphics and audio processor 114 in one
example may be a single-chip ASIC (application specific
integrated circuit). In this example, graphics and audio pro
cessor 114 includes:

a processor interface 150,
a memory interface/controller 152,
a 3D graphics processor 154,
an audio digital signal processor (DSP) 156,
an audio memory interface 158,
an audio interface and mixer 160,
a peripheral controller 162, and
a display controller 164.
3D graphics processor 154 performs graphics processing

tasks. Audio digital signal processor 156 performs audio pro
cessing tasks. Display controller 164 accesses image infor
mation from main memory 112 and provides it to video
encoder 120 for display on display device 56. Audio interface
and mixer 160 interfaces with audio codec 122, and can also
mix audio from different Sources (e.g., streaming audio from
mass storage access device 106, the output of audio DSP 156,
and external audio input received via audio codec 122). Pro
cessor interface 150 provides a data and control interface
between main processor 110 and graphics and audio proces
sor 114.
As will be explained in detail below, memory interface 152

provides a data and control interface between graphics and
audio processor 114 and memory 112. In this example, main
processor 110 accesses main memory 112 via processorinter
face 150 and memory interface 152 that are part of graphics
and audio processor 114. Peripheral controller 162 provides a
data and control interface between graphics and audio pro
cessor 114 and the various peripherals mentioned above.
Audio memory interface 158 provides an interface with audio
memory 126.

Example Graphics Pipeline

FIG. 4 shows a graphics processing system including a
more detailed view of an exemplary FIG. 3 3D graphics
processor 154. 3D graphics processor 154 includes, among
other things, a command processor 200 and a 3D graphics
pipeline 180. Main processor 110 communicates streams of
data (e.g., graphics command streams and display lists) to
command processor 200. Main processor 110 has a two-level
cache 115 to minimize memory latency, and also has a write
gathering buffer 111 for uncached data streams targeted for
the graphics and audio processor 114. The write-gathering
buffer 111 collects partial cache lines into full cache lines and

10

15

25

30

35

40

45

50

55

60

65

6
sends the data out to the graphics and audio processor 114 one
cache line at a time for maximum bus usage.
Command processor 200 receives display commands from

main processor 110 and parses them—obtaining any addi
tional data necessary to process them from shared memory
112 via memory controller 152. The command processor 200
provides a stream of vertex commands to graphics pipeline
180 for 2D and/or 3D processing and rendering. Graphics
pipeline 180 generates images based on these commands. The
resulting image information may be transferred to main
memory 112 for access by display controller/video interface
unit 164 which displays the frame buffer output of pipeline
180 on display 56.

FIG. 5 is a block logical flow diagram portraying illustra
tive processing performed using graphics processor 154.
Main processor 110 may store graphics command streams
210, display lists 212 and vertex arrays 214 in main memory
112, and pass pointers to command processor 200 via proces
sor/bus interface 150. The main processor 110 stores graphics
commands in one or more graphics first-in-first-out (FIFO)
buffers 210 it allocates in main memory 110. The command
processor 200 fetches:
command streams from main memory 112 via an on-chip
FIFO memory buffer 216 that receives and buffers the
graphics commands for synchronization/flow control
and load balancing,

display lists 212 from main memory 112 via an on-chip call
FIFO memory buffer 218, and

vertex attributes from the command stream and/or from
vertex arrays 214 in main memory 112 via a vertex cache
220.

Command processor 200 performs command processing
operations 200a that convert attribute types to floating point
format, and pass the resulting complete vertex polygon data
to graphics pipeline 180 for rendering/rasterization. A pro
grammable memory arbitration circuitry 130 (see FIG. 4)
arbitrates access to shared main memory 112 between graph
ics pipeline 180, command processor 200 and display con
troller/video interface unit 164.

FIG. 4 shows that graphics pipeline 180 may include:
a transform unit 300,
a setup/rasterizer 400,
a texture unit 500,
a texture environment unit 600, and
a pixel engine 700.
Transform unit 300 performs a variety of 2D and 3D trans

form and other operations 300a (see FIG. 5). Transform unit
300 may include one or more matrix memories 300b for
storing matrices used in transformation processing 300a.
Transform unit 300 transforms incoming geometry per vertex
from object space to screen space; and transforms incoming
texture coordinates and computes projective texture coordi
nates (300c). Transform unit 300 may also perform polygon
clipping/culling 300d. Lighting processing 300e also per
formed by transform unit 300b provides per vertex lighting
computations for up to eight independent lights in one
example embodiment. Transform unit 300 can also perform
texture coordinate generation (300c) for embossed type bump
mapping effects, as well as polygon clipping/culling opera
tions (300d).

Setup/rasterizer 400 includes a setup unit which receives
vertex data from transform unit 300 and sends triangle setup
information to one or more rasterizer units (400b) performing
edge rasterization, texture coordinate rasterization and color
rasterization.

US 8,098,255 B2
7

Texture unit 500 (which may include an on-chip texture
memory (TMEM) 502) performs various tasks related to
texturing including for example:

retrieving textures 504 from main memory 112,
texture processing (500a) including, for example, multi

texture handling, post-cache texture decompression,
texture filtering, embossing, shadows and lighting
through the use of projective textures, and BLIT with
alpha transparency and depth,

bump map processing for computing texture coordinate
displacements for bump mapping, pseudo texture and
texture tiling effects (500b), and

indirect texture processing (500c).
Texture unit 500 outputs filtered texture values to the tex

ture environment unit 600 for texture environment processing
(600a). Texture environment unit 600 blends polygon and
texture color/alpha/depth, and can also perform texture fog
processing (600b) to achieve inverse range based fog effects.
Texture environment unit 600 can provide multiple stages to
perform a variety of other interesting environment-related
functions based for example on color/alpha modulation,
embossing, detail texturing, texture Swapping, clamping, and
depth blending.

Pixel engine 700 performs depth (z) compare (700a) and
pixel blending (700b). In this example, pixel engine 700
stores data into an embedded (on-chip) frame buffer memory
702. Graphics pipeline 180 may include one or more embed
ded DRAM memories 702 to store frame buffer and/or tex
ture information locally. Z compares 700a' can also be per
formed at an earlier stage in the graphics pipeline 180
depending on the rendering mode currently in effect (e.g., Z
compares can be performed earlier if alpha blending is not
required). The pixel engine 700 includes a copy operation
700c that periodically writes on-chip frame buffer 702 to
main memory 112 for access by display/video interface unit
164. This copy operation 700c can also be used to copy
embedded frame buffer 702 contents to textures in the main
memory 112 for dynamic texture synthesis effects. Anti
aliasing and other filtering can be performed during the copy
out operation. The frame buffer output of graphics pipeline
180 (which is ultimately stored in main memory 112) is read
each frame by display/video interface unit 164. Display con
troller/video interface 164 provides digital RGB pixel values
for display on display 56.

FIGS. 6A and 6B are illustrative block diagrams depicting
memory controller 152 (FIGS. 3 and 4) and various resources
coupled thereto which compete for access to main memory
112. Main memory 112 may, for example, comprise an
SRAM, such as a 1TSRAM, manufactured by Mosys Corpo
ration, which automatically performs internal refresh opera
tions. Memory interface controller 152 provides a data and
control interface between main processor 110, graphics and
audio processor 114 and main memory 112. Although
memory controller 152 and graphics memory request arbitra
tion 130 are depicted as separate components in FIG. 4, in the
illustrative implementation described below, memory con
troller 152 also includes graphics memory request arbitration
130.
As shown in FIGS. 6A and 6B, memory controller 152 is

coupled to various competing resources seeking to access
main memory 12. Such competing resources include proces
sor interface (PI) 150 (which is coupled to main processor
110), audio DSP (DSP) 156, input/output interface (IO) 802,
video interface (VI) 164, cache/command processor (CP)
200, texture unit (TC)500, and pixel engine (PE) 700. In this
exemplary embodiment, of these resources, processor inter
face 150, audio DSP 156 and IO interface 802 are operable to

10

15

25

30

35

40

45

50

55

60

65

8
both read information from and write information to main
memory 112. IO interface 802 is operable to itself arbitrate
and interface with a wide range of input/output devices Such
as modem, DVD interface and has relatively low memory
bandwidth requirements. In the present illustrative embodi
ment, video interface 164, cache/command processor 200,
and texture unit 500 are operable to only read information
from main memory 112, and pixel engine 700 is operable to
only write information to main memory 112.
Memory controller 152 performs various memory control

ler tasks including: 1) arbitrating among, for example, the 7
ports depicted in FIGS. 6A and 6B for access to main memory
112, 2) granting memory access taking into account memory
latency and bandwidth requirements of the resources request
ing memory access, 3) buffering writes to reduce access turn
around, 4) refreshing main memory 112 when necessary, and
5) protecting main memory 112 using programmable regis
ters. Although the illustrative embodiment shown in FIGS.
6A and 6B, depicts 7 ports seeking memory access, as will be
appreciated by those skilled in the art, there may be greater or
fewer than 7 ports in any given implementation. Moreover,
the bus/signal line widths shown in FIG. 6B and other Figures
(as well as other implementation details) are presented for
illustrative purposes only and should in no way be construed
as limiting the scope of the present invention. Memory con
troller 152 performs arbitration among the identified ports
and sends requests to the main memory 112. In the illustrative
embodiment, memory controller 152 and all of its inputs and
outputs run at 200 MHz. A 128 bit 200 MHz data path is up
clocked at up to 400 MHz through the 4-channel Memory
Access Control (MAC) block to permit communication with
a 400 MHZ external 1TSRAM memory. The MAC stores data
received over respective 32bit paths and clocks out the data at
the appropriate clock rate. The address and control signals
shown in FIG. 6B are directly connected to the IO pins. The
particular signaling used to communicate with main memory
112 is not a part of this invention.

