Bochs uses a configuration file called bochsrc to know where to look for disk images, how the Bochs emulation layer should work, etc. When you first start up Bochs, it looks around for its configuration file (see Section 5.2), and parses it. Here are a few lines from a sample file:
ata0-master: type=disk, path="30M.sample", cylinders=615, heads=6, spt=17 boot: diskThe format is very strict, so be sure to put the right number of spaces and use lowercase letters. As you can see, most lines have a keyword telling what is being configured, followed by a colon, followed by a few
variable
=value
pairs, separated by
commas. For very simple options, sometimes just a single value is needed.
The source and binary distributions come with a sample
bochsrc, so you can just copy the sample file and edit the
settings you need to change.The syntax used for bochsrc can also be used as command line arguments for Bochs. If you have any spaces in your command line arguments, they should be enclosed in single quotes, for example:
bochs 'boot:floppy' 'floppya: 1_44=a.img, status=inserted'For other arguments, see section Command line arguments.
Starting with version 1.3, you can use environment variables in the bochsrc file, for example:
floppya: 1_44="$IMAGES/bootdisk.img", status=inserted boot: floppyStarting with version 2.0, two environment variables have a built-in default value which is set at compile time. $BXSHARE points to the "share" directory which is typically /usr/local/share/bochs on UNIX machines. See the $(sharedir) variable in the Makefile for the exact value. $BXSHARE is used by disk images to locate the directory where the BIOS images and keymaps can be found. If $BXSHARE is not defined, Bochs will supply the default value. Also, $LTDL_LIBRARY_PATH points to a list of directories (separated by colons if more than one) to search in for Bochs plugins. A compile-time default is provided if this variable is not defined by the user. On Win32 and MacOSX, the default for the share directory is determined by a platform-specific specific algorithm. On Win32, we use the registry to see what directory Bochs and its support files were installed in. On MacOSX, the share directory is the directory where the application is located.
Starting with version 2.0, you can can use #include in the bochsrc to read the configuration from other files. Now it is possible to put platform or installation defaults in a global config file (e.g. location of rom images). Put this on top of your config file if the global configuration is stored in /etc:
#include /etc/bochsrc
The section below lists all the supported bochsrc options.
Example:
plugin_ctrl: unmapped=0, e1000=1 # unload 'unmapped' and load 'e1000'Controls the presence of optional device plugins. These plugins are loaded directly with this option and some of them install a config option that is only available when the plugin device is loaded. The value "1" means to load the plugin and "0" will unload it (if loaded before).
These plugins will be loaded by default (if present): 'biosdev', 'extfpuirq', 'gameport', 'iodebug','parallel', 'serial', 'speaker' and 'unmapped'.
These plugins are also supported, but they are usually loaded directly with their bochsrc option: 'e1000', 'es1370', 'ne2k', 'pcidev', 'pcipnic', 'sb16', 'usb_ohci', 'usb_uhci' and 'usb_xhci'.
This plugin currently must be loaded with plugin_ctrl: 'voodoo'.
Examples:
memory: guest=512, host=256Set the amount of physical memory you want to emulate.
guest
Set amount of guest physical memory to emulate. The default is 32MB, the maximum amount limited only by physical address space limitations.
host
Set amount of host memory you want to allocate for guest RAM emulation. It is possible to allocate less memory than you want to emulate in guest system. This will fake guest to see the non-existing memory. Once guest system touches new memory block it will be dynamically taken from the memory pool. You will be warned (by FATAL PANIC) in case guest already used all allocated host memory and wants more.
Note: Due to limitations in the host OS, Bochs fails to allocate more than 1024MB on most 32-bit systems. In order to overcome this problem configure and build Bochs with
--enable-large-ramfile
option.
Examples:
megs: 32 megs: 128This option sets the 'guest' and 'host' memory parameters to the same value. In all other cases the 'memory' option should be used instead.
Example:
cpu: count=2, ips=10000000This defines the parameters of the cpu inside Bochs:
count
Set the number of processors:cores per processor:threads per core when Bochs is compiled for SMP emulation. Bochs currently supports up to 8 processors. If Bochs is compiled without SMP support, it won't accept values different from 1. For more information on SMP see Section 8.9.
quantum
Maximum amount of instructions allowed to execute by processor before returning control to another cpu. This option exists only in Bochs binary compiled with SMP support.
reset_on_triple_fault
Reset the CPU when triple fault occur (highly recommended) rather than PANIC. Remember that if you are trying to continue after triple fault the simulation will be completely bogus !
cpuid_limit_winnt
Determine whether to limit maximum CPUID function to 2. This mode is required to workaround WinNT installation and boot issues.
mwait_is_nop
When this option is enabled MWAIT will not put the CPU into a sleep state.
This option exists only if Bochs compiled with --enable-monitor-mwait
.
msrs
Define path to user CPU Model Specific Registers (MSRs) specification. See example in msrs.def.
ignore_bad_msrs
Ignore MSR references that Bochs does not understand; print a warning message instead of generating #GP exception. This option is enabled by default but will not be avaiable if configurable MSRs are enabled.
Emulated Instructions Per Second. This is the number of IPS that Bochs is
capable of running on your machine. You can recompile Bochs with
--enable-show-ips
option enabled, to find your workstation's capability.
