FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWwW.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

[— g | v — | g

QL

User Guide

Introduction
Beginner's Guide
Reference Guide
Keywords
Concepts
Applications Software
QL Quill
QL Abacus
QL Archive
QL Easel
Information

sirnci=ir

QL

User Guide

PLEASE READ THIS BEFORE UNPACKING
THESE PAGES

Your QL User Guide is supplied unbound, to avoid damage in transit and to make rapid
updating easy. In addition to this packet containing the pages of the Guide itself, you
should aiso find a ring binder and then divider cards packed with your QL.

lnsert the dividers into the binder first. The recommended order is as follows:

Position Tab Label

Front introduction
Beginniners Guide
Keywords
Concepits . '
QL Quil 1367
QL Abacus
QL Archive
QL Eassl
Back information

This will put the divider tabs in a logical order If you wish, you may put the sections
in a different order, perhaps to put often used sections near the front; or even miss out
sections you do not expect o use.

Now look through the pages to identify the various sections; each begins with a title
page with the Sinclair logo at the top. The pages within each section will be packed
in the correct order, s0 be careful not to mix them up; the individual secticns, however,
may be in a different order 1o that shown above if a section or sections have recently
been reprinted.

Once each section is placed in the binder as you like it, this sheet may be discarded;
it does not form part of the Guide,

Sinclair Research has a policy of constant development and improvement of their
products. Therefore, the right is reserved to change manuals, hardware, software and
firmware at any time and without notice.

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

QL User Guide Second Edition
Published by Sinclair Research Limited 1984
25 Willis Road, Cambridge.
Edited by Stephen Berry (Sinclair Research Limited)

®Sinclair Research Limited
®Psion Limited

Printed and oound in Great Britain by
William Clowes Limited, Beccles and London

Designed and typeset by
Keywords, Manchester

No part of this User Guide may be reproduced in any form whatsoever without the
written permission of Sinclair Research Limited.

QL, QLUB, QL Net, Qdos and QL Microdrive are trade marks of
Sinclair Research Limited.

Quill, Archive, Easel and Abacus are trade marks of Psion Limited

Sirci=ir-

QL

Introduction

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

©1984 SINCLAIR RESEARCH LIMITED

INTRODUCTION
TO THE QL

When you unpack your QL computer you will find:

The QL User Guide

Two wallets

one of which contains:

QL Abacus
QL Archive
QL Eassl
QL Quill

and the other contains:
four blank QL Microdrive cartridges.

Three plastic feet

Y

these can be fitted under the QL to tilt the keybeard for more comfortable typing. The
pips in the top of the legs should be fitted inte the holes in the rubber feet, twisting them

to make them fit securely.

12/84

Introduction

A GUIDED
TOUR

An aerial lead

about two metres long with different connectors at either end. It is used for connecting
your QL to your televisions aerial sccket

A network lead

also about two metres long, with identical connectors at either end. it is used 10 connect
your QL to other QLs so that data and messages can be sent between them:.

On the back and sides of the computer there are a series of connectors.

There are two siots-on the right hand sice of the computer - the two QL Microdrives.
The cartridges for these Microdrives are used for storing programs and data on the
QL. Next to each siot there is a small light When the light is on the Microdrive is in
use and the cartridge should not be removed. The yellow light on the front lefthand
side indicates whether the QL is switched on.

- N

microdrive slots

TUroe

e

L h'_/‘! = /'} Ny
==

[f/_‘: -
o

e

A

power light

On the righthand end of the QL thers is a slot covered by a plastic strip. This siot is
for attaching up to six more QL Microdrives. ZX Microdrives are not suitable for use
with the QL but blank Microdrive cartridges can be used on either machine.

12/84

The connectors at the back of the computer are for attaching the following:

NET — connector for the QL Network

NET — connector for the QL Network

POWER - power supply for the computer

RGB - connection to a monochrome or colour monitor
UHF — connection to the aerial socket of a television set
SER1 - RS-232.C serial port

SER2 - RS-232.C serial port

CTL - conirol port for joystick

CTL2 - control port for joystick

ROM - QL ROM cartridge software (use reversed one fo 10)

ZX ROM canr[dges are.not companbfe": rith Qi. ROM cartrtdges

_and cannot be used

il HIIMIIIHHI!HII
Peripheral reset button
expansion slot

chrodnve expansion slot

The slot on the lefthand side of the QL is used for adding peripherals (equipment to
expand the computer’s capabilities) to the QL. One peripheral can be plugged directly
into the expansion slot.

The reset button is on the righthand end of the computer near the Microdrive expansion
slot. It is used to reset’ the QL to its original ‘switch on' state. Any programs in the machine
witl be lost if reset is pressed and sometimes data already recorded on Microdrive
cartridges can be corrupted, Use reset with caution and always remove Microdrive
cartridges before doing so.

To make the computer operate, various connections have to be made:

Your QL power supply has two leads. One is fitted with a small rectangutar connector
with three holes in it. The other is the mains lead and is supplied with bare ends to
which a suitable mains plug must be fitted.

Please do not connect the power supply lead to the computer until all other leads
and peripherals have been connected. Always connect the power supply lead to the
computer last of all.

Connect the mains plug as follows:

® The blue wire goes to the terminal marked N or neutral, or coloured blue or
black.

® The brown wire goes to the terminal marked L or live and coloured brown or red.
® The power supply is double insulated and does not need an earth connection.
® [f you are using a fused plug, it must be fitted with a three amp fuse,
® Make sure all connections are sound.
It necessary, get someone with electrical experience to help you.
Although the QL will work once the power supply is connected, you will not be able
to see what it is doing until you add a television set or a monitor.

A monitor has a screen like a television, but it cannot receive television signals. !t usually
has better resolution than a television set and so can display more text and is therefore
more expensive.

A colour television or monitor will of course be required 1o make use of the QL's colour
display, but the computer will work perfectly well in black and white, representing cotours
as shades of grey.

12/84

Introduction

SETTING UP

THE POWER
SUPPLY

THE DISPLAY

Introcuction

TUNING IN

Most television sets in current use will be suitable for the QL provided they are able
to receive B25 line UHF transmissions, ie. BBC2 and Channei 4.

Locate the aerial socket at the back of your TV and remove the aerial cable that may
be plugged into it. If your set has more than one socket, use the one labelled UHF
or 625. Plug in the Qs aerial lead. Use the end that looks similar 1o the original aerial
plug, and plug the other end into the socket marked UHF on the back of the computer

Plug the power supply into a mains socket and switch on. Remove any cartridges from
the Microdrive slots and push the small power supply connector into the three pin plug
marked POWER on the back of the QL. The yellow power light below the F5 key should
now be glowing and your set up should look like this:

Power

Television

UHF POWER

QL

When the computer has been on for a while, the case above the Microdrives will feel
warm; this is quite normal. The QL has no onioff switch but can be turned off by
unplugging the power supply connector. Remember that any program or data in the
machine will be iost when it is turned off and should first be saved on a Microdrive
cantridge (for details of how to do this see the Beginner’s Guige and Concept sections).
It the QL is not going to be used for a while you should also switch the power supply
off at the mains. :

The display signal to the television set is near channel 36. If your set has continuous
tuning, tune to channel 36. If your television has push buttons, choose an unused button
and tune this to the computer’s signal. You may need to consult your dealer or the TV
instruction manual to find cut how to do this.

Once you are correcily tuned in you should see the copyright screen.

F1...MONITOR |
F2...TV
© 1983 Sinclair Research Ltd.

The Copyright Screen

The QL doesnt use television sound because it has its own internal loudspeaker. You
can turn the television volume down if you wish.