In accordance with one exemplary embodiment of the
memory controller resource arbitration methodology (and as
further described in co-pending application Ser. No. 60/226,
886, entitled “Method and Apparatus For Accessing Shared
Resources’, which application is hereby incorporated herein
by reference), a bandwidth control is uniquely associated
with each of the above-identified resources to permit an appli
cation programmer to control the bandwidth allocation of for
example, the 3.2 gigabyte’s main memory 112 bandwidth.
For example, programmable bandwidth control registers are
respectively associated with command processor 200 and
texture unit 500, which may be utilized to allocate more of the
available main memory bandwidth to the command processor
200 than to texture unit 500. In this fashion, sophisticated
users are able to tune the above-identified competing inter
face drivers to their particular application needs to get better
overall performance. Accordingly, for each of the above
identified competing interfaces, a register is utilized to con
trol its allocation of memory bandwidth to ensure that for
every n number of clock cycles, a request for memory arbi
tration will be granted. Thus, for each interface, a filter is
utilized which will, for example, slow down a request for
main memory access if a particular interface is generating a
large number of requests at a time when other interfaces are
likewise generating requests. Alternatively, if main memory
112 is idle, and no other unit is contending for memory
access, then Such a request for access may be granted. The
filter may define the speed at which requests for a given
interface may be granted when other requests from different
interfaces are being simultaneously entertained.

US 8,098,255 B2

Memory controller 152 controls a wide range of graphics
data related requests for main memory 112 involving for
example:
3D graphics processor 154 (specifically, command proces

sor 200, texture unit 500 and pixel engine 700),
main processor 110 via processor interface 150,
audio DSP 156,
display controller 164, and
peripheral controller 162 for various I/O units (e.g., mass

storage access device 106)
FIG. 7 illustrates some of the typical operations involved in

these “requestors' competing for access to main memory.
The arrows in FIG. 7 represent the following operations:

1. Loading texture images from mass storage device 62
(e.g., DVD) to main memory 112 for a new image, game
sector or level, or other application sequence

2. Loading geometry vertex arrays from mass storage
device 62 to main memory for a new image, game sector or
level, or other application sequence

3. Dynamic rendering of texture maps by main processor
110 or graphics processor 154

4. Dynamic generation or modification of vertex arrays by
main processor 110

5. Main processor 110 animating lights and transformation
matrices for consumption by graphics processor 154

6. Main processor 110 generating display lists for con
Sumption by graphics processor 154

7. Main processor 110 generating graphics command
Streams

8. 3D graphics processor 154 reading graphics command
Stream

9. 3D graphics processor 154 reading display lists
10. 3D graphics processor 154 accessing vertices for ren

dering
11. 3D graphics processor 154 accessing textures for ren

dering
In the illustrative implementation, the graphics processor

114 has several data memory requirements including align
ment requirements for the following types of data: texture and
texture lookup table images, display lists, graphics FIFO and
the external frame buffer. These data objects should be
aligned because the graphics processor 114 is very fast; data
from the main memory 112 is transferred in 32-byte chunks.
Data alignment allows for simple and fast hardware.
On other data objects, such as vertex, matrix and light

arrays, in an exemplary embodiment additional hardware
Support eliminates the need for coarse alignment (these are
4-byte aligned). There are a large number of these data
objects, and the memory consumption of each object is poten
tially low, so relaxing alignment restrictions helps to conserve
memory.

In accordance with the illustrative implementation, mul
tiple processors and hardware blocks can update main
memory. In addition, the CPU 110 and graphics processor
114 contain various data caches. Since the hardware does not
maintain coherency of the data in main memory and various
associated caches, there are various potential sources of
coherency problems including when the CPU modifies or
generates data destined for the graphics processor 114, when
the CPU writes data through its write-gather buffer to cached
memory, and when loading new data destined for the graphics
processor 114 from the DVD into main memory. Coherency
problems may occur if the main memory used to store the data
in these two latter cases were used for other graphics data.
When the DVD loads data, the DVD API automatically

invalidates the loaded main memory portion that resides in the
CPU data cache. This feature provides a safe method for

10

15

25

30

35

40

45

50

55

60

65

10
programmers to modify the DVD loaded data without wor
rying about CPU data cache coherency. This DVD API fea
ture activates by default; it can be deactivated by the program
C.

The graphical data loaded by DVD may contain textures
and vertices that have been already formatted for the graphics
processor 114 to render. Therefore, invalidation of the vertex
cache and texture cache regions may be necessary.
The CPU 110 has two means of writing to main memory:

the write-gather buffer and the CPU cache hierarchy. The
write-gather buffer is normally used to “blast graphics com
mands into memory without affecting the cache. As a result,
information sent through the write-gather buffer is not cache
coherent. Care must be taken when using the write-gather
buffer to avoid writing to areas of memory that maybe found
in the CPU cache. The cache flushing instructions shown
below maybe used to force data areas out of the CPU cache.

If the CPU generates or modifies graphics data through its
cache, the following memory types may end up containing
stale data:
Main memory.
graphics processor 114 vertex cache and texture cache

regions.
To send the correct data to the graphics processor 114, in
accordance with the exemplary embodiment, there is a need
to flush the CPU data cache as well as invalidate the graphics
processor 114 vertex or texture cache. The CPU typically
animates data one frame ahead of the graphics processor 114,
So efficient techniques to maintain data coherency include:

Grouping all the CPU-modified graphics data in main
memory sequentially, so that the block data cache flush
is efficient.

Invalidating the vertex cache, as well as the entire texture
cache, at the beginning of each graphics frame.

These operations are mentioned by way of illustrating
Some of the many operations involving reading and writing to
main memory 112. Among other things, memory controller
152 arbitrates among the ports involved in main memory
reading and writing operations.

FIG. 8 is a more detailed block diagram of memory con
troller 152. As shown in FIG. 8, memory controller 152
includes individual “local interfaces associated with each of
the competing resources shown in FIGS. 6A and 6B. A con
troller pi interface 150I interfaces with processor interface
150, controller DSP interface 156I interfaces with audio DSP
156, controller io interface 802I interfaces with input output
interface 802, controller video interface 164I interfaces with
video interface 164, controller cp interface 200I interfaces
with command processor 200, controller tc interface 500I
interfaces with texture unit 500, and interface pe 700I inter
faces with pixel engine 700. Memory controller 152 is
coupled to main memory via external memory control 829,
which is shown in further detail in FIG. 16 described below.
External memory control as shown in FIG. 16 generates a
read/write control signal which switches the bidirectional
memory bus between read and write states.

Focusing, for illustration purposes on the texture coordi
nate interface 500I, this interface is coupled to the read only
texture unit 500 shown in FIGS. 6A and 6B.TC interface 500I
(like each of the local interfaces coupled to resources which
read from main memory) includes a read queue (RQ2 shown
in FIG.9) for queuing read requests and associated memory
addresses received from its associated resource, texture unit
500. Memory controller interfaces pe, disp, io, and pi also
respectively include a local write queue WQ0-4 as shown in
FIG. 9 for queuing write requests.