Measured IPS value will then be logged into your log file
or in the status bar (if supported by the gui).
IPS is used to calibrate many time-dependent events within the Bochs simulation. For example, changing IPS affects the frequency of VGA updates, the duration of time before a key starts to autorepeat, and the measurement of BogoMips and other benchmarks. The table below lists some typical IPS settings for different machines[1].
Table 4-1. Example IPS Settings
Bochs | Speed | Machine/Compiler | Typical IPS |
---|---|---|---|
2.4.6 | 3.4Ghz | Intel Core i7 2600 with Win7x64/g++ 4.5.2 | 85 to 95 MIPS |
2.3.7 | 3.2Ghz | Intel Core 2 Q9770 with WinXP/g++ 3.4 | 50 to 55 MIPS |
2.3.7 | 2.6Ghz | Intel Core 2 Duo with WinXP/g++ 3.4 | 38 to 43 MIPS |
2.2.6 | 2.6Ghz | Intel Core 2 Duo with WinXP/g++ 3.4 | 21 to 25 MIPS |
2.2.6 | 2.1Ghz | Athlon XP with Linux 2.6/g++ 3.4 | 12 to 15 MIPS |
Example:
cpuid: level=6, mmx=1, sep=1, sse=sse4_2, apic=xapic, aes=1, movbe=1, xsave=1This defines features and functionality supported by Bochs emulated CPU:
level
Set emulated CPU level information returned by CPUID. Default value is determined by configure option --enable-cpu-level. Currently supported values are 5 (for Pentium and similar processors) and 6 (for P6 and later processors).
family
Set family information returned by CPUID. Default family value determined by configure option --enable-cpu-level.
model
Set model information returned by CPUID. Default model value is 3.
stepping
Set stepping information returned by CPUID. Default stepping value is 3.
vendor_string
Set the CPUID vendor string returned by CPUID(0x0). This should be a twelve-character ASCII string.
brand_string
Set the CPUID brand string returned by CPUID(0x80000002 .. 0x80000004]). This should be at most a forty-eight-character ASCII string.
mmx
Select MMX instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5.
apic
Select APIC configuration (LEGACY/XAPIC/XAPIC_EXT/X2APIC). This option exists only if Bochs compiled with BX_CPU_LEVEL >= 5.
sep
Select SYSENTER/SYSEXIT instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
sse
Select SSE instruction set support. Any of NONE/SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 could be selected. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
sse4a
Select AMD SSE4A instructions support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
misaligned_sse
Select AMD Misaligned SSE mode support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
aes
Select AES instruction set support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
movbe
Select MOVBE Intel(R) Atom instruction support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
adx
Select ADCX/ADOX instructions support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
xsave
Select XSAVE extensions support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
xsaveopt
Select XSAVEOPT instruction support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
avx
Select AVX/AVX2 instruction set support.
This option exists only if Bochs compiled with --enable-avx
option.
avx_f16c
Select AVX float16 convert instructions support.
This option exists only if Bochs compiled with --enable-avx
option.
avx_fma
Select AVX fused multiply add (FMA) instructions support.
This option exists only if Bochs compiled with --enable-avx
option.
bmi
Select BMI1/BMI2 instructions support.
This option exists only if Bochs compiled with --enable-avx
option.
fma4
Select AMD four operand FMA instructions support.
This option exists only if Bochs compiled with --enable-avx
option.
xop
Select AMD XOP instructions support.
This option exists only if Bochs compiled with --enable-avx
option.
tbm
Select AMD TBM instructions support.
This option exists only if Bochs compiled with --enable-avx
option.
x86_64
Enable x86-64 and long mode support. This option exists only if Bochs compiled with x86-64 support.
1g_pages
Enable 1G page size support in long mode. This option exists only if Bochs compiled with x86-64 support.
pcid
Enable Process-Context Identifiers (PCID) support in long mode. This option exists only if Bochs compiled with x86-64 support.
smep
Enable Supervisor Mode Execution Protection (SMEP) support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
smap
Enable Supervisor Mode Access Prevention (SMAP) support. This option exists only if Bochs compiled with BX_CPU_LEVEL >= 6.
mwait
Select MONITOR/MWAIT instructions support.
This option exists only if Bochs compiled with --enable-monitor-mwait
.
vmx
Select VMX extensions emulation support.
This option exists only if Bochs compiled with --enable-vmx
option.
svm
Select AMD SVM (Secure Virtual Machine) extensions emulation support.
This option exists only if Bochs compiled with --enable-svm
option.
Examples:
romimage: file=bios/BIOS-bochs-latest, address=0xe0000 romimage: file=$BXSHARE/BIOS-bochs-legacy, address=0xf0000 romimage: file=mybios.bin, address=0xfff80000 romimage: file=mybios.binThe ROM BIOS controls what the PC does when it first powers on. Normally, you can use a precompiled BIOS in the source or binary distribution called BIOS-bochs-latest. The default ROM BIOS is usually loaded starting at address 0xe0000, and it is exactly 128k long. The legacy version of the Bochs BIOS is usually loaded starting at address 0xf0000, and it is exactly 64k long. You can also use the environment variable $BXSHARE to specify the location of the BIOS. The usage of external large BIOS images (up to 512k) at memory top is now supported, but we still recommend to use the BIOS distributed with Bochs. The start address is optional, since it can be calculated from image size.