12/84

A coloured pattern will appear after you switch on or reset the computer; this is the QL
testing its memory. The pattern will disappear after a few seconds io be replaced by
the copyright screen.

If you cannot get a picture at all, first check that your television can receive the normal
broadcast stations. If it can then try the computer with another television set

It you get a fuzzy or indistinct picture check that you are tuned in correctly; it may be
possible to pick up the computer’s signal in more than one place in the tuning range.
Also check that the aerial lead s firmiy plugged in, and that you are using the correct
socket on your television set (if it has more than one).

If you wish to use a monitar instead of a television set, the connections will depend on
whether it is colour or monochrome; details can be found in the Concepis section under
the heading Monitor. A monitor lead with a plug te fit the Ql's RGB socket is avallable
from Sinclair Research. The order form is in the Information section of this guide.

The QL needs to know if you are using a menitor or a television set. Press

for a monitor

or
for a television.

Microdrive 1 will run briefly and the red Microdrive light will glow; the QL is locking for
programs to load and run (this can be ignored for now). The computer will start up and
display its cursor, a flashing coloured square, and the computer is now ready 1o accept
commands,

Unlike previous Sinclair computers there is no single keyword entry on the QL. However,
various keys and groups of keys have special meanings:

The ENTER key is used to indicate to the computer that you want it to do something.
Perhaps you have typed in @ command and warnt the computer to execute it, or you
may want to teill the computer that you have finished typing in data.

The keyboard has two SHIFT keys which perform the same function. Pressing SHIFT
and an alphabetic key together will generate capital letters (Upper case characters). On
non-alphabetic keys SHIFT will cause the upper engraved character to be generated.
For example:

SHIFT] & [5] will give %

Pressing the CAPS LOCK key once will force alphabetic keys to generate capital letters
regardless of whether the SHIFT key is pressed. This will remain in effect until CAPS
LOCK is pressed again.

Hold down the CTRL key and then press the key. The character to the left of the
cursor will disappear and the cursor will move to the left. Hold down CTRL and press
the key. The cursor will not move; the character it was on will disappear and text
to the right will move to fill the gap.

The QL screen may be divided into different areas, or windows, at will. Once you have
switched on (or reset) and pressd F1 or F2, the screen will look like this:

010 511 010 51t
2 1 1 & 2
0
Hol
256
0 1 0
Monitor Television

12/84

introduciion

USING THE QL

KEYBOARD

Enter

Shift

Caps Lock

Delete

THE SCREEN

MICRODRIVES

STARTING WORK

The long thin window at the bottom is used to display commands typed into the computer
and initially will display the flashing cursor. When the cursor is visible the QL is ready
to accept commands or data; it disappears when the computer is busy. As you type,
the cursar will move along the line showing where the next character to be typed wil

appear,

if the machine ever faiis to respond correctly or you want to force a SuperBASIC program
to stop, hold down the CTRL key and press the space bar.

The computer should then display its cursor. if this doesnt work remove any Microdrive
cartridges and then prass reset

The message Bad Line appearng in the command window means that the computer
doesnt understand a command that you have typed in. Delete or correct the line using
the cursor keys.

The two QL Microdrives are called mavl__ on the left and mdv2_._ on the right

Cartridges must be placed correctly into the Microdrives. Hold the cartridge by the ribbed
plastic handle and remove it from its protective cover. The cartridges name label, or
the recess for its stick-on label, should face upwards. !

Cartridges should always e treated with care. You should never turn the QL on or off
with a cartridge in the Microdrives. Take care when inserting or removing cartridges;
wait until the Microdrive lights have gone out before removing the cartridge, be gentle
but firm. Never touch the tape in the cartridge and always return the cartridge to its
protective cover.

Before a blank cartridge can be used it must go through a process called formatting.
This process erases any data or programs on a cartridge so always be sure that all
cartridges are clearly labelied with their contents and check that cartridges to be
formatted contain no useful data. Instructions for formatting cartridges are contained
in the Information section.

All magnetic storage media including Micredrive cartridges eventually sufter from wear.
Hence it is strongly recommended that all important programs and data should be
stored on at least two cartridges, that is ‘backed up’. This means that if a cartridge
is damaged and the data lost then at least part of the data can be recovered from the
relevant back up cartridge. If you are continually adding data to a cartridge it must be
backed up often; unless you do so you will lose everything that was added since the
last backup if the main cartridge is damaged. Instructions for backing up cariridges
are contained in the Information section.

There are several ways of using your computer and the User Guide. You can use ready
made programs such as those supplied with the QL, or you can write your own programs
in SuperBASIC,

To use the QL programs, first read the /ntroduction to the QL Programs later in this
introduction and then the relevant section for each program concerned.

If you are a newcomer to computing and wish to write your own programs, you shouid
read the Beginners Guide. If you are familiar with BASIC programming, you may prefer
to read from Chapter 8 in the Beginners Guide — From BASIC to SuperBASIC. This
chapter describes the major differences between BASICs you may already be familiar
with and QL SuperBASIC. Alternatively, it you are feeling confident, the Keywords and
Concspts sections should be useful.

12/84

Intraduction

. If you have a problem using your QL or QL programs, then: ”: YOU HAVE
1 Refer to the appropriate sections in the QL User Guide. A PROBLEM

2 Consider joining the QL Users' Bureau for assistance on the QL programs. Full
details of the services offered by QLUB and instructions for joining are contained
in the Information section of the QL User Guide under the heading QLUB.

3 Refer to books published about the QL.

If your problems persist and you think they may be caused by a fault in either
your QL or in the QL program cartridges then refer to the Guarantee details
in the Information section of the QL User Guide.

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.mauritron.co.uk
TEL: 01844 - 351694

. FAX: 01844 - 352554

INTRODUCTION

TO THE QL
PROGRAMS

MICRODRIVES

LOADING

SCREEN LAYOUT

This introduction outlines the four programs supplied with the QL and describes their
common features.

The four programs are.

QL Quil - a wordprocessor
QL Abacus - A spreadsheet

QL Archive — a database

QL Easel -~ a graphics program

Individual sections in this guide describe each of the four programs in detail. Dont just
read them - try out the examples and experiment with each new icea.

Before you use any of the QL programs you should make at least ocne backup on a
blank cartridge and use this copy only. Keep the original program cartridge in a safe
place, and use it only for making copies. Any accidents will not then cause permanent
loss of your programs.

Each QL program has & built in duplicating routine which is used as follows:
® Place the master cartridge in Microdrive 2

® Place the blank cartridge, or one containing nothing that you wish to keep. if
Microdrive 1. Type

trun mdvZ_clone
® Press the ENTER key and the screen will display the message
FORMAT mdv1__type space to continue

® Press the space bar only when you are sure that the cartridge contains
nothing that you wish to keep, as everything on it will be erased. The
computer will format the cartridge and will then copy the program in sections,
dispiaying the name of each one as it does so.

® Wat until the Microdrive lights go out before removing the master cartridge
from Microdrive 1.

You should never use any of the original program cartridges except when making a
copy onto a blank cartridge.

All the programs are loaded similarly. There are two ways of doing this:

Without cartridges in the Microdrives, press reset. Place your copy of the program
cartridge in Microdrive 1, and then press either F1 or F2 as prompted. Microdrive 1
will automatically run and after a short pause a title display will appear on the screen
to confirm that the program is being loaded. Once the program is loaded into the
computer the program will start up by itseff,

When you become more familiar with the programs and when using a printer of the
network, you will sometimes find that commancds need to be given to the computer before
the programs start. You cannot switch off or reset the computer in this instance because
your commands would be lost. Instead place the program cartridge in Microdrive 1 and
type

Lrun mdv1_boot

press ENTER and loading will proceed as before.