US 8,098,255 B2
11

Turning back to FIG. 8, arbitration control 825 includes the
control logic for implementing the arbitration methodology,
which is described in further detail below and in the above
identified co-pending application entitled “Method and
Apparatus for Accessing Shared Resources’ which has been
incorporated herein by reference. Arbitration control 825 is
alerted to the presence of, for example, the receipt of a read
request in texture interface 500I. Similarly, interfaces 200I,
700I, 150I, 156I, 164I, 802I and 829 are operatively coupled
to arbitration control 825 for arbitration of competing
memory access requests. As will be explained further below,
arbitration control 825 upon receipt of read requests from, for
example, memory TC interface 500I and DSP interface 156I
(if, for example, 500I and 156I were the only competing
resources) may award a first memory cycle to texture unit TC
and the next memory cycle to DSP 156, etc. Thus, the read
requests may be granted on a round robin basis. Arbitration
controller 825 is aware of all pending requests and grants as
described in the above-identified co-pending patent applica
tion and as set forth further below.
As suggested by the read data path illustrated in FIG. 10,

texture unit TC has a high bandwidth requirement (e.g., see
the 128bit GFX data path which is the same width as the main
memory data path). The texture unit thus may be granted a
request without wasting memory bandwidth. DSP, as shown
in FIG. 10, has a 64 bit bandwidth and will be awarded
priority by the arbitration control 825 in a manner designed
not to waste memory cycles.
The arbitration control 825 may, for example, be a state

machine which sequences through states that implement the
arbitration methodology described below. As explained in
detail in the above-identified copending patent application,
the arbitration control 825 is controlled in part by bandwidth
dial registers such that when (for example) there is a request
for memory access from texture unit 500, the request may be
effectively Suppressed. Thus, in a video game in which there
is a large amount of texture data, the system may be tuned to
adjust the bandwidth to optimize it for that particular game's
memory access needs.
More specifically, as stated above, each of the read “mas

ters' (i.e., a resource seeking to access main memory 112) is
associated with a respective corresponding one of read
queues RQ1 to RQ6 for queuing read addresses for reading
from main memory 112. Each of the write masters seeking to
access main memory 112 is associated with a respective cor
responding one of write queues WQ1 to WQ4 for queuing
write addresses and corresponding data for writing to main
memory 112. Arbitration control 825 uses a predetermined
arbitration process to allocate main memory access among
the read queues RQ1 to RQ6 and to control which write
requests among the write queues WQ1 to WQ4 are provided
to global write buffer WQ0. The rate at which at least some of
the requests are fed into this arbitration process is controllable
in accordance with the settings of programmable bandwidth
dial registers. By appropriately setting the dial registers for a
particular operation, Sophisticated users can tune the flow of
requests to the arbitration process to improve system perfor
mance for that operation.
By collecting the write requests into the global write buffer

WQ0, read to write and write to read switching may be
reduced, thereby minimizing the dead memory cycles that
result when the main memory is changed from one type of
operation to the other. While write requests are supplied to
global write buffer WQ0, read requests are processed in
accordance with the arbitration process. The main memory
data path is generally Switched from a read to a write state
when the global write buffer queue WQ0 is filled to a certain

10

15

25

30

35

40

45

50

55

60

65

12
level or if a main processor read request matches an entry in
the global write buffer. This switchover results in a flushing of
the global write buffer WQ0 to write data to specified
addresses of main memory 112.
As mentioned above, the dial registers control the memory

bandwidth for the corresponding master. For example, if an
accumulator to which the contents of command processor
dial register are added every memory cycle is less than 1.00,
even if there is a pending command processor request, the
arbitration scheme grants memory access to another master
until enough cycles elapse so that the contents of the accu
mulator is equals to or greater than 1.00, or until there is no
pending request from any other masters. Memory controller
152 preferably does not permit the main memory 112 to be in
an idle State because of dial register settings. The dial registers
affect the arbitration scheme by masking requests from mas
ters until the accumulator corresponding to the dial register of
that master equals 1.00.

Thus, bandwidth dial registers influence the memory usage
by some of the major memory “hogs”. The read dials control
the frequency with which the masters participate in the arbi
tration process and access memory. The write dials are for
control flow and can slow down the writing device by throt
tling the writes into global write buffer WQ0. As noted, arbi
tration preferably does not allow the memory to be idle if
there are outstanding read requests that not being allowed due
to the settings of the bandwidth dials. In this case, a round
robin scheme is used among the requesters that are being
throttled.

In the example system, all reads are single cache-line (32
bytes). Thus, it takes two cycles of 200 MHz to read the cache
line and a new read can be performed every 10 nanoseconds.
Reads from main processor 110 have the highest priority, with
round robin arbitration among the rest of the requestors.
Memory ownership is changed every 10 nanoseconds among
the read requestors and refresh, but the write queue is always
written in its entirety. The write queue initiates a request when
it is filled to or above a certain level orifa main processor read
request matches an entry in the write-buffer.
As shown in FIG. 8, bandwidth dial registers and other

registers identified specifically below are embodied in the
memory controller's programmable memory registers 823.
These registers, which are identified in detail below, are pro
grammable by main CPU 110 to control a wide range of
memory controller functions. Among the registers included in
memory controller 152 are memory access performance
related registers. For example, performance counter registers
identify how many requests are received from particular com
peting resources. The performance counters are utilized to
keep track of wasted memory cycles so that a determination
may be made as to how effectively memory bandwidth has
been allocated based upon an analysis of the performance
counter registers. The performance counters may be utilized
to differentiate between cycles which are necessarily lost in
Switching between read and write operations and idle time. As
previously mentioned, cycles are wasted upon Switching
from a read to write, e.g., two idle cycles may result from Such
Switching. The performance counters may be utilized to
determine how well a particular application program is uti
lizing memory bandwidth by Subtracting from performance
statistics memory cycles which must necessarily be utilized
for read/write switching and refresh operations. By monitor
ing such performance, application programmers are advanta
geously enabled to design more efficient programs that make
better use of memory.

Turning back to FIG. 9, as stated above, each of the read
queues RQ1 to RQ6, is resident in an associated interface in

US 8,098,255 B2
13

FIG. 8. Thus, read RQ1, as suggested by the signal line
designation in FIG. 9 is resident in CP interface 200I. Simi
larly, write queue WQ1 (which in the illustrative embodiment
queues eight requests) is resident only in PE interface 700I
and is referred to herein as a “local write queue buffer.
Similarly, WQ2 through WQ4 are resident in the DSPIO and
PI interfaces respectively and are local write queue buffers.
WQ0 shown in FIG. 9 is the multiple resource or “global
write buffer and is resident in the FIG. 8 component wrbuf
827. The inputs to write buffer 827 shown in FIG. 8 corre
spond to the inputs to WQ0 shown in FIG. 9.

If, for example, multiple write requests are received in
write buffer 827 at the same time, in accordance with an
exemplary embodiment of the present invention, memory
write buffer 827 may arbitrate among such write requests.
Additionally, a dial register may be utilized in association
with the global write buffer embodied in write buffer 827. In
this fashion, a write request from PE or PI, through the use of
a dial register, may be designated as a lower priority request

10

15

depth addr, data, mask Queue interface

RQ1 CP (read) 16
RQ2 TC (read) 16
RQ3 VI (read) 1
RQ4 DSP (read) 1
RQ5 IO (read) 1
RQ6 PI (read) 6

WQ1 PE (write) 8
WQ2 DSP (write) 4.
WQ3 IO (write) 4
WQ4 PI (write) 8
WQ0 Global Write buffer 16

by an application programmer. The global write buffer 827 is
operatively coupled to the arbitration control 825 for arbitra- 40
tion of write requests.

The FIG. 8 read requests from the respective read queues
are directly coupled to arbitrator control 825 for arbitrating
between received read requests. A request bus (which identi
fies whether a read from or write to main memory 112 is to 4s
take place at an associated address) is associated with each of
the resources which are seeking access to main memory 112.
Memory controller 152 queues up received memory access
requests and sends the request result to the requesting
SOUC.

In the case of write requests, flow control is accomplished
in part using the local write buffers, e.g., WQ1 to WQ4, such
that a signal is sent to the associated resource writing data to
main memory 112 when the local write buffer is full (or nearly
full) to inform the resource to stop sending data.
Memory controller 152 is advantageously designed to

minimize read to write Switching, since lost memory cycles
result from such switching due to the need to place the bus in
the proper read or write state. Memory controller 152 mini
mizes Such read or write Switching by gathering the required
writes into a global write buffer WQ0 resident in wrbuf 827.
While write requests are buffered, read requests are processed
by arbitration control 825 from different resources. When the
write buffer WQ0 begins to get full, it will arbitrate with the
read requests in round robin fashion. Thereafter, multiple
writes are processed at essentially the same time from global
write buffer WQ0, which is filled from multiple resources,

50

55

60

65

14
e.g., WQ1-WQ4. When the global write buffer WQ0 reaches
a state where it is, for example, 75-80% full, memory con
troller 115 switches to a write state to initiate the flushing of
the write buffer WQ0 to main memory 112 resulting in writ
ing to the identified address locations.
Memory controller 152 utilizes three levels of write arbi

tration. The first level of arbitration occurs whereby write
buffer control logic arbitrates with sources seeking to read
information from memory. Another level of write arbitration
occurs when the write buffers are not full. A third level of
arbitration occurs when coherency processing is required,
whereby write buffers are flushed to resolve the coherency
issue.

With respect to processing read requests, in accordance
with an illustrative embodiment, a round robin read is per
formed among resources based upon resource request arbi
tration processing in light of for example, the dial register
contents for each resource as explained above.
The following table lists illustrative sizes for each of the

read and write queues shown in FIG. 9:

Width
explanation

21 Match the max latency of a single access.
21 Match the max latency of a single access.
21 Single outstanding read request
21 Single outstanding read request
21 Single outstanding read request
23 Multiple outstanding read request + skid

2 extra address bits to transfer critical oct-byte first.
21 - 128 Max transfer from WQ1 to WQ0 + skid
21 + 128 + 4 Single outstanding write, no skid
21 - 128 Single outstanding write, no skid
21 + 128 + 4 Max transfer from WQ4 to WQ0 + skid
24 + 128 + 4 Deep enough to amortize memory data path read/write

mode Switch turn around . . .

