AchtBit Assembler
M © 2012 by Christian Wahimann

Inhaltsverzeichnis

1

3
4

cASIM SYNTAX. ¢ttt nrnnnnn
1 A OT0 1] £ 1 1=T 1 £ 7
2 G0] g 53 = 1] £
1.3 LADEIS. .o
) Y o [(ST YT
1.5 IMIPOI e
ST 1 1 0o [T
1.7 Defining Data.........uuuuiuiiiiii s
[By £ 0o 10 1 1
P Y (0] = Yo [T Y] 01T TSP
2.2 REQISTEIS. ... ittt
2.3 FlagS. . e —————
P S O 011 01 210 F= 1 [0 [

1 .asm Syntax

1.1 Comments

// this is a comment

1.2 Constants
Decimal integer: 12345

Hexadecimal integer: 0x7f

Binary integer: @--**---* or 00110001
String: "Hello world!"

Char: 'x'

1.3 Labels
Labels can store adresses and constants. They have the form ,labelName:*“. All labels are

global and must be defined somewhere (no matter if before or after usage).

Examples:
« Tlabell: LD A, (HL) // labell: is defined here
. CALL labell: // labell is used
« .def labell: 0xff33 // labell: is defined here directly (0xff33)
« dw labell: 0x00 // labell: will be stored as a constant

AchtBit Assembler

Seite 1 von 6

1.4 Adresses
.org adress, adress.: defines where the program will be stored from here on.

Example: .org 0x4000
0x4000.

.run adress: after the assembler program is completely loaded, the program pointer (PC)
will be set to adress.

1.5 Import

.import modulName: will include ,modulName_label.asm*. This file will be created each
time modulName.asm is loaded into achtBit.

Example: the program ,achtbit_rom.asm* is loaded on startup. So the file
»=achtbit_rom_label.asm" has already been stored. It contains all achtbit_rom-labels and
their corresponding adresses:

.def alist appendl: 0x00D7
.def alist append: 0x00D2
.def alist clear: 0x00C6

:déf zeichen: Ox057E
.def zeilenumbruch: 0x002A

Another program imports these labels and can use them like its own:
.import achtbit rom

éALL alist clear:

1.6 Include

.include modulName: inserts the program modulName.asm as if it was part of the current
program.

Example:

.include snake highscore // insert the program snake highscore.asm at this point

1.7 Defining Data
.db data... : store constants and labels as bytes (8 bit)
.dw data... : store constants and labels as words (16 bit)

.db ,Hello“ ©x@a ,world!“ © 48 65 6C 6C 6F OA 57 6F 72 6C 64 21 00
.dw Oxff32 sys_screen: 23662 32 FF 00 EO 6E 5C 71 02

1001110001

.db @--****-- 3C

.db @-*----*- 42

.db @-*----*- 42

.db @--****-- 3C

AchtBit Assembler Seite 2 von 6

2 Instructions

2.1 Storage Types

Rp,Rs: get data from register Rs and store the result in register Rp

Rp,n: take the constant n and store the result in register Rp

r,(nn): take the data from memory at nn and and store the result in register Rp
Ro,(Rs): get data from memory at register Rs and store the result in register Rp

Only valid with the LD-Command:

(nn),Rs: get data from register Rs and store the result in memory at nn
(Ro),Rs: get data from register Rs and store the result in memory at register Rp
(Rp),n: take the constant n and store the result in memory at register Rp

2.2 Registers
These registers can be used as double (16 bit) and as single registers (8 bit).

* AF (A: the accumulator, F: this register stores the flags)

- BC (B,C)
- DE (D,E)
« HL (H,L)

* SP (SpH, SpL): the stack pointer

IX is a 16 bit register. Used as a pointer it has a constant offset (-128 to 127). (f.e. LD (IX-
8),DE)

PC is the 16 bit program pointer.

2.3 Flags
Flags give extra information after several operations and affect some.
Z-Flag (Zero-Flag): it will be set after some operation gives a zero result.

C-Flag (Carry Flag): it will be set after there is an aritmetic overflow and has an effect on
some aritmetic instructions (- ADC, RHL, ...)

P-Flag (Parity-Flag): it will be set after some instruction returns an even result.
Z, C, P testsif aflag is set; NZ, NC, NP tests if a flag is not set.