In both cases the program will occasionally need to load extra informaticn from the
Microdrive so keep the program cartridge in the Microdrive siot until the: program has
finished.

The control area at the top of the screen will guide you through each program by
displaying the options that you will need most often and prompting you further if
necessary. In many cases the program will suggest a suitable answer when it asks for
information. Press ENTER to accept this suggestion or simply type in your own answer
and the computer’s suggestion will disappear

12/84

Pressing F2 will remove this area and wit make the central area larger. Pressing F2
again wil restore the control area.

The central area of the screen shows the information that you: are working on, for example,
the text of a document, the contents of a card index, a graph, or financial forecast. It
is shown in the style most suitable for the particular application.

The bottomn of the screen shows the input line where, for example, commands that you
type in are displayed.

Below this is the status area which reports on the current state of work. It displays things
like the name of the data or document on which you are working, how much unused
memaory remains, etc.

Three of the five function keys have the same meaning in all the QL programs. These are:

Key Function

A request help

F2 remove or restore the control area
F3 call up the commands for selection

The remaining two function keys are used for actions particular 1o each program.

The first option, displayed at the top left of the contral area, indicates that help is available
by pressing F1.

When you ask for HELP there will be a short pause before the display changes to show
the Help information.

Help will suggest other topics for which help is available. Type the name cf the topic
and press ENTER. You do not need to type in the whole name, just enough characters
for it to be distinguished from the other topics. You can repeat this as many times
as necessary.

Pressing ENTER without selecting a topic will take you out to the previous level. ESC
will take you right out of HELP and back into the program.

Help is always available, provided that the program cartridge is in Microdrive 1. Press
F1 and the most appropriate Help information will be displayed.

You can use the line editor to change or correct a line of text that you have typed in.
All the QL programs use the same line editor, but each program uses i in a way most
suitable for that application. In QL Qill you use the line editor, for example, for editing
the text in commands and QL Archive uses the editor extensively for editing database
programs.

The line editor uses the four cursor keys, together with the CTRL and SHIFT keys.

Keys Action

- Move the cursor one character to the left
- Move the cursor one character to the right
SHIFT & < Move the cursor one word to the ieft
SHIFT & — Move the cursor one word to the right
CTRL & ~ Delete the character to the left of the cursor
CTRL & — Delete the character under the cursor
CTRL &1 Delete the line to the left of the cursor
CTRL & ¢ Delete the line to the right of the cursor
SHIFT & CTRL & Delete the word to the left of the cursor
SHIFT & CTRL & — Delete the word to the right of the cursor

12/84

Introduction

FUNCTION KEYS

HELP

THE LINE EDITOR

Introduction

MICRODRIVE USE

FILE NAMES

LISTING FILES

The & symboal indicates that the first key should be held down while the second is pressed.
When SHIFT and CTRL are used together then hold them both down before pressing
the cursor key.

The program is loaded from the cartridge in Micredrive. You must aiways make sure
that before using Help or using a print cormmand that this cartridge is in Microdrive 1.
Otherwise you can remove the cartridge at any time.

Use a cartridge in Microdrive 2 — and in additional Microdrives — for storing information‘
for example, Quil documents, Archive data files, efc.

Information can be stored on a cartridge in a file! The file must be given a file name
to distinguish it from others on the cartridge. Use a file name of not more than eight
characters long, without spaces. It is a good idea to use a name which describes the
contents of a file: for instance, ‘saes’ is obviously a better name for a file of sales figures
than fred’

File saving and loading will use a data cartridge which is assumed to be in Microdrive
2 unless a different drive number is given. The simplest way of replying to a file name
request is just to type in the name by itself, for example: :

sales

which automaticaity accesses Microdrive 2. If you wanted to access Microdrive 1. you
would type:

mdvl sales

There is a third component of a fie name which you do not usually see, because it
is autornatically added by the program. This is an extension, three lefters long which
identifies which program saved the file. The extensions used are:

QL Quil __doc

QL Abacus __aba

QL Easel _grf

QL Archive {data file) __dbf

QL Archive {program file) - —_prg or _pro
QL Archive (screen layout} __scn

If you want to transfer information between programs, a special file is generated with
the extension __exp {for export). All the programs will recognise this extension. More
information on this process is contained in the information section under the heading
Qt Program—Import and Export.

You t:an direct printer output to a file instead of to a printer, so that you can print the
text later This file has the extension __lis.

In ali the programs except Archive you can request a list of the file names on a cartridge
whenever a command needs a file name. This is useful if you cannct remember the
exact name that you gave tc the file when you first saved it

Every time the program is waiting for you to type in a file name, you have the following
options:
.. Press ENTER lo accept the name the program suggests

Type in the file name followed by ENTER

Press ? followed by ENTER for a list of the files on Microdrive 2
If you type in a question mark (and ENTER) instead of the file name, the program
displays

mdve_

suggesting that it should list the files on Microdrive 2. You can accept this suggestian
or you can edit the drive specifier to refer 10 a different Microdrive (mdvi__) and then
press ENTER o list the files. When the list is complete the program asks you 10 type
in the file name.

Archive does not use this method. Instead there is a command (dir) which lists the fles.
It allows you to type in mdvi__, mdve__ and so on, to specify the drive for which the
list of files is needed.

12/84

In general, ESC cancels the current action and will restore you to a sensible point in
the program. You can aiso use ESC to cancel any numbers or text that you have typed
into the input line or abort a partially comgleted command.

Data can be loaded and saved on other devices besides a Microdrive. The device is
specified in the standard SuperBASIC way except that the device name is preceded
by an underscore (). See the devices entry in the Concept Reference Guide.

For example, to load and save via the network:

Before loading a QL program, each computer on the network must be given a station
number. Switch the computer on but do not insert a program cartridges; press F1 or
F2 when prompted.

To set the station number type the command NET foliowed by the station number of
your choice. For example, to set the QL to station 5 type the command

NET 5
Place the program cariridge in Microdrive 1 and load the program by typing
1run mdv1_boot

Once the program is running, you can receive data sent along the network by typing
the load command in the normal way. i the data was being sent by station 12, you
would enter

LOAD neti_12
This must be done before station 12 starts sedning.

To send data, type in the save command. Assuming you were sending to station 23,
you would enter

SAVE neto_23
Station 23 must be ready to receive before you press ENTER

Introcuction

ESCAPE

OTHER DEVICES

FOR SERVICE MANUALS
CONTACT.:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/84

Sinci=ir-

QL

Beginner's Guide

© SINCLAIR RESEARCH LIMITED
by Roy Atherton (Buimershe College Computer Cenire)

CHAPTER 1
STARTING
COMPUTING

Your QL should be connected to a monitor screen or TV set and switched on. Press THE SCREEN
a few keys, say abc, and the screen should appear as shown below. The small fiashing
light is called the cursor.

Monitor N Television

If your screen does not look like this read the section entitled Introduction. This should
enable you to solve any difficuilties.

The QL is a versatile and powerful computer, so there are features of the keyboard which THE KEYBOARD
you do not need yet. For the present we will expiain just those items which you need
for this and the next six chapters.

This enables you to ‘break’ out of situations you do not like, For example; BREAK

a line which you have decided to abandon

sormething wrong which you de not understand

a running program which has ceased to be of interest
ary other problem

Because BREAK is so powertul it has been made difficult to type accidentally.
Hold down and then press [SPACE

If nathing was added or removed from a pregram while it was halted with BREAK then
it can be restarted by typing:

CONTINUE

This is not & key but a small push button on the right hand side of the QL. It is placed RESET
here deliberately, out of the way, because its effects are more dramatic than the break

keys. If you cannot achieve what you need with the break keys then press the RESET

button. This is almost the same as switching the computer off and on again. You get

a clean re-start.