FIG.10 shows the read data path from main memory 112 to
the identified resource via memory access controllers 804,
806, 808. Even though there are 6 read requesters, there are
only 3 read data paths going back to the devices, the 128 bit
GFX path, the 64 bit system path, and the 64 bit CPU path.
The exemplary implementation does not use a unique data
path for each device, since data is not transferred on all data
paths at the same time. The exemplary implementation does
not use a single 128-bit data path, since 64bit devices, which
take 4 cycles to receive data, are utilized. In-order to reduce
the latency for CPU accesses, the CPU port was given its own
path, and therefore two 64-bit paths and a 128-bit path have
been utilized. The paths are connected as follows:

the GFX path, 128 bits (a) 200 MHz is connected to CP 200
and TC 500. The bus bandwidth (BW) is equal to
memory BW.

the CPU path, 64 bits (a) 200 MHz is connected to the pi
only. The bandwidth of this path is /2 of the bandwidth
of memory 112.

the system bus, 64 bits (a) 200 MHz is connected to IO, DSP
and VI. All these devices are low BW and can only issue
single outstanding transactions. The bus BW is /2 of
memory BW.

The number and BW of these buses have direct impact on
the memory arbitration. For example, GFX path can
continuously request data from memory, whereas CPU
can request data only every other cache-line cycle (100
Mhz). And the same is true for system bus.

Data read from main memory 112 is sent back to a request
ing resource in order. Accordingly, if a first request is fol

US 8,098,255 B2
15

lowed by a second and other multiple outstanding requests,
after arbitration of these requests, the requests are fulfilled in
the order requested. Thus, data requested by requesting
resource number 1 is routed followed by the data requested by
requesting resource number 2, etc. Reads are expected by the
CPU to be processed in order. The present design eliminates
the need for hardware or software to perform reordering
operations.
The memory controller advantageous is designed to effi

ciently respond to access requests in order to take full advan
tage of the main memory 112 use of a static RAM (SRAM)
type of memory. As explained above, the example embodi
ment has a 1TSTRAM that provides near static RAM type
access in the context of a high density DRAM. The use of near
SRAM access permits, for example, writing data to main
memory 112 in the order desired because writing to one
location in the SRAM takes the same time as writing to any
other location no matter where in SRAM the data is to be
stored. In contrast, when using DRAM, writes to memory
must be scheduled in accordance with the memory refresh
schedule to maximize speed preference. The use of an SRAM
permits efficiently fulfilling requests in order at the price of
having to maintain data coherency.

With respect to maintaining coherency (processor coher
ency in the preferred illustrative embodiment, since other
resources may rely on flushes to guarantee read/write coher
ency), if a resource writes to an associated write buffer for
thereafter writing data to main memory 112, and almost
immediately thereafter an attempt is made to read such data
from main memory 112, a coherency problem results due to
the potential of reading Stale data from main memory 112
instead of the updated data sought. The memory controller
152 addresses the coherency issue by ensuring that, for every
read request, a check is made of the address to be read to
ensure that such address does not appear in the write buffer. If
the address is in the write buffer, then the write buffer needs to
be flushed, i.e., copied to main memory, before the read
operation is performed.

Certain of the resources such as, for example, the command
processor CP 200 is a unidirectional resource such that it only
performs read operations from main memory 112 and does
not write to main memory 112. In the exemplary implemen
tation, pixel engine PE only writes to main memory 112.
Coherency issues particularly need to be addressed with CPU
110, since CPU 110 both reads and writes from and to main
memory 112. Thus, with regard to CPU reads, the address to
be read is compared to write buffer addresses and, as
explained above, if the address is in the write buffer, the write
buffer is flushed, and then the read operation is performed.
For example, if writes are performed by a particular resource
to locations 0, 1, and 2, which addresses are residentina write
buffer, and an attempt is made to read from location 0, since
location 0 is in the write buffer, the system should flush the
write buffer contents before reading from location 0. Accord
ingly, in order to ensure against coherency errors within a
device, such errors will only occur if the resource has both
read and write capability.

However, it is also desirable for the memory controller 152,
to ensure against coherency errors among different resources.
Thus, if pixel engine 700 receives a command to copy infor
mation to main memory 112, the local write buffer associated
with pixel engine 700 will contain both the data to be copied
and an address location at which to write to main memory
112. If, for example, the video interface 164 as the texture unit
500 thereafter seeks to read data from the same address to
which the pixel engine 700 is writing data, the illustrative
memory controller 152 synchronizes these operations. Thus,

10

15

25

30

35

40

45

50

55

60

65

16
in accordance with an exemplary embodiment of the present
invention, any device/resource that is writing to main
memory 112 sends a flush signal to memory controller 152
which indicates to memory controller 152 to empty the
respective resource's write buffer. Memory controller 152
generates a signal indicating that Such operation has been
completed to thereby inform CPU 110 to enable, for example,
display unit 164 to read data from Such a memory location.
The indication from memory controller 152 that data written
to main memory 112 is actually stored in main memory 112
and not in a buffer gives any competing resource the oppor
tunity to access such data. In accordance with this exemplary
embodiment, coherency among devices is guaranteed by the
device writing to memory by virtue of the receipt from
memory controller 152 of a flush acknowledge handshake
signal.

In accordance with an exemplary embodiment of the
present invention, since writes are delayed, there are various
types of coherency protocols which are performed, several of
which have been briefly described above. Such coherency
protocols, which are described and summarized below
include:

Coherency between writes and reads from the same unit.
Coherency between writes and reads for CPU.
Coherency between writes by CPU and reads by CP in CP

FIFO.
Coherency between writes and reads from two different

units.
RW Coherency from the Same Unit

In the exemplary implementation, DSP, IO and PI can
perform writes and reads. There is no hardware RW coher
ency for DSP or IO in accordance with an exemplary imple
mentation. If each device needs to readback the data it wrote
to main memory 112, it needs to explicitly flush the write
buffer. This is done by issuing a flush write buffer command
and waiting for an acknowledge signal. The PI read requests
on the other hand are checked against the write-buffer
addresses. If there is a match, the write-buffer is flushed. Then
the read will proceed. The write-buffer includes the indi
vidual write-buffer for the unit and the global write-buffer.
RW Coherency from CPU

In order to handle CPU 110 write and read coherency,
bypassing logic and write buffer flushing mechanism is used.
For a read request from CPU, the read address is sent imme
diately to main memory 112 and there’s not enough time for
RW coherency checking until one cycle later. If there’s a
match, since the read request has already been sent, the read
data from the memory is aborted, then it will flush the write
buffer, bypass and merge the write data and read data back to
the CPU 110 at the end of the write buffer flush.

In the case that a read is followed by a write for the same
address location, these two requests are dispatched into the
read queue and write queue separately and memory controller
152 can not distinguish the order of these two requests. There
fore, read data may end up with the new write data instead of
the original one as expected. CPU 110 configuration should
be set accordingly to guarantee not to issue the write before
the read data comes back.
RW Coherency Between Other Units.

In the exemplary implementation, there are 4 units that can
write to memory: DSP, IO, PE and PI. Any time a device
writes to memory, it needs to flush its write buffers explicitly,
before signaling another device for reading the data. Each of
these 4 interfaces has a 2-wire flush/acknowledge protocol to
accomplish this. DSP, IO or PE will issue a flush at the end of
a DMA write, before interrupting the CPU 110. This will
guarantee that CPU 110 will access the desired data, upon

US 8,098,255 B2
17

read. CPU 110 also needs to perform an explicit flush when it
sets up a buffer in main memory 112 and wants to initiate
another device for a read DMA. Before starting the DMA,
CPU 110 needs to perform a “sync’ instruction. This instruc
tion causes a sync bus cycle, which causes the memory con
troller 152 to flush the write buffer. Upon completion of the
flush, the sync instruction is completed and CPU can start up
a read DMA operation.
RW Coherency Between CPU/CP for CP FIFO
The memory controller also handles RW coherency

between CPU writes and CP read for a command related
buffer CPFIFO which is associated with external memory. PI
will indicate whether the write request is for CP FIFO and
memory controller will send CP the write request when the
write data for CP FIFO has actually been committed to the
main memory.

Turning back to FIG. 8, memory controller 152 includes a
set of memory registers 823 through which the memory con
troller may be programmably controlled to perform a wide
range of memory control and arbitration functions. In the
exemplary implementation of the present invention, all reg
isters are written through the processor interface 150.
Although a table of a illustrative memory controller registers
is set forth below, the following registers may be categorized
into groups as follows.
Memory Protection/Interrupt Enable Registers
Four set of registers can be used for memory read, write or

read/write protection by setting the read enable and/or write
enable bits in MEM MARR CONTROL register shown in
the illustrative register table below. For example, if a read
address is within the range of MEM MARRO START and
MEM MARRO END with MARRO read disabled, it will set
the MARRO interrupt bit in MEM INT STAT register and
MEM INT ADDRL, MEMINT ADDRH will have the
read address that caused the interrupt. It can also cause an
interrupt to the CPU if MARRO interrupt enable bit is set in
MEM INT ENBL register. Note that memory controller 152
is not going to terminate the read/write transaction to main
memory 112 that causes the interrupt.