Example:
optromimage1: file=optionalrom.bin, address=0xd0000This enables Bochs to load up to 4 optional ROM images.
Be sure to use a read-only area, typically between C8000 and EFFFF. These optional ROM images should not overwrite the rombios (located at F0000-FFFFF) and the videobios (located at C0000-C7FFF).
Those ROM images will be initialized by the BIOS if they contain the right signature (0x55AA).
It can also be a convenient way to upload some arbitrary code/data in the simulation, that can be retrieved by the boot loader
Examples:
vgaromimage: file=bios/VGABIOS-elpin-2.40 vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest vgaromimage: file=$BXSHARE/VGABIOS-lgpl-latest-cirrusThis tells Bochs what VGA ROM BIOS to load (at 0xC0000).
A VGA BIOS from Elpin Systems, Inc. as well as a free LGPL'd VGA BIOS are provided in the source and binary distributions.
Note: Please check with the vga option to decide what VGA BIOS to use.
Examples:
vga: extension=cirrus, update_freq=10 vga: extension=vbeThis defines parameters related to the VGA display
The 'extension' option can be used to specify the VGA display extension. With the value 'none' you can use standard VGA with no extension. Other supported values are 'vbe' for Bochs VBE (needs VGABIOS-lgpl-latest as VGA BIOS, see vgaromimage option) and 'cirrus' for Cirrus SVGA support (needs VGABIOS-lgpl-latest-cirrus as VGA BIOS).
The VGA update frequency is based on the emulated clock and the default value is 5. Keep in mind that you must tweak the 'cpu: ips=N' directive to be as close to the number of emulated instructions-per-second your workstation can do, for this to be accurate. If the realtime sync is enabled with the clock option, the value is based on the real time. This parameter can be changed at runtime.
Examples:
2.88M 3.5" media: floppya: 2_88=a:, status=inserted 1.44M 3.5" media (write protected): floppya: 1_44=floppya.img, status=inserted, write_protected=1 1.2M 5.25" media: floppyb: 1_2=/dev/fd0, status=inserted 720K 3.5" media: floppya: 720k=/usr/local/bochs/images/win95.img, status=inserted auto-detect floppy media type: floppya: image=floppy.img, status=inserted use directory as VFAT media: floppya: 1_44=vvfat:path, status=inserted 1.44M 3.5" floppy drive, no media: floppya: type=1_44Floppya is the first drive, and floppyb is the second drive. If you're booting from a floppy, floppya should point to a bootable disk. To read from a disk image, write the name of the image file. In many operating systems Bochs can read directly from a raw floppy drive. For raw disk access, use the device name (Unix systems) or the drive letter and a colon (Windows systems).
Following floppy media types are supported: 2_88, 1_44, 1_2, 720k, 360k, 320k, 180k, 160k, as well as "image" to let Bochs auto-detect the type of floppy media (does only work with images, not with raw floppy drives). In that case the size must match one of the supported types.
You can set the initial status of the media to ejected
or inserted
. Usually you will want to use
inserted
.
The parameter 'type' can be used to enable the floppy drive without media and status specified. Usually the drive type is set up based on the media type.
The optional parameter 'write_protected' can be used to control the media write protect switch. By default it is turned off.
Examples:
ata0: enabled=1, ioaddr1=0x1f0, ioaddr2=0x3f0, irq=14 ata1: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15 ata2: enabled=1, ioaddr1=0x1e8, ioaddr2=0x3e0, irq=11 ata3: enabled=1, ioaddr1=0x168, ioaddr2=0x360, irq=9These options enables up to 4 ata channels. For each channel the two base io addresses and the irq must be specified. ata0 and ata1 are enabled by default, with the values shown above.
Examples:
ata0-master: type=disk, path=10M.img, mode=flat, cylinders=306, heads=4, spt=17, translation=none ata1-master: type=disk, path=2GB.cow, mode=vmware3, cylinders=5242, heads=16, spt=50, translation=echs ata1-slave: type=disk, path=3GB.img, mode=sparse, cylinders=6541, heads=16, spt=63, translation=auto ata2-master: type=disk, path=7GB.img, mode=undoable, cylinders=14563, heads=16, spt=63, translation=lba ata2-slave: type=cdrom, path=iso.sample, status=inserted
This defines the type and characteristics of all attached ata devices:
Table 4-2. ata devices configuration options
Option | Comments | Possible values |
---|---|---|
type | type of attached device | [disk | cdrom] |
path | path of the image | |
mode | image type, only valid for disks | [flat | concat | external | dll | sparse | vmware3 | vmware4 | undoable | growing | volatile | vpc | vvfat ] |
cylinders | only valid for disks | |
heads | only valid for disks | |
spt | only valid for disks | |
status | only valid for cdroms | [inserted | ejected] |
biosdetect | type of biosdetection | [none | auto], only for disks on ata0 [cmos] |
translation | type of translation done by the BIOS (legacy int13), only for disks | [none | lba | large | rechs | auto] |
model | string returned by identify device ATA command | |
journal | optional filename of the redolog for undoable, volatile and vvfat disks |
You have to tell the type of the attached device. For Bochs 2.0 or later, it can be
disk
or cdrom
.