SHIFT

12/84

CAPITALS LOCK

SPACE BAR

RUBBING OUT

There are two SHIFT keys because they are used frequently and need to be availabie
to either hand.

Hold down cne SHIFT key and type some letter keys. You will get upper case
(capital} letters.

Hold down one SHIFT key and type some cther key. not a letter. You wil get a
symbol in an upper position on the key.

Without a SHIFT key you get iower case (smail) letters or a symbol in & lower position
on a key.

-@E@i@ﬂ@@_ 9088 oEeoo]
3@@@@@%@rfﬁ
SRS, D O 69/

,@@@@@7

_.‘

This key works like a switch. Just press it once and only the letter keys will be Jocked’
into a particular mode -~ upper case or lower case.

Type some letter keys.
Type the CAPS LOCK key once.
Type some letter keys.

You will see that the mede changes and remains until you type the CAPS LOCK key
again.

The long key at the bottom of the keyboard gives spaces. This is a very imporiant key
in SuperBASIC as you will see in chapter two.

The left cursor together with the CTRL key acls like a rubber. You must hold down the
CTRL. key while you press the cursor key. Each time you then both together the previous
character is deleted.

12/84

GepBanBnsE
= 00000UBTOH
IS 600 aannG s skl
&8 0obBobODes

e e ;

i

’e@@l@g@ 1

=1

The systern needs to know when you have typed a complete message or instruction.
When you have typed something complete such as RUN you type the ENTER key
1o enter it into the system for action.

Because this key is needed so often we have used a special symboi for it:
L]

We shall use this for convenience, better presentation, and to save space. Test the
(ENTER) key by typing: '

PRINT "Correct'w
If you made no mistakes the system will respond with:

Correct

OTHER KEYBOARD

* muitiply + add SYMBOLS OF
_ underscore = becomes equal to (used in LET) IMMEDIATE USE
" quotes f apostrophe
) comma _Tﬁ exclamation
; semi colon & ampersand
colon . decimal point or full stop
\ backslash 3 dollar
(left bracket) right bracket

SuperBASIC recognises commands (keywords) whether they are in upper or lower case. UPPER AND LOWER
Fcr example the SuperBASIC command to clear the screen is CLS and can be typed C ASE
in as:

CL S
clsen
clSem

These are all correct and have the same effect. Some keywords are displayed partly
in upper case to show allowed abbreviations. Where a keyword cannot be abbreviated
it is displayed completely in upper case.

The usual use of quotes is to define a word or sentence — a string of characters. Try: USE OF QUOTES
PRINT "This works''m
The computer will respond with:

This works

12/84

Starting Computing

COMMON TYPING
ERRORS

KEEP SHIFT DOWN

The quotes are not printed but they indicate that some text is to be printed and they
define exactly what it it is — everything between the cpening and closing guote marks.
If you wish to use the quote symbol itself in & string of characters then the apostrophe
symbol can be used instead. For example:

PRINT 'The quote symbol is ™'
will work and will print

The quote symbol is "

The zero key is with the other numeric digits at the top of the keyboard, and is slightly
thinner,

The letter 'O key is amongst the other letters. Be careful to use the right symbol.
Similarly aveid confusion between one, amongst the digits, and the letter 1" amongst
the letters.

When using a SHIFT key hoid it down while you type the cther key so that the SHIFT
key makes contact before the otner key and also remains in contact until after the other
key has lifted.

The same rule applies to the control CTRL and alternate ALT keys which are used in
conjunction with others but you do not need those at present

Type the two simple instructions:

CLSem
PRINT 'Hello'em

Strictly speaking these constitute a computer program, however, itis the stored program
that is important in computing. The above instructions are executed instantly as you type
- (ENTER]).

Now type the program wih line numbers:

10 CLSw
20 PRINT "HELLO"4m

This time nothing happens externally except that the program appears in the upper pan
of the screen. This means that it is accepted as correct grammar or syntax. It conforms
to the rules of SuperBASIC, but it has not yet been executed, merely stored. To make
it work, type:

RUN-w

The distinction between direct commands for immediate action and a stored sequence
of instructions is discussed in the next chapter, For the present you can experiment with
the above ideas and two more:

LISTen

causes an internally stored program to be displayed (listed) on the screen or elsewhere.
NE W

causes an internally stored program to be dsieted so that you can type in a NEW one.

12/84

You can score a maximum of 16 points from the following test. Check your score with
the answers on page 105.

1. In what circumstances might you use the BREAK sequence?

Where is the RESET buttor?

What is the effect of the RESET button?

Name two differences between a SHIFT key and the CAPS LOCK key.
How can you delete a wrong character which you have just typed?
What is the purpose of the ENTER key?

What symbol do we use for the ENTER key?

N A WM

What is the effect of the commands in questions 8 to 11

8 CLSwm
S RUN-#w
10. LISTem
11 NEW4mu

12. Do keywords have the proper effect if you type them in lower case?

13, What is the significance of the parts of keywords which the QU displays in upper
case?

SELF TEST ON
CHAPTER 1

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/84

CHAPTER 2
INSTRUCTING
THE
COMPUTER

Computers need to store data such as numbers. The storage can be imagined as pigeon
holes.

Though you cannot see them, you do need to give names ‘o particular pigeon holes.
Suppose you want to do the following simple calculation.

A dog breeder has 9 dogs to feed for 28 days, each at the rate of one tin of ‘Beefd
per day. Make the computer print {display on the screen) the required number of tins.

One way of solving this problem would require three pigeon holes for:

number of dogs
number of days
total number of tins

SuperBASIC allows you to choose sensible names for pigeon holes and you may choose
as shown:

dogs days tins

You can make the computer set up a pigeon hole, name it, and store a number in it
with a single instruction or statement such as:

LET dogs = Pem
This will set up an internal pigeon hole, named dogs, and place in it the number 9 thus:

dogs 9

The word LET has a special meaning to SuperBASIC. It is called a keyword. SuperBASIC
has many other keywords which you will see later. You must be careful about the space
after LET and other keywords. Because SuperBASIC allows you to choose pigeon hoie
names with great freedom LETdogs would be a valid pigeon hole name.

The LET keyword is opticnal in SuperBASIC and because of this statements like:
LETdogs = e
are valid. This would refer to a pigeon hole called LETdogs.

Just as, in English, names, numbers and keywords should be separated from each other
by spaces if they are not separated by special characters.

Even if it were not necessary, a program line without proper spacing is bad style. Machines
with small memory size may force programmers into it, but that is not a problem with
the QL.

You can check that a pigeon hole exists internally by typing:
PRINT dogsem

The screen should display what is in the pigeon hole:
9

Again, be careful to put a space after PRINT.

12/84

To solve the problem we can write a program which is a sequence of instructions or
statements. You can now understand the first two:

LET dogs = Yeu
LET days = 28w

These cause two pigeon holes to be set up, named, and given numbers or vaiues.

The next instruction must perform a muitiplication, for which the computer's symbol is
* and place the result in a new pigeon hole cafted fins thus:

LET tins = dogs * dayse

1. The computer gets the values, 9 and 28, from the two pigeon holes named dogs
and days.

2. The number 9 is muitiplied by 28.
3. A new pigeon hole is set up and named #ins.
4. The result of the multiplication becomes the vaiue in the pigeon hole named tins.