There is also an address interrupt that is generated if the
request address is outside the current memory configuration
range and within 64 Mbytes address space. If the request
address is beyond 64Mbytes, PI should generate the address
interrupt and not send the request to memory controller.

Register
address Register name

0x0 (r, w) MEM MARRO START

OX2 (r, w) MEM MARRO END

Ox4 (r, w) MEM MARR1 START

Ox6 (r, w) MEM MARR1 END

Ox8 (r, w) MEM MARR2. START

Oxa (r, w) MEM MARR2 END

Oxc (r, w) MEM MARR3 START

Oxe (r, w) MEM MARR3 END

10

15

25

30

35

40

18
Bandwidth Dial Registers
In the exemplary embodiment, there are dial registers for

CP, TC, PE, CPU read and CPU write masters. These dial
registers are used to lower the memory bandwidth for the
associated master. For example, if the CP dial register con
tents when added to an associated accumulator is less than
one, even if there’s a pending CP request, the illustrative
arbitration methodology will grant memory access to another
master until CP dial register when added to the accumulator
equals one orthere's no other pending request from any other
master. In other words, memory controller 152 never lets
memory 112 be in an idle state because of the dial register
settings. These dial registers indirectly affect the arbitration
scheme by masking the request from that master if the dial
register plus accumulator contents does not equal to 1.00. For
further details, refer to the methodology described below and
in more detail in the copending application entitled “Method
and Apparatus For Accessing Shared Resources', which has
been incorporated herein by reference.

Performance Counter Registers
There is a request counter per master except CPU, which

has separate read and write request counters. These counters
are mainly used for collecting statistics about memory usage
and bandwidth for different masters. There are two additional
counters: MEM FIREQCOUNT for counting number of
idle cycles due to read/write bus turnaround overhead and
MEM RF REQCOUNT for counting number of refresh
cycles. All these counters will be clamped to max values when
reached.
Data for Turnaround Registers

There are 3 registers used for setting number of idle cycles
for the data path turnaround: one for RD to RD from a differ
ent memory bank, one for RD to WR switching and one for
WR to RD switching.
Memory Refresh and Threshold Registers
When the number of clocks reached the refresh count in

refresh counter, a refresh request will be generated. If the
memory is idle, memory will be granted to refresh cycles.
However, if memory is non-idle, it will be granted only if the
total number of refresh requests reaches the threshold value
set in the memory refresh threshold register.

For purposes of illustrating an exemplary memory control
ler 152 register set, the following table shows example
memory controller 152 registers.

Field description

5:0 Starting address of memory address range register O
ress (25:10)

ress of memory address range register O
ress (25:10)

Starting address of memory address range register 1
ress (25:10)

ress of memory address range register 1
ress (25:10)

Starting address of memory address range register 2
ress (25:10)

ress of memory address range register 2
ress (25:10)

Starting address of memory address range register 3
ress (25:10)

ress of memory address range register 3
ress (25:10)

memory a

Ending ad
memory a

5:0

5:0

memory a

Ending ad
memory a

5:0

5:0

memory a

Ending ad
memory a

5:0

5:0

memory a

Ending ad
memory a

5:0

Register
address

OX10 (r, w)

0x12 (w)

Ox14 (w)

0x16 (w)

Ox18 (w)

Ox1a (w)

Oxle (r)

0x20 (w)
Ox22 (r)
0x24 (r)
Ox26 (r, w)

Ox30 (r, w)

19

Register name

MEM MARR CONTROL

MEM CP BW DIAL

MEM TC BW DIAL

MEM PE BW DIAL

MEM CPUR BW DIAL

MEM CPUW BW DIAL

MEM INT ENBL

MEM INT STAT

MEM INT CLR
MEM INT ADDRL
MEM INT ADDREH
MEM REFRESH

MEM RDTORD

MEM RDTOWR

MEM WRTORD

US 8,098,255 B2
20

-continued

Field

7:0

8:0

8:0

8:0

8:0

8:0

4:0

4:0

O

O

O

description

Control register for the MAR registers 3 to 0
O: MARRO read enable (OK to read between MARRO START
and MARRO END)
ie MARRO START <= Address <MARRO END
1: MARRO write enable(OK to write between MARRO START
and MARRO END)
ie MARRO START <= Address <MARRO END
2: MARR1 read enable
3: MARR1 write enable
4: MARR2 read enable
5: MARR2 write enable
6: MARR3 read enable
7: MARR3 write enable
Default value: Oxff (okay to write or read)
Format is 1.8. Every cycle this number is added to an
accumulator that is initialized to O. When bit 8, is set, then CP
request is enabled and CP is allowed in arbitration. When set to
Ox1.00, CP request is always enabled
Default value: Ox1.00
Format is 1.8. Every cycle this number is added to an
accumulator that is initialized to O. When bit 8, is set, then TC
request is enabled and TC is allowed in arbitration. When set to
Ox1.00, TC request is always enabled
Default value: Ox1.00
Format is 1.8. Every cycle this number is added to an
accumulator that is initialized to O. When bit 8, is set, then PE
write request is enabled and PE write can be transferred from the
first queue to the WQ0. When set to Ox1.00, PE write is always
enabled
Default value: Ox1.00
Format is 1.8. Every cycle this number is added to an
accumulator that is initialized to O. When bit 8, is set, then CPU
request is enabled and CPU read is allowed in arbitration. When
set to Ox1.00, CPU read request is always enabled
Default value: Ox1.00
Format is 1.8. Every cycle this number is added to an
accumulator that is initialized to O. When bit 8, is set, then CPU
write data is written into the write-buffer. When set to Ox1.00,
CPU write data is accepted immediately
Default value: Ox1.00
interrupt enable register for MARRs and address out of range

0: MARRO interrupt enable O for disabled, 1: enabled
: MARR1 interrupt enable

2: MARR2 interrupt enable
3: MARR3 interrupt enable
4: Address Error interrupt enable
Default value: 0x00 (disable)
interrupt status register
O: MARRO interrupt

: MARR1 interrupt
2: MARR2 interrupt
3: MARR3 interrupt
4: Address Error interrupt
Reset value: 0x00
interrupt clear. Writing to register clears all interrupts.
Bits 15:0 of the memory address that caused the interrupt.
Bits 25:16 of the memory address that caused the interrupt.
Number of cycles between memory refresh
Default value: 0x80 (128 cycles)
fit is Zero, it is a special case for not generating any refresh
cycles. This must be used with mem refresh thhdA to have a
minimum value of 1.
For back to back read in the memory development system:
O: One idle cycle asserted when Switching between the two.

: Two idle cycles asserted when Switching between the two.
Default value: O
For a read followed by a write:
0: Two idle cycles asserted for turn around.

: Three idle cycles asserted for turn around.
Default value: O
For a write followed by a read:
0: No idle cycle asserted.

: One idle cycle asserted.
Default value: O

US 8,098,255 B2
21 22

-continued

Register
address Register name Field description

0x32(r, w) MEM CP REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for CP memory requests
processed (31:16). Write 0 to clear counter.

Ox34(r, w) MEM CP REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for CP memory requests
processed (15:0). Write 0 to clear counter.

Ox36(r, w) MEM TC REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for TC memory requests
processed (31:16). Write 0 to clear counter.

Ox38(r, w) MEM TC REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for TC memory requests
processed (15:0). Write 0 to clear counter.

Ox3a(r, w) MEM CPUR REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for CPU read requests
processed (31:16). Write 0 to clear counter

Ox3c(r, w) MEM CPUR REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for CPU read requests
processed (15:0). Write 0 to clear counter

Ox3e(r, w) MEM CPUW REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for CPU write requests
processed (31:16). Write 0 to clear counter.

Ox40(r, w) MEM CPUW REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for CPU write requests
processed (15:0). Write 0 to clear counter.

Ox42(r, w) MEM DSP REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for DSP write/read requests
processed (31:16). Write 0 to clear counter.

Ox44(r, w) MEM DSP REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for DSP write/read requests
processed (15:0). Write 0 to clear counter.

Ox46(r, w) MEM IO REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for IO write/read requests
processed (31:16). Write 0 to clear counter.

0x48(r, w) MEM IO REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for IO Write/read requests
processed (15:0). Write 0 to clear counter.

OX4a (r, w) MEM VI REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for VI memory requests
processed (31:16). Write 0 to clear counter.

Ox4c(r, w) MEM VI REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for VI memory requests
processed (15:0). Write 0 to clear counter.

Ox4e(r, w) MEM PE REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for PE memory requests
processed (31:16). Write 0 to clear counter.

Ox50(r, w) MEM PE REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for PE memory requests
processed (15:0). Write 0 to clear counter.

0x52(r, w) MEM RF REQCOUNTH 5:0. Upper 16 bits of the 32 bits counter for memory refresh requests
processed (31:16). Write 0 to clear counter.