You have to point the "path" at a hard disk image file, cdrom iso file, or physical cdrom device. To create a hard disk image, try running bximage (see Section 8.2). It will help you choose the size and then suggest a line that works with it.
In Unix it is possible to use a raw device as a Bochs hard disk, but we don't recommend it for safety reasons. In Windows, there is no easy way.
Disk geometry autodetection works with images created by bximage if CHS is set to 0/0/0 (cylinders are calculated using heads=16 and spt=63). For other hard disk images and modes the cylinders, heads, and spt are mandatory. In all cases the disk size reported from the image must be exactly C*H*S*512. Flat hard disk images from other projects might store additional information at the end of the file that makes this check fail. Only in this case it is safe to select "continue" when Bochs panics.
The disk translation scheme (implemented in legacy int13 BIOS functions, and used by older operating systems like MS-DOS), can be defined as:
none : no translation, for disks up to 528MB (1032192 sectors)
large : a standard bitshift algorithm, for disks up to 4.2GB (8257536 sectors)
rechs : a revised bitshift algorithm, using a 15 heads fake physical geometry, for disks up to 7.9GB (15482880 sectors). (don't use this unless you understand what you're doing)
lba : a standard lba-assisted algorithm, for disks up to 8.4GB (16450560 sectors)
auto : autoselection of best translation scheme. (it should be changed if system does not boot)
The mode option defines how the disk image is handled. Disks can be defined as:
flat : one file flat layout
concat : multiple files layout
external : developer's specific, through a C++ class
dll : developer's specific, through a DLL
sparse : stackable, commitable, rollbackable
vmware3 : vmware version 3 disk support
vmware4 : vmware version 4 disk support (aka VMDK)
undoable : read-only base file with commitable redolog
growing : growing file
volatile : read-only base file with volatile redolog
vpc: fixed / dynamic size VirtualPC image
vvfat: local directory appears as VFAT disk (with volatile redolog / optional commit)
Default values are:
mode=flat, biosdetect=auto, translation=auto, model="Generic 1234"
The biosdetect
option has currently no effect on the BIOS.
Note: Make sure the proper ata option is enabled when using a device on that ata channel.
Examples:
boot: floppy boot: cdrom, disk boot: network, disk boot: cdrom, floppy, diskThis defines the boot sequence. You can specify up to 3 boot drives, which can be 'floppy', 'disk', 'cdrom' or 'network' (boot ROM). Legacy 'a' and 'c' are also supported.
Example:
floppy_bootsig_check: disabled=1This disables the 0xaa55 signature check on boot floppies The check is enabled by default.
The configuration interface is a series of menus or dialog boxes that allows you to edit all the settings that control Bochs' behavior. Depending on the platform there are up to 3 choices of configuration interface: a text mode version called "textconfig" and two graphical versions called "win32config" and "wx". The text mode version uses stdin/stdout and is always compiled in, unless Bochs is compiled for wx only. The choice "win32config" is only available on win32 and it is the default there. The choice "wx" is only available when Bochs is compiled with wxWidgets support, see Section 3.4.11. If you do not write a config_interface line, Bochs will choose a default for you (usually textconfig).
Note: wxWidgets provides both a configuration interface and a display library. So if you use the "wx" configuration interface, you must also use the "wx" display library, see display_library option.
Examples:
config_interface: textconfig config_interface: win32config config_interface: wx
The display library is the code that displays the Bochs VGA screen. Bochs
has a selection of about 10 different display library implementations for
different platforms. If you run configure with multiple --with-*
options, the display_library option lets you choose which one you want to run with.
If you do not use a display_library line, Bochs will choose a default for
you.
Note: wxWidgets provides both a configuration interface and a display library. So if you use the "wx" display library, you must also use the "wx" configuration interface, see config_interface option.
Examples:
display_library: x display_library: sdlSome display libraries now support specific options to control their behaviour. These options are supported by more than one display library:
"gui_debug" - use GTK debugger gui (sdl, x) / Win32 debugger gui (sdl, win32) "hideIPS" - disable IPS output in status bar (rfb, sdl, win32, wx, x) "nokeyrepeat" - turn off host keyboard repeat (sdl, win32, x)See the examples below for other currently supported options.