All this may seem elaborate but you need to understand the ideas, which are very
important.

The anly remaining task is to make the computer print the result which can be done
by typing:
PRINT tins e
which will cause the output:
252
to be displayed on the screen.
In summary, the program:

LET dogs = P
LET days = 28w
LET tins = dogs * dayse
PRINT tinsem

causes the internal efiects best imagined as three named pigeon heoles containing
numbers:

dogs 9 x days| 28 = ting] 282

and the output on the screen:
252

Of course, you could achieve this result more easily with a calculator or a pencil and
paper. You could do it quickly with the QL by typing:

PRINT 9 * 28«

which wouid give the answer on the screen. However, the ideas we have discussed are
the essential starting points of programming in SuperBASIC. They are so essential that
they occur in many computer languages and have been given special names.

1. Names such as dogs, days and tins are called identifiers.
2. A single instruction such as:
LET dogs = G
is called a statement.

3. The arrangement of name and associated pigeon hole is called a variable. The
execution of the above statement stores the value 9 in the pigeon hole ‘identified’
by the identifier dogs.

12/84

Instructing the Computer

Instructing the Computer

A statement such as:
LET dogs = P

is an instruction for a highly dynamic internal process but the printed text is static and
it uses the = sign borrowed from mathematics. It is better to think or say {but not type):

LET dogs become 9
and to think of the process having a right to left direction (do not type this):

dogs & 9
The use of = in a LET statement is not the same as the use of = in mathematics.
For example, if another dog turns up you may wish to write:

LET dogs = dogs + 1

Mathematically, this is not very sensible but in terms of computer operations it is simple.
If the value of dogs before the operation was 9 then the value after the operation would
be 10. Test this by typing:

LET dogs = e :
PRINT dogsem

LET degs = dogs + T

PRINT dogse

The output should be:

9
10

proving that the final vaiue in the pigeon hole i8 as shown:

dogs 10

A good way to understand what is happening to the pigeon hales, or variables, is to
do what is called a dry rur, You simply examine each instruction in turn and write down
the vaiues which resuit from each instruction to show how the pigeon holes are set up
and given values, and how they retain their values as the program is executed.

LET dogs = Qe
LET days = 28

LET tins = dogs * dayse
PRINT tinsem

The output should be:
252

You may notice that so far a variable name has always been used first on the left hand
side of a LET statement. Once the pigeon hole is set up and has a value the
corresponding variable name can be used on the right hand side of a LET statement.

Now suppose you wish 1o encourage a small child to save money. You might give two
bars of chocolate for every pound saved. Suppose you try to compute this as follows:

LET bars = pounds * 2w
PRINT barsem

You cannat do a dry run as the program stands because you do net know how many
pounds have been saved.

We have made a deliberate error here in using pounds on the right of a LET statement
without it having been set up and given some value. Your QL will search internally for
the variable pounds. It will not find it, so it concludes that there is an error in the program
and gives an error message. If we had tried 1o print out the value of pounds, the QL
would have printed a * to indicate that pounds was undefined. We say that the variable
pounds has not been initialised (given an initial value). The program works properly
if you do this first:

12/84

bars pounds
LET pounds = 7e 7
LET bars = pounds * 2 7 14

The program works properly and gives the output:
14

Typing statements without line numbers may produce the desired result but there are
two reasons why this method, as used so far is not salisfactory except as a first
introduction.

1. The program can only execute as fast as you can type. This is not very impressive
for a machine that can do millions of operations per second.

2. The individual instructions are not stored after execution so you cannct run the
program again or correct an error without re-typing the whale thing.

Charles Babbage, a nineteenth century computer pioneer, knew that a successful
computer needed o store instructions as well as data in internal pigeon holes. These
instructions would then be executed rapidly in sequence without further human
intervention.

The program instructions will be stored but not executed if you use line numbers. Try this:

10 LET price = 15w

20 LET pens = 7

30 LET cost = price * pense
40 PRINT costem

Nothing happens externally yet, but the whaole program is stored internalty. You make
it work by typing:

RUN-m
and the output:
105
should appear.

The advantage of this arrangement is that you can edit or add to the program with minimal
extra typing.

Later, you will see the fuli editing features of SuperBASIC but even at this early stage
you can do three things easily:

replace a line
insert a new line
delete a line

Suppose you wish to alter the previous program because the price has changed 1o
20p for a pen. Simply re-type line 10.
10 LET price = 20w

This line will replace the previous fine 10. Assuming the other lines are still stored, test
the program by typing:

RUN=

and the new answer, 140, should appear.

Suppose you wish to insert a line just before the last one, to print the words Total Cost.
This situation often arises so we usually choose line numbers 10, 20, 30 ... to allow space
to insert extra lines.)

To put in the extra line type:
35 PRINT "Total Cost'e

12184

Instructing the Computer

A STORED
PROGRAM

EDITING A
PROGRAM

Replace a line

Insert a new line

Instructing the Computer

and it will be inserted just before line 40. The system allows line numbers in the range .
1 to 32768 to allow plenty of flexibility in choosing them. It is difficult to be quite sure
in advance what changes may be needed.

Now type: FOR SERVICE MANUALS

CUN CONTACT:
- MAURITRON TECHNICAL SERVICES
and the new cutput should be: www.mauritron.co.uk

Total cost TEL: 01844 - 351694

140 FAX: 01844 - 352554

Delete line You can delete line 35 by typing:
3 5
It is as though an empty line has replaced the previous cne.

OUTPUT-PR'NT Note how useful the PRINT statement is. You can PRINT text by using quotes or

apostrophes:

PRINT '"Chocolate bars' '
You can print the values of variables (contents of pigeon holes) by typing statements .
such as:

PRINT barse
without using quotes.

You will see later how very versatile the PRINT statement can be in SuperBASIC. It wil
enable you to place text or cther output on the screen exactly where you want it. But
for the present these two facilities are uselul encugh:

printing of text
printing values of variables (contents of pigeon holes).

|NPUT— |NPUT, READ A carpetmaking machine needs wool as input. It then makes carpets according to the

AND DATA currenrt design.
desgn] pogam |

Carpet

. Computer - >
———— —_— —
wool Machine carpets input cata output data .

N

If the wool is changed you may get a different carpet
The same sort of relations exist in a computer.

However, if the data is input into pigeon holes by means of LET there are two
disadvantages when you get beyond very trivial programs:

writing LET statements is laborious
changing such input is also laborious

You can arrange for data to be given to a program as it runs. The INPUT staternent
will cause the program to pause and wait for you to type in something at the keyboard.
First type:

NEWe

so that the previous stored program (if it is still there) will be erased ready for this new
one. Now type:

10 LET price = 154m

20 PRINT 'How many pens?' em .
30 INPUT pens =

40 LET cost = price * pens

SO PRINT cost 4m
RUN e

12/84

. The program pauses at line 30 and you should type the number of pens you want, say:

4."4
Do not forget the ENTER key. The output will be:
60

The INPUT statement needs a variable name so that the system knows where 1o put
the data which comes in from your typing at the keyboard. The effect of line 30 with
your typing is the same as a LET statements effect. It is more convenient for some
purposes when interaction between computer and user is desirable. However, the LET
statemnent and the INPUT statement are useful enly for modest amounts of data. We
need something else to handle larger amounts of data without pauses in the execution
of the program.,

SuperBASIC, like most BASICs, provides ancther method of input known as READing
from DATA statements, We can retype the above program in a new form to give the
same effects without any pauses. Try this:

N E W amur

10 READ price, pense

20 LET cost = price * pens4m
30 PRINT coste

40 DATA 15, b

RUNem

The output should be:
60
as bhefore,

Each time the program is run, SuperBASIC needs to be told where to start reading DATA
from. This can either be done by typing RESTORE foillowed by the DATA line numiber
or by typing CLEAR. Both these commands can also be inserted at the start of the
programs.