Ox54(r, w) MEM RF REQCOUNTL 5:0 Lower 16 bits of the 32 bits counter for memory refresh requests
processed (15:0). Write 0 to clear counter.

Ox56(r, w) MEM FI REQCOUNTH 5:0. Upper 16 bits of the 33 bits counter for memory forced idle
requests processed (32:17). Write 0 to clear counter. Increment
by one every idle cycle.

0x58(r, w) MEM FI REQCOUNTL 5:0 Lower 16 bits of the 33 bits counter for memory forced idle
requests processed (16:1). Write 0 to clear counter. Increment by
one every idle cycle.

Ox5a (r, w) MEM DRV STRENGTH O: O Drive Strength
Ox5c (r, w) MEM REFRSH THHD 2:0. Threshold for generating the refresh request when the total

number of outstanding refresh requests exists.
Default value: Ox2
in order to generate Zero refresh cycles, this register must be set
o be non-zero together with mem refresh set to 0x0.

Turning back to the FIG. 8 memory controller block dia
gram, as set forth above, memory controller 152 includes
arbitration control 825 which operates to arbitrate memory
access requests between the competing resources identified
above. For further details regarding the arbitration control,
reference should be made to copending application Ser. No.
60/226,886, entitled “Method and Apparatus For Accessing
Shared Resources’, which has been incorporated herein by
reference. All reads are single cache-line (32 bytes). It takes 2
cycles of 200 Mhz. to read the cache-line. Thus a new read can
be performed every 10 nsec. CPU reads will have the highest
priority, with round robin arbitration among the rest of the
requestors. Memory ownership is changed every 10 nsec
among the read requestors and refresh, but the write queue is
always written in its entirety. Write queue initiates a request
when it gets above a certain level or if a CPU read request
address matches an entry in the write-buffer. In accordance
with the illustrative embodiment, there are the following
restrictions as to the frequency of requests:
Two CPU reads can not occur back to back
Two System reads can not occur back to back.

45

50

55

60

65

During a 10-nsec refresh cycle, 2 rows are refreshed. One
every 5 nsec.
BW Dials

As described above, BW dials are provided via the BW
registers referenced above to influence the memory usage by
some of the major memory users. There are dials for the
following devices:
CPU read
CP read
TC read
CPU write
PE write
The read dials control the frequency of the units to partici

pate in arbitration and access memory. The write dials are for
control flow and can slow down the writing device by throt
tling the writes into the main write buffer.
The arbitration methodology will not allow the memory

112 to be idle if there are outstanding read requests that are
not being allowed due to the BW dial. In this case a round
robin scheme is used among the requestors that are being
throttled.

US 8,098,255 B2
23

Read Queues Arbitration
CPU read has the highest priority except the following

conditions:
CPU was the master for the previous access

24
Write Queues Arbitration
CPU, PE, DSP and IO are the four masters in the write

queue. CPU writes has the highest priority and the other three
masters arbitrate in the round-robin fashion except the fol
lowing condition:

CPU read dial knob does not equal to 1.00 and there are 5 CPU write dial knob does not equal to 1.00 and there are
other requests by other masters with dial knob equals 1.00 - - - other write masters with dial knob equals to 1.00

Write Buffer is completely full and it is in the middle of the All these together will form the write buffer queue arbitrat
write cycles ing the memory bandwidth with the read masters.

Previous CPU read address matches a valid CPU write Each of the interfaces depicted in FIG. 6A with memory
address in the PI local write buffer or global write buffer " controller 152 will now be described in further detail. FIG. 11
which will cause a write buffer flush is a block diagram showing an exemplary set of communica
CP (or TC) read has the same priority as any other system tion signals exchanged between memory controller 152 and

masters (DSP, IO and VI) and hence arbitrates the memory in processor interface (PI) 150. The interface shown in FIG. 11
the round robin fashion with the system masters except the 15 allows reads and writes to main memory 112 from CPU 110.
following conditions: This interface Supports multiple outstanding read requests.

DSP. IO or VI was the master for the previous access which In the illustrative embodiment, a new read request can be
then cannot arbitrate again, issued every cycle and a new write request can be issued every
CP (or TC) read dial knob does not equal to 1.00 and there 4 clocks (4 cycles to transfer the cache-line on the bus). The

are other requests by other masters with dial knob equals to memory controller 152 performs flow control by asserting
1.00, it will then have a lowest priority mem pi reqfull. Write data are not acknowledged. Read data
DSP (or IO or VI) read has the same priority as any other are acknowledged with the transfer of the first oct-byte of the

GFX masters (CP and TC) and hence arbitrates the memory in cache. If the request address is not 32B aligned, critical
the round robin fashion with the GFX masters except the double word will be returned first. All read data are processed
following conditions: 25 in-order. Write data are buffered and delayed to increase
DSP (or IO or VI) was the master for the previous access memory efficiency. pi mem flush is asserted for one cycle to

which then cannot arbitrate again. flush the write buffer. mem pi flush ack is issued for one
Write Buffer has lower priority then CPU, GFX or system cycle to signal that the write buffer is flushed.

masters except the following conditions: All interface control signals should be registered to any
Write Buffer is completely full and it will arbitrate with 30 avoid timing problem due to long wire. For example, memory

others in the round-robin fashion controller 152 should register the pi mem req signal first,
CPU read address matches a write address in write buffer and the generated mem. piack signal should also be regis

and it will have the highest priority tered on both the memory controller 152 side and the Module
Any other masters with higher priority have the dial knob 150 side.

less than 1.00 35 However, due to the memory bandwidth and CPU perfor
Refresh has the lowest priority except the following con- mance reasons, pi mem addr will not be registered and will

ditions: be sent immediately to the main memory, this will reduce one
Number of total refresh requests reaches the threshold cycle of latency.

value, its priority will be bumped up to just below CPU read. The signals exchanged in the illustrative embodiment
Any other masters with higher priority have the dial knob between the memory controller 152 and the processor inter

less than 1.00 face 150 are shown in the table below.

signal description

pi mem addr25:1

pi men req

pi men rd
pi men reg

pi mem fifoWr
mem pi reqfull
mem pi ack

mem pi data 63:0

pi mem data 63:0

Address of cache-line for read/write. Read is always double word aligned (critical
double word first). Write is always 32 byte aligned. For main memory read,
pi mem addr25:3 will be used. For main memory write, pi mem addr25:5)
will be used. For memory register read/write, pi mem addr8:1 will be used.
Asserted for one cycle to issue a cache-line read/write request. pi mem addr,
pi mem fifoWr and pi mem rd are valid for that cycle. For a write request, the
first Oct-byte of the data is also valid on the pi mem data bus in this cycle.
O is write: 1 is read
O: memory access: 1: register access
During register writes the lower 8 bits of the address holds the register address and
pi mem data 63:48 hold the register value.

: Memory writes for CPFIFO, valid only during pi mem req cycle.
When this signal is asserted to 1, two more read and writes requests can be issued.
Asserted for one cycle to signal return of data from memory during read. Bytes Oto
7 of the cache-line are sent in that cycle. Bytes 8-15, 16-23 and 24-31 are sent in
he following cycles on the mem pi data bus. If the read address is not 32B

aligned, critical double word will be returned first. No acknowledge signal will be
asserted for memory writes. All read requests are processed in-order.
8 byte bus to transfer data from memory. A cache-line is transferred on this bus in 4
back-to-back clocks. Critical double word will come first.

8 byte bus to transfer data to memory. A cache-line is transferred on this bus in 4
back-to-back clocks. The pi mem msk1:0 bits determine validity of the two 32
bit words.

US 8,098,255 B2
25 26

-continued

signal description

pi mem msk1:O 32-bit word write mask bits for pi mem data 63:O. pi mem msk1 is write mask
for pi mem data 63:32.pi mem msk O is write mask for pi mem data31:O.
Mask equals 0 for write enable.

pi mem flush Asserted by the PI for one cycle to flush the write buffer in memory controller.
mem pi flush ack Asserted by mem for one cycle, when the write buffer is flushed.
mem pi int Interrupt from mem to pi.
pi mem memrstb Pi mem memrstb caused by power-on-reset or software-reset. Disabled by

software writing to memrstb register in PI.

Turning next to the audio DSP 156/memory controller
interface 152, the following table illustrates exemplary sig
nals exchanged between these two components together with 15
a signal description.