display_library: rfb, options="timeout=60" # time to wait for client display_library: sdl, options="fullscreen" # startup in fullscreen mode
Table 4-3. display_library values
Option | Description |
---|---|
x | use X windows interface, cross platform |
win32 | use native win32 libraries |
carbon | use Carbon library (for MacOS X) |
macintosh | use MacOS pre-10 |
amigaos | use native AmigaOS libraries |
sdl | use SDL library, cross platform, details in Section 3.4.10 |
svga | use SVGALIB library for Linux, allows graphics without X windows |
term | text only, uses curses/ncurses library, cross platform |
rfb | provides an interface to AT&T's VNC viewer, cross platform, details in Section 3.4.9 |
wx | use wxWidgets library, cross platform, details in Section 3.4.11 |
nogui | no display at all |
Examples:
log: bochsout.txt log: - log: /dev/tty (Unix only) log: /dev/null (Unix only) log: nul (win32 only)Give the path of the log file you'd like Bochs debug and misc. verbiage to be to be written to. If you don't use this option or set the filename to '-' the output is written to the console. If you really don't want it, make it "/dev/null" (Unix) or "nul" (win32). :^(
Examples:
logprefix: %t-%e-@%i-%d logprefix: %i%e%dThis handles the format of the string prepended to each log line. You may use those special tokens :
%t : 11 decimal digits timer tick %i : 8 hexadecimal digits of current cpu eip (ignored in SMP configuration) %e : 1 character event type ('i'nfo, 'd'ebug, 'p'anic, 'e'rror) %d : 5 characters string of the device, between brackets
Default is %t%e%d
Examples:
debug: action=ignore, pci=report info: action=report error: action=report panic: action=askDuring simulation, Bochs encounters certain events that the user might want to know about. These events are divided into four levels of importance: debug, info, error, and panic. Debug messages are usually only useful when writing Bochs code or when trying to locate a problem. There may be thousands of debug messages per second, so be careful before turning them on. Info messages tell about interesting events that don't happen that frequently. Bochs produces an "error" message when it finds a condition that really shouldn't happen, but doesn't endanger the simulation. An example of an error might be if the emulated software produces an illegal disk command. Panic messages mean that Bochs cannot simulate correctly and should probably shut down. A panic can be a configuration problem (like a misspelled bochsrc line) or an emulation problem (like an unsupported video mode).
The debug, info, error, and panic lines in the bochsrc control what Bochs will do when it encounters each type of event. The allowed actions are: fatal (terminate bochs), ask (ask the user what to do), report (print information to the console or log file), or ignore (do nothing). The recommended settings are listed in the sample above.
It is also possible to specify the 'action' to do for each Bochs facility separately (e.g. crash on panics from everything except the cdrom, and only report those). See the log function module table for valid module names.
Tip: The safest action for panics is "fatal" or "ask". If you are getting lots of panics and get tired of telling it to continue each time, you can try action=report instead. If you allow Bochs to continue after a panic, don't be surprised if you get strange behavior or crashes after a panic occurs. Please report panic messages to the bochs-developers mailing list unless it is just a configuration problem like "could not find hard drive image."
Examples:
debugger_log: debugger.out debugger_log: /dev/null (Unix only) debugger_log: -Give the path of the log file you'd like Bochs to log debugger output. If you really don't want it, make it '/dev/null', or '-'.
Examples:
com1: enabled=1, mode=null com1: enabled=1, mode=mouse com1: enabled=1, mode=term, dev=/dev/ttyp9 com2: enabled=1, mode=file, dev=serial.out com3: enabled=1, mode=raw, dev=com1 com3: enabled=1, mode=socket-client, dev=localhost:8888 com3: enabled=1, mode=socket-server, dev=localhost:8888 com4: enabled=1, mode=pipe-client, dev=\\.\pipe\mypipe com4: enabled=1, mode=pipe-server, dev=\\.\pipe\mypipeThis defines a serial port (UART type 16550A).
When using the mode 'term', you can specify a device to use as com1. This can be a real serial line, or a pty. To use a pty (under X/Unix), create two windows (xterms, usually). One of them will run Bochs, and the other will act as com1. Find out the tty of the com1 window using the `tty' command, and use that as the `dev' parameter. Then do `sleep 1000000' in the com1 window to keep the shell from messing with things, and run Bochs in the other window. Serial I/O to com1 (port 0x3f8) will all go to the other window.
When using socket* and pipe* (win32 only) modes Bochs becomes either socket/named pipe client or server. In client mode it connects to an already running server (if connection fails Bochs treats com port as not connected). In server mode it opens socket/named pipe and waits until a client application connects to it before starting simulation. This mode is useful for remote debugging (e.g. with gdb's "target remote host:port" command or windbg's command line option -k com:pipe,port=\\.\pipe\pipename). Socket modes use simple TCP communication, pipe modes use duplex byte mode pipes.
Other serial modes are 'null' (no input/output), 'file' (output to a file specified as the 'dev' parameter), 'raw' (use the real serial port - under construction for win32), 'mouse' (standard serial mouse - requires mouse option setting 'type=serial' or 'type=serial_wheel').
Examples:
parport1: enabled=1, file="parport.out" parport2: enabled=1, file="/dev/lp0" parport1: enabled=0This defines a parallel (printer) port. When turned on and an output file is defined, the emulated printer port sends characters printed by the guest OS into the output file. On some platforms, a device filename can be used to send the data to the real parallel port (e.g. "/dev/lp0" on Linux, "lpt1" on win32 platforms).
Example:
sb16: midimode=1, midi=/dev/midi00, wavemode=1, wave=/dev/dsp, loglevel=2, log=sb16.log, dmatimer=600000
Note: The example is wrapped onto several lines for formatting reasons, but it should all be on one line in the actual bochsrc file.
midi: The filename is where the midi data is sent to. This can be a device or just a file if you want to record the midi data. On a Windows host this parameter is ignored when using output to the sound device. On a Linux host with ALSA present and this parameter starting with "alsa:", the default sequencer device will be used with the given client and port parameters instead of an OSS device.
midimode:
0 = No data should be output. 1 = output to device (system dependent - midi denotes the device driver). 2 = SMF file output, including headers. 3 = Output the midi data stream to the file (no midi headers and no delta times, just command and data bytes).