When line 10 is executed the system searches the program for a DATA statement. It then
uses the values in the DATA statement for the variables in the READ statement in exactly
the same order. We usually place DATA statements at the end of a program. They are
used by the program but they are not executed in the sense that every other line is
executed in turn. DATA statements can go anywhere in a program but they are best
at the end, out of the way. Think of them as necessary to, but not really part of, the
active program. The rules about READ and DATA are as foliows:

1. All DATA statements are considered to be a single long sequence of items. So
far these items have been numbers but they could be words or letiers.

2. Every time a READ statement is executed the necessary items are copied from
the DATA statement into the variables named in the READ statement.

3. The system keeps track of which items have been READ by means of an internal
record. If a program attempts to READ more items than exist in all the DATA
statements an error will be signailed.

You have used names for ‘pigeon holes' such as dogs, bars. You may choose words
like these according to certain rules:

A name cannot include spaces.
A name must start with a letter,
A name must be made up from letters, digits, $, %, __{underscore)

The symbols §, % have special purposes, 1o be explained later, but you can use
the underscore to make names such as:

dog__food
menth__wage__total

maore readable,

12/84

Instructing the Computer

IDENTIFIERS
(NAMES)

SELF TEST ON
CHAPTER 2

SuperBASIC does not distinguish between upper and lower case letters, so names
like TINS and tins are the same.

The maximum number of characters in a name is 255

Names which are constructed according to these ruies are calied identifiers. ldentifiers
are used for other purposes in SuperBASIC and you need 0 understand them. The
rules allow great freedom in choice of names so you can make your programs easier
to understand. Names like total, count, pens are more helpful than names fike Z, P Q.

You can score a maximum of 21 points from this test. Check your score with the answers
on page 106

How should you imagine an internal number store?

2. State two ways of storing a value in an internal ‘pigeon hole’ 1o be created, {two
paints)

How can you find out the value of an internal ‘pigeon hole? :
What is the usual technical name for a ‘pigeon hole?

When does a pigeon hole get its first value?

o O s W

A variable is 50 called because its value can vary as a program is executed. What
is the usual way of causing such a change?

7. The = sign in a LET statement does not mean eguals’ as in matnematics. What
does it mean?

What happens when you ENTER an un-numbered statement?

What happens when you ENTER a numbered statement?
10, What is the purpose of quotes in a PRINT statement?
11, What happens when you do not use quotes in a PRINT staterment?
12, What does an INPUT staternent do which a LET statement does not?
13, What type cf program statement is never executed?
14. What is the purpose of a DATA statement?
15, What is another word for the name of a pigeon hole (or variable)?

18, Write down three valid identifiers which use letters, letters and digits, letters and
underscore (three points}

17 Why is the space bar especialy important in SuperBASIC?

18, Why are freely chosen identifiers important in programming?

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
Www. rmauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

1284

12/84

Carry out a dry run to show the values of all variables as each line of the following
program is executed:

10 LET hours = 40eu

20 LET rate = 3w

30 LET wage = hours * ratee
40 PRINT hours, rate, wagewm

Write and test a program, simifar to that of problem 1, which computes the area
of a carpet which is 3 metres in width and 4 metres in length. Use the variable
names. wigth, length, area.

Re-write the program of problem 1 so that it uses two INPUT statements instead
of LET statements.

Re-write the program of problem 1 so that the input data (40 and 3} appsars in
a DATA statement instead of a LET statement.

Re-write the program of prablem 2 using a different method of data input. Use
READ and DATA if you originally used LET and viceversa.

Bill and Ben agree to have a gamble. Each will take out of his wallet all the pound
notes and give them to the other Write a program to simulate this entirely with
LET and PRINT statements. Use a third person, Sue, to hold Bill's money while
he accepts Ben's.

Re-write the program of problem & sc that a DATA statement holds the two numbers
to be exchanged.

PROBLEMS ON
CHAPTER 2

CHAPTER 3

DRAWING ON
THE SCREEN

A COLOURED LINE

MODES AND
COLOURS

In order to use either a television set or monitor with the QL, two different screen modes
are avaiable. MODE 8 permits eignt colour dispiays with a graphics resolution of 256
by 256 pixels and large characters for display on a television set. MODE 4 allows four
colours with a resolution of 512 by 256 pixels and a maximum of eighty character lines
for which a monitor must be used for successful display. However, it would be unfortunate
if a program was written to draw circles or squares in one mode and produced ellipses
or rectangles in ancther mode (as some systems da). We therefore provide a system
of scale graphics which avoids these problems. You simply choose a vertical scale and
work to it, The other type of graphics (pixel criented) is aiso available and is described
fully in a later chapter.

Suppose, for example, that we choose a vertical scale of 100 and we wish to draw a
line from position (5060) to position (70.80).

/ {70 across, 80 up)
(50 across, 60 up)

100

Scale Graphics

We need to specify three things:

PAPER (background colour)
INK {drawing colour)
LINE (start and end points)

The following program will draw a line as shown in the above figure in red (colour code
2) on a white {colour code 7) background.

NEU 4

10 PAPER 7 : CLS e

20 INK 2 =

30 LINE 50,60 70 70,80 =
RUN

in line 10 the paper colour is selected first but it only comes into effect with a further
command, such as CLS, meaning clear the screen to the current paper colaur.

So far it does not matter which screen mode you are using but the range of colours
is affected by the choice of mode.

MODE 8 allows eight basic colours
MCODE 4 atiows four basic colours

Colours have codes as described below.

12/84

Drawing onthe Screen

Code Effect
8 colour 4 colour

0 black black
1 blue black
2 red red

3 magenta red

4 green green
5 cyan green
6 yellow white
7 white white

For example, INK 3 would give magenta in MODE 8 and red in MODE 4.

We will explain in a later chapter how the basic colours can be mixed' in various ways
to produce a startling range of colours, shades and textures,

You can get some interesting effects with random numbers which can be generated RANDOM EFFECTS
with the RND function. For exampie: '

PRINT RNDC1 TO &) e

will print a whole number in the range 1 to 8, like throwing an ordinary six-sided dice.
The following program will illustrate this:

NEW e

10 LET die = RND(1 TO 6) e
20 PRINT die

RUN wm

if you run the program several times you will get different numbers,
You can get random whole numbers in any range you like. For example:
RND (O TO 1002

wilt produce a number which can be used in scale graphics. You can re-write the line
program so that it produces a random celour. Where the range of random numbers
starts from zerc you can omit the first number and write:

RND (1003

NEW

10 PAPER 7 : CLS =

20 INK RND(5) e

30 LINE 50,60 TO RNDC100), RNDC100) <
RUN

This produces a line starting somewhere near the centre of the screen and finishing
at some random point. The range of possible colours depends on which mode is
selected. You will find that a range of numbers ‘something TO something’ occurs often
in SuperBASIC.

The part of the screen in which you have drawn lines and create other output is called BORDERS
a window. Later you will see how you can change the size and position of a window

or create other windows. For the present we shall be content to draw a border round

the current window. The smallest area of light or colour you can plot on the screen is

called a pixel. In mode 8, called low resolution mode, there are 256 possible pixel

positions across the screen and 256 down. In mode 4, called high resolution mode,

there are 512 pixels across the screen and 256 down. Thus the size of a pixet depends

on the mode.