Signal Name description

dsp memAddr25:5) address of cache-line for read/write. Bits (4:0) are 0 and are not transmitted.
disp memReq Asserted for one cycle to issue a cache-line read/write request. disp memAddr is

valid for that cycle.
disp memRod O is write: 1 is read
mem dispAck Asserted for one cycle to signal return of data from memory during read. Bytes 7

to 0 of the cache-line are sent in that cycle. Bytes 15-8, 23-16 and 31-24 are sent
in the following cycles on the mem displata bus.

mem dspData 63:0) 8 byte bus to transfer data from memory. A cache-line is transferred on this bus
in 4 back-to-back clocks.

dsp memData 63:0) 8 byte bus to transfer data to memory. A cache-line is transferred on this bus in 4
back-to-back clocks. The dsp memMsk1:Obits determine validity of the two
32-bit words. Write enable when mask bit equals zero.

dsp memMsk1:0 32-bit word write mask bits for dsp memData 63:O. dsp memMsk1 is write
mask for dsp memData 63:32. dsp memMask O is write mask for
dsp meml)ata31:0. Mask equals zero means write enable.

dsp memFlushWrBuf At the end of a write burst. This signal is asserted for one cycle, and causes the
memory controller to flush the write buffer.

mem dspFlushWrack This signal is asserted for one cycle when the memory controller has completed
flushing the write buffer in response to the assertion of dsp memFlushWrBuf.

In the exemplary implementation, with respect to the DSP/ troller 152 should register the dsp memReq signal first, and
memory controller 152 interface, at most one outstanding the generated mem_dspAck signal should also be registered
transfer is permitted, i.e., the next transfer cannot start until on both the memory controller side and the Module 156 side.
the previous transfer completes (with endspAck signal). Accordingly, there is a minimum of one clock delay between
There are at least two levels of write buffering on the memory
controller 152 side to buffer the write data. That is, the inter- dsp memReq and mem dispAck and between mem dispAck

and the next dsp memReq. face should be able to buffer the write data from the Module
156 and delay issuing the ack signal if the buffer is full. 45 Turning next to the input-output interface 802/memory

All interface control signals should be registered to avoid controller interface 152, the following table illustrates exem
timing problem due to long wire. For example, memory con- plary signals exchanged.

Signal name Description

io memAddr25:5) Address of cache-line for read/write. Bits (4:0) are O and are not transmitted.
io memReq Asserted for one cycle to issue a cache-line read/write request. io memAddr is

valid for that cycle.
io memRod O is write: 1 is read
mem ioAck Asserted for one cycle to signal return of data from memory during read. Bytes 7 to

O of the cache-line are sent in that cycle. Bytes 15-8, 23-16 and 31-24 are sent in
the following cycles on the mem iodata bus.

mem ioData 63:0 8 byte bus to transfer data from memory. A cache-line is transferred on this bus in 4
back-to-back clocks.

io memData 63:0 8 byte bus to transfer data to memory. A cache-line is transferred on this bus in 4
back-to-back clocks.

io memFlushWrBuf At the end of a write burst. This signal is asserted for one cycle, and causes the
memory controller to flush the write buffer.

mem ioFlushWrack This signal is asserted for one cycle when the memory controller has completed
flushing the write buffer in response to the assertion of io memFlushWrBuf.

US 8,098,255 B2
27

With respect to the I/O interface 802/memory controller
152 signals, at most one outstanding transfer is permitted in
the exemplary embodiment, i.e., the next transfer cannot start
until the previous transfer completes (with mem ioAck sig
nal). There are at least two levels of write buffering on the
memory controller side to buffer the write data. That is, the
interface should be able to buffer the write data from the
Module 802 and delay issuing the acknowledge signal if the
buffer is full.

FIG. 12 is a block diagram showing an exemplary set of
communication signals exchanged between memory control
ler 152 and video interface 164. The interface signals are
described in the table below.

This interface allows reads from main memory from the
video interface. All reads are cache-line sized (32 bytes) and
are transferred over a 64-bit bus.

signal description

Address of cache-line for read.
Asserted for one cycle to issue a cache-line
read request. Pi mem addr is valid for that
cycle.
Asserted for one cycle to signal return of data
from memory. Bytes 7 to 0 of the cache-line are
sent in that cycle. Bytes 15-8, 23-16 and 31-24
are sent in the following cycles on the
mem pi data bus. All read requests are
processed in-order
8 byte bus to transfer data from memory. A
cache-line is transferred on this bus in 4 back-to
back clocks.

vi mem addr25:5)
vi men req

mem. Vi ack

mem. Vi data 63:0

This memory controller 152/video interface 164 supports
single outstanding read requests. A new read request can be
issued after the acknowledge for the last one is received.

All interface control signals should be registered to avoid
timing problem due to long wire. For example, memory con
troller 152 should register the vi mem req signal first, and
the generated mem. Vi ack signal should also be registered
on both the memory controller side and the Module 164 side.

Byte ordering of data on the read and write buses is shown
below.

cycleO the IRIBIBIBIBIB,
cycle1 B8 B9|B10B11B12B13B14B15

cycle2

cycle3

FIG. 13 is a block diagram showing an exemplary set of
communication signals exchanged between memory control
ler 152 and cache/command processor 200. The table below
illustrates exemplary signals exchanged between these com
ponents.

Name: Description

pe mem addr (25:5)
pe men req

10

15

25

30

35

40

45

50

55

28

Name: Description

cp mem addr (25:5). Address of cache-line for read. Bits (4:0) are O
and are not transmitted.

cp men req Asserted for one cycle to issue a cache-line read
request. cp mem addr is valid for that cycle.

mem cp reqFull When asserted, the read request queue is almost
full. Only 2 more requests can be sent.

mem cp ack Asserted for one cycle to signal return of data
from memory. Bytes 15 to 0 of the cache-line
are sent in the next cycle. Bytes 31-16 are sent
after two cycles.

mem cp fifoWr Asserted for one cycle indicating a new data has
been written to CP FIFO in the main memory by
the CPU for CP to access.

mem cp data (127:0) 16 byte bus to transfer data from memory.
A cache-line is transferred on this bus in 2

back-to-back clocks.

FIG. 14 is a block diagram showing an exemplary set of
communication signals exchanged between memory control
ler 152 and the texture unit 500. The table below illustrates
exemplary signals exchanged between these components.

l8le: format: description:

mem to reqFull | When asserted, the read request queue
is almost full. Only 2 more requests can
be sent.

mem to ack 1 Asserted for one cycle to signal return
of requested data from memory. Bytes
O to 15 of the cache-line are sent in the

next cycle. Bytes 16 to 31 are sent the
cycle after that.
16-byte bus to transfer data from
memory. A cache-line is transferred on
this bus in 2 back-to-back clocks.

Asserted for one cycle to issue a

mem to data 128

tC men req 1
cache-line read request to mem addr
is valid for that cycle.
Address of cache-line for read. 21 bits

maps 32 B into 64 MB address space.
to mem addr25:5) 21

FIG. 15 is a block diagram showing an exemplary set of
communication signals exchanged between memory control
ler 152 and the pixel engine (PE) 700. It is used to transfer
filtered frame buffer images to main memory for display. It
also converts frame buffer format to texture format and writes
it into main memory 112. The table below illustrates exem
plary signals exchanged between these components.

Address of the cache-line for write, bit 4 to bit 0 are always zero.
Asserted for one cycle to issue a cache-line write request.pe mem addr is valid for that cycle. The
first /2 of the cache-line is on the data bus in this cycle.

US 8,098,255 B2
29

-continued

Name: Description

pe mem data (127:0)

30

Data bus. The first /3 of the cache-line is transferred when pe mem req is asserted. The second /2
will be transferred in the next cycle. The 2/3 cache-lines are always transferred in back to back
cycles

pe mem flush
flush the write buffer.

mem pe flushAck
flushing the write buffer.

mem pe reqFull

At the end of a write burst. This signal is asserted for one cycle, so that the memory controller will

Memory controller will asserted this signal for one cycle after receiving pe mem flush and

When asserted, the write queue is almost full. If the signal is asserted in the same cycle as request,
no more requests will come until the signal is de-asserted. When the signal is asserted in the cycle
after request, one more request can be issued.

The memory controller 152 sends address and control sig
nals directly to external memory. Among the control signals
shown are the control signals for Switching the bus between a
read to a write state. The following table illustrates exemplary
signals exchanged between these components. Included
among the signals are the read/write signals which are needed
to switch the bidirectional memory bus from a read to write
State.

Name Direction Bits Description

Mema topad O 22 Memory address, bit 0 is always
Zero

Memrw topad O 1 O: Write 1: Read
Memadsb topad O 2 Bit 1 selects development memory,

bit O Selects main memory, active
low

Memrfsh topad O 1 Refresh cycle
memdrvctl topad O 3 Drive strength control for address

pads
memateb topad O 1 Active Terminator Enable, active

low

Other Example Compatible Implementations

Certain of the above-described system components 50
could be implemented as other than the home video game
console configuration described above. For example, one
could run graphics application or other Software written for
system 50 on a platform with a different configuration that
emulates system 50 or is otherwise compatible with it. If the
other platform can Successfully emulate, simulate and/or pro
vide some or all of the hardware and software resources of
system 50, then the other platform will be able to successfully
execute the software.
As one example, an emulator may provide a hardware

and/or software configuration (platform) that is different
from the hardware and/or software configuration (platform)
of system 50. The emulator system might include software
and/or hardware components that emulate or simulate some
or all of hardware and/or software components of the system
for which the application software was written. For example,
the emulator system could comprise a general purpose digital
computer Such as a personal computer, which executes a
Software emulator program that simulates the hardware and/
or firmware of system 50.
Some general purpose digital computers (e.g., IBM or

MacIntosh personal computers and compatibles) are now
equipped with 3D graphics cards that provide 3D graphics
pipelines compliant with DirectX or other standard 3D graph
ics command APIs. They may also be equipped with stereo
phonic Sound cards that provide high quality Stereophonic

15

25

30

35

40

45

50

55

60

65

Sound based on a standard set of Sound commands. Such
multimedia-hardware-equipped personal computers running
emulator Software may have sufficient performance to
approximate the graphics and Sound performance of system
50. Emulator software controls the hardware resources on the
personal computer platform to simulate the processing, 3D
graphics, Sound, peripheral and other capabilities of the home
Video game console platform for which the game program
mer wrote the game software.