wave: This is the device/file where wave output is stored. On a Windows host this parameter is ignored when using output to the sound device. On a Linux host with ALSA present and this parameter set to "alsa", the default PCM output device will be used instead of an OSS device. If Bochs is compiled with SDL support, this parameter can be set to "sdl" to use the SDL audio subsystem for output.
wavemode:
0 = no data 1 = output to device (system dependent - wave denotes the device driver). 2 = VOC file output, including headers. 3 = Output the raw wave stream to the file.
log: The file to write the sb16 emulator messages to.
loglevel:
0 = No log. 1 = Resource changes, midi program and bank changes. 2 = Severe errors. 3 = All errors. 4 = All errors plus all port accesses. 5 = All errors and port accesses plus a lot of extra information.It is possible to change the loglevel at runtime.
dmatimer: Microseconds per second for a DMA cycle. Make it smaller to fix non-continuous sound. 750000 is usually a good value. This needs a reasonably correct setting for the ips parameter of the cpu option. It is possible to adjust the dmatimer value at runtime.
Examples:
es1370: enabled=1, wavedev="" # win32 es1370: enabled=1, wavedev=alsa # Linux with ALSA es1370: enabled=1, wavedev=sdl # use SDL audio (if present) for outputThis defines the ES1370 sound emulation. The parameter 'enabled' controls the presence of the device. The 'wavedev' parameter is similar to the 'wave' parameter of the SB16 soundcard. The emulation supports recording and playback (except DAC1+DAC2 output at the same time).
Examples:
keyboard: type=mf, serial_delay=200, paste_delay=100000 keyboard: keymap=gui/keymaps/x11-pc-de.map keyboard: user_shortcut=ctrl-alt-delThis defines parameters related to the emulated keyboard.
type
Type of keyboard return by a "identify keyboard" command to the keyboard controller. It must be one of "xt", "at" or "mf". Defaults to "mf". It should be ok for almost everybody. A known exception is french macs, that do have a "at"-like keyboard.
serial_delay
Approximate time in microseconds that it takes one character to be transferred from the keyboard to controller over the serial path.
paste_delay
Approximate time in microseconds between attempts to paste characters to the keyboard controller. This leaves time for the guest os to deal with the flow of characters. The ideal setting depends on how your operating system processes characters. The default of 100000 usec (.1 seconds) was chosen because it works consistently in Windows.
If your OS is losing characters during a paste, increase the paste delay until it stops losing characters.
keymap
This enables a remap of a physical localized keyboard to a virtualized us keyboard, as the PC architecture expects.
Keyboard mapping is available for the display libraries x, sdl (Linux port) and wx (GTK port). For SDL you have to use keymaps designed for SDL, the wxWidgets GUI uses the keymaps for X11.
user_shortcut
This defines the keyboard shortcut to be sent when you press the "user" button in the headerbar. The shortcut string is a combination of maximum 3 key names (listed below) separated with a '-' character.
Valid key names:
"alt", "bksl", "bksp", "ctrl", "del", "down", "end", "enter", "esc", "f1", ... "f12", "home", "ins", "left", "menu", "minus", "pgdwn", "pgup", "plus", "right", "shift", "space", "tab", "up", "win", "print" and "power".
This defines the parameters of the clock inside Bochs:
sync
This defines the method how to synchronize the Bochs internal time with realtime. With the value 'none' the Bochs time relies on the IPS value and no host time synchronization is used. The 'slowdown' method sacrifices performance to preserve reproducibility while allowing host time correlation. The 'realtime' method sacrifices reproducibility to preserve performance and host-time correlation. It is possible to enable both synchronization methods.
time0
Specifies the start (boot) time of the virtual machine. Use a time value as returned by the time(2) system call. If no time0 value is set or if time0 equal to 1 (special case) or if time0 equal 'local', the simulation will be started at the current local host time. If time0 equal to 2 (special case) or if time0 equal 'utc', the simulation will be started at the current utc time.
Syntax: clock: sync=[none|slowdown|realtime|both], time0=[timeValue|local|utc] Examples: clock: sync=none, time0=local # Now (localtime) clock: sync=slowdown, time0=315529200 # Tue Jan 1 00:00:00 1980 clock: sync=none, time0=631148400 # Mon Jan 1 00:00:00 1990 clock: sync=realtime, time0=938581955 # Wed Sep 29 07:12:35 1999 clock: sync=realtime, time0=946681200 # Sat Jan 1 00:00:00 2000 clock: sync=none, time0=1 # Now (localtime) clock: sync=none, time0=utc # Now (utc/gmt) Default value are sync=none, time0=local
Examples:
mouse: enabled=1 mouse: type=imps2, enabled=1 mouse: type=serial, enabled=1 mouse: enabled=0, toggle=ctrl+f10This defines parameters for the emulated mouse type, the initial status of the mouse capture and the runtime method to toggle it.
type
With the mouse type option you can select the type of mouse to emulate. The default value is 'ps2'. The other choices are 'imps2' (wheel mouse on PS/2), 'serial', 'serial_wheel' and 'serial_msys' (one com port requires setting 'mode=mouse', see com option). To connect a mouse to an USB port, see the usb_uhci, 'usb_ohci 'or 'usb_xhci' option (requires PCI and USB support).
enabled
The Bochs gui creates mouse "events" unless the 'enabled' option is set to 0. The hardware emulation itself is not disabled by this. Unless you have a particular reason for enabling the mouse by default, it is recommended that you leave it off. You can also toggle the mouse usage at runtime (see headerbar and the 'toggle' option below).
toggle
The default method to toggle the mouse capture at runtime is to press the CTRL key and the middle mouse button ('ctrl+mbutton'). This option allows to change the method to 'ctrl+f10' (like DOSBox) or 'ctrl+alt' (like QEMU) or 'f12' (replaces win32 'legacyF12' option).