AchtBit Assembler Seite 3 von 6

2.4 Commands
NOP: no operation; just uses time.
HLT: halt (pause) the system

CLC.: clear the carry flag
SETC: set the carry flag

LD Destination, Source: load data from source into the destination

ADD Destination, Source: add source to destination
ADC Destination, Source: add with carry flag

ADC B,C: C-Flag 1 1 ADC B,C: C-Flag 0 0
B 0000011 3 B 116000011 195
+C 0000100 4 +C 01000110 70
=B 0001000 8 =B 0001001
C-Flag 0 o0 C-Flag 1 1

SUB Destination, Source: substract source from destination
SBC Destination, Source: substract with carry flag

MUL Destination, Source: multiply destination by source

DIV Destination, Source: divide destination by source

MOD Destination, Source: get the rest of the division destination by source
AND Destination, Source: aritmetic and

OR Destination, Source: aritmetic or

XOR Destination, Source: aritmetic exclusive or

CMP Destination, Source: do a virtual ,SUB Destination, Source®, that only affects the
flags

CMP B,C ‘B>C \B<c \B::c
Flags \Nc, NZ \c, NZ \Nc, Z

SHL Destination: shift bitwise to the left and clear bit 0. The bit falling out is stored into the
carry flag.

SHR Destination: shift bitwise to the right and clear bit 7 / 15. The bit falling out is stored
into the carry flag.

AchtBit Assembler Seite 4 von 6

RHL Destination: roll bitwise to the left and store the carry flag in bit 0. The bit falling out
is stored into the carry flag.

RHR Destination: roll bitwise to the right and clear bit 7 / 15. The bit falling out is stored

into the carry flag.

SHL RHL
c | 7 5 4 3 2 1 06, C |C 6 5 4 3 2 1 0 |C
1 06 06 1 1 0 06 1|1 ©® 06 1 1 6 06 1|1
1,6 0 1 1 606 0 1 0 1 @ 1 1 0 o0 1 1

INC Destination: increment the destination.

DEC Destination: decrement the destination.

JP [flag] adress: jump to the adress, when given test if the flag is set / unset

CALL [flag] adress: store PC on stack and jump to the adress
JR [flag] offset: add the offset (-128 to 127) to PC; this is a relative jump
RET [flag]: restore PC from stack (return from a call).

RETI: return from interrupt (get PC from stack and enable further interrupts)

PUSH Source: put the source onto the stack

POP Destination: get data from stack and store it into destination.

IN register,(n): get data from port n and store it in the register.

OUT (n),register: get data from the register and send it to port n.

3 Ports
Device Port IN register,(port) OUT (port),register
Keyboard |0 get next char 255: clear buffer
Random |1 get random number [0..255] -
Sound 2 get loudness of next note Set loudness of next note

3 get length of next note set length of next note

4 get length unit of next note (1/n) set length unit of next note (1/n)

5 1 = playback finished 0 = stop playback and clear queue

0 = still playing 1..255 = note to append for playback

AchtBit Assembler

Seite 5von 6

4 Example program ,helloworld.asm*

.import roms/achtBit_rom L B87.16.268l2 21:29. 33|

.org 0x4000
.run 0x4000

helloworld:
CALL clear scr:
CALL helloworld colors:
LD HL,0x0900
LD (sys cursor x:),HL
LD HL,helloworld str:
CALL print_str:
helloworld loop:
JR helloworld loop:

helloworld colors:
LD A,0 // color
LD B,8 // lines
LD HL,sys screen color:
CALL helloworld colors lines:
LD A,0x80 // color
LD B,8 // lines
LD HL,sys screen color:
ADD HL,480 // 12 line x 40 chars
CALL helloworld colors lines:
RET

helloworld colors lines:
helloworld colors outerLoop:

LD C,40
helloworld colors innerLoop:

LD (HL),A

INC HL

DEC C

JR NZ helloworld colors_innerLoop:

ADD A,0x10
DEC B
JR NZ helloworld colors outerLoop:

RET

helloworld str:
db " HELLO" 0x0a
db " WORLDI!I"O®O

AchtBit Assembler Seite 6 von 6

	1 .asm Syntax
	1.1 Comments
	1.2 Constants
	1.3 Labels
	1.4 Adresses
	1.5 Import
	1.6 Include
	1.7 Defining Data

	2 Instructions
	2.1 Storage Types
	2.2 Registers
	2.3 Flags
	2.4 Commands

	3 Ports
	4 Example program „helloworld.asm“