FIG. 16A illustrates an example overall emulation process
using a host platform 1201, an emulator component 1303, and
a game software executable binary image provided on a stor
age medium 62. Host 1201 may be a general or special pur
pose digital computing device such as, for example, a per
Sonal computer, a video game console, or any other platform
with sufficient computing power. Emulator 1303 may be soft
ware and/or hardware that runs on host platform 1201, and
provides a real-time conversion of commands, data and other
information from storage medium 62 into a form that can be
processed by host 1201. For example, emulator 1303 fetches
“source' binary-image program instructions intended for
execution by system 50 from storage medium 62 and converts
these program instructions to a target format that can be
executed or otherwise processed by host 1201.
As one example, in the case where the software is written

for execution on a platform using an IBM PowerPC or other
specific processor and the host 1201 is a personal computer
using a different (e.g., Intel) processor, emulator 1303 fetches
one or a sequence of binary-image program instructions from
storage medium 1305 and converts these program instruc
tions to one or more equivalent Intel binary-image program
instructions. The emulator 1303 also fetches and/or generates
graphics commands and audio commands intended for pro
cessing by the graphics and audio processor 114, and converts
these commands into a format or formats that can be pro
cessed by hardware and/or software graphics and audio pro
cessing resources available on host 1201. As one example,
emulator 1303 may convert these commands into commands
that can be processed by specific graphics and/or or Sound
hardware of the host 1201 (e.g., using standard DirectX.
OpenGL and/or sound APIs).
An emulator 1303 used to provide some or all of the fea

tures of the video game system described above may also be
provided with a graphic user interface (GUI) that simplifies or
automates the selection of various options and screen modes
for games run using the emulator. In one example, such an
emulator 1303 may further include enhanced functionality as
compared with the host platform for which the software was
originally intended.

FIG. 16B illustrates an emulation host system 1201 Suit
able for use with emulator 1303. System 1201 includes a
processing unit 1203 and a system memory 1205. A system
bus 1207 couples various system components including sys

US 8,098,255 B2
31

tem memory 1205 to processing unit 1203. System bus 1207
may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. System
memory 1207 includes read only memory (ROM) 1252 and
random access memory (RAM) 1254. A basic input/output
system (BIOS) 1256, containing the basic routines that help
to transfer information between elements within personal
computer system 1201, Such as during start-up, is stored in the
ROM 1252. System 1201 further includes various drives and
associated computer-readable media. A hard disk drive 1209
reads from and writes to a (typically fixed) magnetic hard disk
1211. An additional (possible optional) magnetic disk drive
1213 reads from and writes to a removable “floppy” or other
magnetic disk 1215. An optical disk drive 1217 reads from
and, in Some configurations, writes to a removable optical
disk 1219 such as a CD ROM or other optical media. Hard
disk drive 1209 and optical disk drive 1217 are connected to
system bus 1207 by a hard disk drive interface 1221 and an
optical drive interface 1225, respectively. The drives and their
associated computer-readable media provide nonvolatile
storage of computer-readable instructions, data structures,
program modules, game programs and other data for personal
computer system 1201. In other configurations, other types of
computer-readable media that can store data that is accessible
by a computer (e.g., magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, random access
memories (RAMs), read only memories (ROMs) and the like)
may also be used.
A number of program modules including emulator 1303

may be stored on the hard disk 1211, removable magnetic
disk 1215, optical disk 1219 and/or the ROM 1252 and/or the
RAM 1254 of system memory 1205. Such program modules
may include an operating system providing graphics and
Sound APIs, one or more application programs, other pro
gram modules, program data and game data. A user may enter
commands and information into personal computer system
1201 through input devices such as a keyboard 1227, pointing
device 1229, microphones, joysticks, game controllers, sat
ellite dishes, scanners, or the like. These and other input
devices can be connected to processing unit 1203 through a
serial port interface 1231 that is coupled to system bus 1207,
but may be connected by other interfaces, such as a parallel
port, game port Fire wire bus or a universal serial bus (USB).
A monitor 1233 or other type of display device is also con
nected to system bus 1207 via an interface, such as a video
adapter 1235.

System 1201 may also include a modem 1154 or other
network interface means for establishing communications
over a network 1152 such as the Internet. Modem 1154,
which may be internal or external, is connected to system bus
123 via serial port interface 1231. A network interface 1156
may also be provided for allowing system 1201 to communi
cate with a remote computing device 1150 (e.g., another
system 1201) via a local area network 1158 (or such commu
nication may be via wide area network 1152 or other com
munications path Such as dial-up or other communications
means). System 1201 will typically include other peripheral
output devices, such as printers and other standard peripheral
devices.

In one example, video adapter 1235 may include a 3D
graphics pipeline chip set providing fast 3D graphics render
ing in response to 3D graphics commands issued based on a
standard 3D graphics application programmer interface Such
as Microsoft's DirectX 7.0 or other version. A set of stereo
loudspeakers 1237 is also connected to system bus 1207 via a
Sound generating interface Such as a conventional “sound

10

15

25

30

35

40

45

50

55

60

65

32
card” providing hardware and embedded software support for
generating high quality stereophonic Sound based on Sound
commands provided by bus 1207. These hardware capabili
ties allow system 1201 to provide sufficient graphics and
Sound speed performance to play Software stored in storage
medium 62.
While the invention has been described in connection with

what is presently considered to be the most practical and
preferred embodiment, it is to be understood that the inven
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the scope of the
appended claims.

We claim:
1. In a graphics system including a main processor, a

graphics processing system including a command processor,
a texture unit and a pixel engine for generating graphics
images on a display in cooperation with said main processor;
an audio processor, a video interface; an input/output inter
face; and a main memory, a memory controller comprising:

a plurality of main memory read queues each operatively
coupled to a respective read requester, said plurality of
main memory read queues including a first main
memory read queue which is operatively coupled to
receive read requests from said command processor, a
second main memory read queue which is operatively
coupled to receive read requests from said texture unit, a
third main memory read queue which is operatively
coupled to receive read requests from said audio proces
Sor, a fourth main memory read queue which is opera
tively coupled to receive read requests from said input/
output interface, and a fifth main memory read queue
which is operatively coupled to receive read requests
from said video interface;

a plurality of main memory write queues each operatively
coupled to a respective write requester, said plurality of
main memory write queues including a first main
memory write queue which is operatively coupled to
receive write requests from said pixel engine, a second
main memory write queue which is operatively coupled
to receive write requests from said audio processor and
a third main memory write queue which is operatively
coupled to receive write requests from said input/output
interface;

a global write queue coupled to said plurality of main
memory write queues for storing write requests for main
memory access transferred thereto from said plurality of
main memory write queues; and

a control circuit for controlling the transfer of write
requests to said global write queue, wherein said control
circuit is operable to control the transfer of write
requests from said plurality of main memory write
queues to said global write queue to reduce the fre
quency of Switching from main memory write opera
tions to main memory read operations,

wherein said control circuit further comprises an arbitra
tion circuit for arbitrating access to said main memory
from among said main processor, said plurality of main
memory read queues and said global write queue.

2. A memory controller according to claim 1, wherein said
arbitration circuitry is operable to control the frequency with
which one or more of said read and write requesters are
enabled to participate in the arbitrating for main memory
aCCCSS,

US 8,098,255 B2
33

3. A memory controller according to claim 1, further
including a memory access control register associated with
one of said read and write requesters, wherein said arbitration
circuit is responsive to the contents of said memory access
control register for determining a frequency that said one of 5
said read and write requesters is permitted to participate in the
arbitrating for main memory access.

4. A memory controller according to claim 1, further
including a set of control registers, said control registers
being programmable by said main processor.

5. A memory controller according to claim 4, wherein said
control registers include a plurality of memory bandwidth
control registers which are accessed by said arbitration circuit
in determining which read or write requester will be granted
main memory access.

10

34
6. A memory controller according to claim 5, wherein each

of said memory bandwidth control registers is respectively
associated with one of said read and write requesters seeking
main memory access.

7. A memory controller according to claim 4, wherein said
control registers include at least one register associated with
a read or write requester for storing data for said requester
indicative of at least one of memory usage and memory band
width for that requester.

8. A memory controller according to claim 1, wherein a
write requester that is writing to main memory generates a
flush signal for initiating the flushing of that write requester's
main memory write queue.

k k k k k