Example:
private_colormap: enabled=1Requests that the GUI creates and uses its own non-shared colormap. This colormap will be used when in the Bochs window. If not enabled, a shared colormap scheme may be used. Once again,
enabled=1
turns on this feature and 0 turns it off.Examples:
pci: enabled=1, chipset=i440fx # default if compiled with PCI support pci: enabled=1, chipset=i440fx, slot1=pcivga, slot2=ne2kThis option controls the presence of a PCI chipset in Bochs. Currently it only supports the i440FX chipset. You can also specify the devices connected to PCI slots. Up to 5 slots are available. For these combined PCI/ISA devices assigning to slot is mandatory if you want to emulate the PCI model: cirrus, ne2k and pcivga. These PCI-only devices are also supported, but they are auto-assigned if you don't use the slot configuration: e1000, es1370, pcidev, pcipnic, usb_ohci and usb_xhci.
Example:
pcidev: vendor=0xbabe, device=0x2badEnables the mapping of a host PCI hardware device within the virtual PCI subsystem of the Bochs x86 emulator. The arguments
vendor
and device
should contain the PCI vendor ID respectively the PCI
device ID of the host PCI device you want to map within Bochs.Note: The PCI device mapping is still in a very early stage of development and thus it is very experimental. This feature requires Linux as a host operating system.
Besides the pcidev
config line you will need to load
a pcidev kernel module within your Linux host OS. This kernel module is
located in the bochs/host/linux/pcidev/
directory.
Examples:
usb_uhci: enabled=1, port1=mouse, port2=disk:usbstick.img usb_uhci: enabled=1, port1=hub:7, port2=disk:growing:usbdisk.img usb_uhci: enabled=1, port2=disk:undoable:usbdisk.img, options1=journal:redo.log usb_uhci: enabled=1, port1=printer:printdata.bin, port2=cdrom:image.isoThis option controls the presence of the USB root hub which is a part of the i440FX PCI chipset.
With the portX option you can connect devices to the hub (currently supported: 'mouse', 'tablet', 'keypad', 'disk', 'cdrom', 'hub' and 'printer').
The optionsX parameter can be used to assign specific options to the device connected to the corresponding USB port. Currently this feature is only used to set the speed reported by device and by the 'disk' device to specify an alternative redolog file of some image modes.
If you connect the mouse or tablet to one of the ports, Bochs forwards the mouse movement data to the USB device instead of the selected mouse type. When connecting the keypad to one of the ports, Bochs forwards the input of the numeric keypad to the USB device instead of the PS/2 keyboard.
To connect a 'flat' mode image as an USB hardisk you can use the 'disk' device with the path to the image separated with a colon. To use other disk image modes similar to ATA disks the syntax 'disk:mode:filename' must be used (see above).
To emulate an USB cdrom you can use the 'cdrom' device name and the path to an ISO image or raw device name also separated with a colon. An option to insert/eject media is available in the runtime configuration.
The device name 'hub' connects an external hub with max. 8 ports (default: 4) to the root hub. To specify the number of ports you have to add the value separated with a colon. Connecting devices to the external hub ports is only available in the runtime configuration.
The device 'printer' emulates the HP Deskjet 920C printer. The PCL data is sent to a file specified in bochsrc.txt. The current code appends the PCL code to the file if the file already existed. It would probably be nice to overwrite the file instead, asking user first.
Note: PCI support must be enabled to use USB UHCI.
Example:
usb_ohci: enabled=1, port1=printer:printdata.binThis option controls the presence of the USB OHCI host controller with a 2-port hub. The portX option accepts the same device types with the same syntax as the UHCI controller (see the usb_uhci option).
Example:
usb_xhci: enabled=1This option controls the presence of the experimental USB xHCI host controller with a 4-port hub. The portX option accepts the same device types with the same syntax as the UHCI controller (see the usb_uhci option).
Example:
gdbstub: enabled=1, port=1234, text_base=0, data_base=0, bss_base=0Default:
gdbstub: enabled=0This enables the GDB stub. See Section 8.13.
The ne2k line configures an emulated NE2000-compatible Ethernet adapter, which allows the guest machine to communicate on the network. To disable the NE2000 just comment out the ne2k line.