You can make a border round the inside edge of a window by typing for example:
BORDER 4,2 a

This will create a border 4 pixels wide in colour red (code 2). The effective size of the
window is reduced by the border. This means that any subsequent printing or graphics
will automatically fit within the new window size. The onty exception to this is a further
border which will overwrite the existing one.

12/84

Crawing onthe Screen

A SIMPLE LOOP

Computers can do things very quickly but it would not be possidle to exploit this great
power if every acticn had 1o be written as an insiruction. A building fereman has a similar
problem. If he wants a workman to lay & hundred paving stones that is roughly what
he says. He does not give a hundred separate instructions.

A traditional way of achieving looping or repetition in BASIC is to use a GO TO (or GOTO,
they are the same) statement as follows:

NEW

10 PAPER 6 : CLS e

20 BORDER 1,2

30 INK RND(5) @

40 LINE 50,60 TO RND(1CGD), RND (100)
50 GOTO O an

RUN 4

You may prefer not to type in this program because SuperBASIC allows & better way
of doing repetition. Note certain things about each line.

;(()) iFixed part — not repeated

ig LChangeable part — repeated |
50 [Controls program

You can re-write the above program by omitting the GOTO staterment and, instead, putting
REPeat and END REPeat around the part to be repeated.

NEW @

10 PAPER 6 ¢ CLS

20 BORDER 1,2 =

30 REPEAT star m

40 INK RNDC(5)

50 LINE 50,60 TO RNDC1003, RND{100) 4
60 END REPEAT star e

RUN

We have glve the repeat structure a name. star. The structure consists of the two lines:

REPeat star
END REPeat star

and what lies between them is called the content of the structure. The use of upper
case letters indicates that REP is a valid abbreviation of REPeat.

This program should produce coloured lines indefinitely to make a star as shown in the
figure below.

The STAR program

You can stop it by pressing the break keys:
Hold down and then press SPACE l

12/84

Crawngonthe Screen

~ SuperBASIC provides a consistent and versatile method of stopping repetitive processes.
Imagine running round and round inside the pregram activating statements. How can
you escape? The answer is [0 use an EXIT statement. But there must be some reason
for escaping. You might extend the choice of line colours by typing as an amendment
to the program (do not type NEW):

40 INK RND(O TO 6)

so that if RND produces 6 the ink is the same colour as the paper and you wil not
see it, This could be the reason for terminating the repetition. We can re-arrange the
program as follows:

NEW

10 PAPER 6 : CLS

20 BORDER 1,2 w

30 REPeat star w

40 LET colour = RND(6) m

50 If colour = 6 THEN EXIT star

60 INK colour e

70 LINE 50,60 TO RNDC100), RND(1G0) e
80 END REPeat star em

The important thing to note here is that the program continues until colour becomes
6. Cortrol then escapes from the loop to the peint just after line 80. Since there are no
program lines after 80 the program stops.

Arother important concept has been introduced. It is the idea of a decision.

IF colour = 6 THEN EXIT star

This is ancther very useful structure because it is a choice of doing something or not;
we call t a simple binary decision. lis general form is:

IF condition THEN statement(s)

You will see later how the two concepts of repetition {or looping) and decision-making
{or selection) are the main structures for program control. You can stop the program
by pressing the break keys: hold down CTRL and then press the space bar.

You can score a maximum of 13 points from the following test. Check your score with SELF TEST ON

the answers on page 107 CHAPTER 3

1

2
3
4

12/84

What is a pixef?
How many pixefs fit across the screen in the low resolution mode?
How many pixels fit from bottom to top in low resolution mode?

What are the two numbers which determine the ‘address' or position of a graphics

i 7
point on the screen: FOR SERVICE MANUALS
How many colours are available in the low resolution mode? CONTACT:

Name the keywords which do the following: MAURITRON TECHNICAL SERVICES
i. draw a line WWW.Mauriiron.co.uk

ii. select & colour for drawing TEL: 01844 - 351694

iii. select a background cotour FAX: 01844 - 352554

iv. draw a border (5 points)

What are the statements which open and close the REPeat loop?
When does an executing REPeat loop terminate?

Why do loops in SuperBASIC have names?

PROBLEMS ON
CHAPTER 3

'y

Write a program to draw straight lines all over the screen. The lines should be
of random length and direction. Each should start where the previous one finished
and each should have a randemly chosen colour

Write a program to draw lines randomly with the restriction that each line has a
randem start on the left hand edge of the screen.

Write a program to draw lines randomly with the restriction that the lines start at
the same point on the bottorn edge of the screen.

Write a program to produce lines of random length, starting peints and colour.
All lines must be horizontal.

As problem 4 but make the lfines vertical.

Wirite a program to produce a square spiral’ in such a way that each line makes
a random colour

HINT First find the co-ordinates of some of the corners, then put them in groups
of four. You should discover a pattern.

12/84

CHAPTER 4
CHARACTERS
AND

Teachers sometimes wish to assess the reading abiity neeced for particular books or STRINGS
classroom materials. Various tests are used and some of these compute the average
lengths of words and sentences. We wii intreduce ideas about handling words or
character strings by examining simple approaches to finding average word lengths.

Wa are talking about sequences of letters, digits or other symbols which may or may
not be words. That is why the term tharacter string’ has been invented. It is usually
abbreviated to string. Strings are handled in ways similar to number handling but, of
course, we do not do the same operaticns cn them. We do not multiply or subtract strings.
We join them, separate them, search them and generally manipulate them as we need.

NAMES AND
PIGEON HOLES FOR

You can create pigeon holes for strings. You can put character strings into pigeon holes STRINGS
and use the information just as you do with numbers. If you intend to store {not all at
once) words such as:

FIRST SECCOND THIRD

and
JANUARY FEBRUARY MARCH

you may choose to name two pigeon holes:

weekday$ month$

Notice the dollar sign. Pigeon holes for strings are internaily different from those for
numbers and SuperBASIC needs to know which is which. All names of string pigeon
holes must end with 8. Otherwise the rules for choosing names are the same as the
rules for the names of numeric pigeon holes.

You may pronounce:

weekdayd as weekdaydollar
month$ as monthdollar

The LET statement works in the same way as for numbers. If you type:
LET weekday$ = "FIRST" e
an internal pigeon hole, named weskday$, will be set up with the vatue FIRST in it thus:

weekday$| FIRST

The guote marks are not stored. They are used in the LET staterment to make it absolutely
clear what is to be stored in the pigecn hole. You can check by typing:

PRINT weekday$ wu
and the screen should display what is in the pigeon hole:
FIRST
You can use a pair of apostrophes instead of a pair of quote marks.

12/84 B

LENGTHS OF
STRINGS

PROGRAM DESIGN

Characters and Strings

SuperBASIC makes it easy 1o find the length or number of characters of any string. You
simply write, for example:
PRINT LEN(weekday$)

If the pigeon hole, weekday®. contains FIRST the number 5 will be dispiayed. You can
see the effect in a simple program:

NEW

10 LET weekday$ = ""FIRST'
20 PRINT LEN (weekday$) s
RUN

The screen should display.
5
LEN is a keyword of SuperBASIC.

An alternative method of achieving the same result uses both a string pigeon hole and
a numeric pigean hole.

N E - .
10 LET weekday$ = "FIRST'

20 LET Length = LEN(weekday$)em

30 PRINT lengthem

RUNen

The screen should display:
5
as before, and two internal pigeon holes contain the values shown:

weekday$ | FIRST length 5

Let us refurn to the problem of average lengths of words.
Write a program to find the average length of the three words:
FIRST, OF, FEBRUARY

When problems get beyonid what you regard as very trivial, it is a good idea to construct
a program design before writing the program itself.