Examples:
ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=xl0 ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=fbsd, ethdev=en0 #macosx ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:00, ethmod=linux, ethdev=eth0 ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=win32, ethdev=MYCARD ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vde, ethdev="/tmp/vde.ctl" ne2k: ioaddr=0x300, irq=9, mac=b0:c4:20:00:00:01, ethmod=vnet, ethdev="c:/temp" ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tap, ethdev=tap0 ne2k: ioaddr=0x300, irq=9, mac=fe:fd:00:00:00:01, ethmod=tuntap, ethdev=/dev/net/tun0, script=./tunconfig ne2k: mac=fe:fd:00:00:00:01, ethmod=slirp, script=/usr/local/bin/slirp, bootrom=ne2k_pci.rom IOADDR, IRQ: You probably won't need to change ioaddr and irq, unless there are IRQ conflicts. These parameters are ignored if the NE2000 is assigned to a PCI slot. MAC: The MAC address MUST NOT match the address of any machine on the net. Also, the first byte must be an even number (bit 0 set means a multicast address), and you cannot use ff:ff:ff:ff:ff:ff because that's the broadcast address. For the ethertap module, you must use fe:fd:00:00:00:01. There may be other restrictions too. To be safe, just use the b0:c4... address. ETHMOD: The ethmod value defines which low level OS specific module to be used to access physical ethernet interface. You can also specify a network simulator or a module with no input/output ("null"). See the table below for currently supported values. ETHDEV: The ethdev value is the name of the network interface on your host platform. On UNIX machines, you can get the name by running ifconfig. On Windows machines, you must run niclist to get the name of the ethdev. Niclist source code is in misc/niclist.c and it is included in Windows binary releases. SCRIPT: The script value is optional, and is the name of a script that is executed after bochs initialize the network interface. You can use this script to configure this network interface, or enable masquerading. This is mainly useful for the tun/tap devices that only exist during Bochs execution. The network interface name is supplied to the script as first parameter. BOOTROM: The bootrom value is optional, and is the name of the ROM image to load. Note that this feature is only implemented for the PCI version of the NE2000.
The following table shows the available ethernet modules with description, whether the "ethdev" and "script" parameters are used or not and the Bochs version where this module was added.
Table 4-4. Ethernet modules
Module | Description | ethdev | script | Bochs version |
---|---|---|---|---|
fbsd | FreeBSD / OpenBSD packetmover. | Yes | No | 1.0 |
linux | Linux packetmover - 'root' privileges required, no connection to the host machine. | Yes | No | 1.3 |
null | Null packetmover. All packets are discarded, but logged to a few files. | No | No | 1.0 |
tap | TAP packetmover. | Yes | Yes | 1.4 |
tuntap | TUN/TAP packetmover - see Configuring and using a tuntap network interface. | Yes | Yes | 2.0 |
vde | Virtual Distributed Ethernet packetmover. | Yes | Yes | 2.2 |
vnet | ARP, ping (ICMP-echo), DHCP and read/write TFTP simulation. The virtual host uses 192.168.10.1. DHCP assigns 192.168.10.2 to the guest. The TFTP server uses the 'ethdev' value for the root directory and doesn't overwrite files. | Yes, for TFTP | No | 2.2 |
slirp | Ethernet backend for Slirp with builtin DHCP / TFTP servers. Adds user mode networking to Bochs using Slirp. Only tested with the most recent Slirp version with Debian patches applied. The fullbolt Slirp version should be used for maximum speed. The "script" parameter should point to the Slirp binary. The TFTP server uses the 'ethdev' value for the root directory and doesn't overwrite files. | No | Yes | 2.5 |
win32 | Win32 packetmover - WinPCap driver required. | Yes | No | 1.3 |
Example:
pcipnic: enabled=1, mac=b0:c4:20:00:00:00, ethmod=vnetTo support the Bochs/Etherboot pseudo-NIC, Bochs must be compiled with the
--enable-pnic
configure option. It accepts the same syntax (for mac,
ethmod, ethdev, script, bootrom) and supports the same networking modules as the
NE2000 adapter.Example:
e1000: enabled=1, mac=52:54:00:12:34:56, ethmod=slirp, script=/usr/local/bin/slirpTo support the Intel(R) 82540EM Gigabit Ethernet adapter, Bochs must be compiled with the
--enable-e1000
configure option. It accepts the same syntax
(for mac, ethmod, ethdev, script, bootrom) and supports the same networking modules
as the NE2000 adapter.Example:
cmosimage: file=cmos.img, rtc_init=time0This defines image file that can be loaded into the CMOS RAM at startup. The rtc_init parameter controls whether initialize the RTC with values stored in the image. By default the time0 argument given to the clock option is used. With 'rtc_init=image' the image is the source for the initial time.
Example:
user_plugin: name=testdevLoad user-defined plugin. This option is available only if Bochs is compiled with plugin support. Maximum 8 different plugins are supported. See the example in the Bochs sources how to write a plugin device.
Example:
magic_break: enabled=1This enables the "magic breakpoint" feature when using the debugger. The useless cpu instruction XCHG BX, BX causes Bochs to enter the debugger mode. This might be useful for software development.
Example:
port_e9_hack: enabled=1The 0xE9 port doesn't exists in normal ISA architecture. However, we define a convention here, to display on the console of the system running Bochs anything that is written to it. The idea is to provide debug output very early when writing BIOS or OS code for example, without having to bother with setting up a serial port or etc. Reading from port 0xE9 will will return 0xe9 to let you know if the feature is available. Leave this 0 unless you have a reason to use it.
Example:
debug_symbols: file=mysymbols.sym debug_symbols: file=mysymbols.sym, offset=0x1000This loads symbols from the specified file for use in Bochs' internal debugger. Symbols are loaded into global context. This is equivalent to issuing ldsym debugger command at start up.
[1] | IPS measurements depend on OS and compiler configuration in addition to host processor clock speed. |