1. Store the three words in pigeon holes.
2. Compute the lengths and store them.
3. Compute the average.

4 Print the result.

NE b

10 LET weekday$ = "FIRST" e

20 LET word$ = "OF'"w

30 LET month$ = "FEBRUARY" 4

40 LET length1 LEN(weekday$) e
50 LET Lerngth2 = LEN(word$)e
60 LET Length3 = LEN(month$)
70 LET sum = lengthl + lLengthZ + length3em
80 LET average = sum/3e

90 PRINT averagew

RU N

The symboi / means divided by. The output or result of running the program is simply:
5

I H

12184

and there are eight internal pigeon holes involved:

weekday$ | FIRST lengthi 5
word$ OF length2 2
month$ |FEBRUARY length3 8
sum 15
average 5

If you think that is a tot of fuss for a fairly simple problem you can cerainly shorten it
The shortest version would be a single line but it would be less easy 1o read. A reasonable
compremise uses the symbol & which stands for the operation:

Join two strings
Now type:

NEW

10 LET weekday$ = "FIRST"wm

20 LET word$ = "OF'"am

30 LET month$ = "FEBRUARY' e

40 LET phrase% = weekday$ & word$ & month$e
50 LET Llength = LEN(phrase$)w

60 PRINT Llength/3em

RUN<wwn

The output is 5 as before but there are scme different internal effects:

weekday$ FIRST length 15
word$ OF

month FEBRUARY

phrase$ FIRSTOFFEBRUARY

There is cne more reasonable simplification which is to use READ and DATA instead
of the first three LET statements. Type:

NE Wi

10 READ weekday$, word$, monthSe

20 LET phrase$ = weekday$ & word$ & month$em
30 LET Llength = LEN(phrase$)w

40 PRINT lLength/34m

50 DATA “FIRST","OF'","FEBRUARY"wn

RUN#u:

The internal effects of this version are exactly the same as those of the previous one.
READ causes the setting up of internal pigeon holes with values in them in a similar
way to LET.

12/84

Characters and Strings

21

IDENTIFIERS AND

STRING VARIABLES

22

RANDOM
CHARACTERS

SELF TEST ON
CHAPTER 4

Names of pigeon holes, such as!

weekday$
word$
month$
phrase$

are called string identifiers. The dollar signs imply that the pigeon holes are for character
strings. The dollar must always be at the end.

Pigeon holes of this kind are called string variables because they contain only character
strings which may vary as a program runs.

The contents of such pigeon holes are called values. Thus words like FIRST and OF
may be values of string variables named weekday$ and +word$.

You can use character codes (see Concept Reference Guide) to generate random letters.
The upper case letters A 10 £ have the codes 65 to 90. The function CHR$ converts
these codes into ietters. The following program will print & letter B.

v

NE W

10 LET lettercode = 66w

20 PRINT CHR$(lettercode) s
R UN

The following program will generate trios of letters A. B, or C until the ward CAB is spelled
accidentally.

N E W

10 REPeat taxi

20 LET first$ = CHRS(RND (65 TO 672D

30 LET second$ = CHRE(RND (A5 TO 67))

40 LET third$ = CHRS(RND(65 TO 67))

50 LET word$ = first$ & second$ & third$
60 PRINT ! word$!

70 IF word$ = "CAB' THEN EXIT taxi

80 END REPeat taxi

Random characters, like random numbers or random points are useful for learning to
program. You can easily get interesting effects for program exarmnples and exercises.

Note the effect the ! ... ! have on the spacing of the output.

You can score a maximum of 10 points from the following test. Check your score with
the answers on page 107

What is a character string?

What is the usual abbreviation of the term, character siring”?

What distinguishes the name of a string variable?

How do some people pronounce a word such as ‘word$?

What keyword is used to find the number of characters in a string?
What symbol is used to join two strings?

Spaces can be part of a string. How are the limits of a string defined?

® N O ;RN

When a statement such as:
LET meat$ = “steak”
is executed, are the quotes stored?
9 What function will turn a suitable code number into & letter?

10. How can you generate random upper case letters?

12/84

12/84

Store the words ‘Gooed” and day’ in two separate variables. Use a LET staterment
to join the values of the two variables in a third variable. Print the result.

Store the following words in four separate pigeon holes:
light let be there

Join the words to make a sentence adding spaces and a full stop. Store the whole
sentence in a variable, sent$, and print the sentence and the total number of
characters it contains.

Write a program which uses the keywords:
CHRERND (65 TO 90))

to generate one hundred random three letter words. See if you have accidentally
generated any real English words. Test the effects of:

a) ; at the end of a PRINT statement.
b) ! on either side of tem printed.

PROBLEMS ON
CHAPTER 4

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
www . MaurtroR.co.uk
TEL O1E44 - 351564
EAX: 01Bad - 352554

23

e

CHAPTER 5
KNOWN
GOOD
PRACTICE

PROGRAMS AS
EXAMPLES

AUTOMATIC LINE
NUMBERING

You have already begun to work effectively with short programs. You may have found
the following practices are helpful.

1 Use of lower case for identifiers: names of variables (pigeon holes) or repeat
structures, etc.

indenting of statements to show the content of a repeat structure.

Well chosen identifiers refiecting what a variable or repeat structure is used for.

e

Editing a program by:

replacing a line
inserting a line
deleting a line

'

You have reached the stage where it is helpful to be able to study programs 10 learn
from them and to try to understand what they do. The mechanics of actually running
them should now be well understood and in the following chapters we will dispense
with the constant repetition of:

NEW before each program
« at the end of each line
RUN to start each program

You will understand that you should use all these features when you wish to enter and
run a program. But their omission in the text wil enable you to see the other details
more clearly as you try to imagine what the program will do when it runs.

If we dispense with the above details we may use and understand programs mare easly
without the technical clutier. For example, the following program generates random upper
case letters until a Z appears. It does not show the words NEW or RUN or the ENTER
symbal but you stil need to use these.

10 REPeat letters

20 LET Lettercode = RND(65 TO 90)
30 cap$ = CHR$(lettercode)

40 PRINT cap$

50 1F cap$ = "Z" THEN EXIT letters
60 END REPeat letters

In this and subsequent chapters pragrams will be shown without ENTER symbols. Direct
commands will also be shown without ENTER symbals. But you must use these keys
as usual. You must alsc remember to use NEW and RUN as necessary.

It is tedious to enter line numbers manually. Instead you can type:
AUTO
before you start programming and the QL will reply with a line number:
100
Continue typing lines until you have finished your program when the screen will show:

100 PRINT "First"
110 PRINT "Second"
120 PRINT "End"

To finish the automatic production of line numbers use the BREAK sequence:

Hold down the CTRL and press the SPAGE bar. This will praduce the message:
130 not complete

and line 130 will not be included in your program.

12/84

Known Good Practice

If you make a mistake which dces not cause a break from automatic number‘sng, you
can continue and EDIT the line later. If you want to start at some particutar line number,
say 600, and use an increment other than 10 you can type, for an increment of 5:

AUTO 600,5

Lines will then be numbered 800, 605, 610, elc.

To cancel AUTO, press CTRL and the space bar at the same time.

To edit a line simply type EDIT followed by the line number. for example; EDlTlNG A LlNE
EOIT 110

The line will then be displayed with the cursor at the end thus:
110 PRINT "Second"

You can move the cursor using:

&= one place left
=> one place right .

To delete a character to the left use:
CTRL with &=
To delete the character in the cursor position type:
CTRL with =
and the character to the right of the cursor will move up to close the gap.

Before using a new Microdrive cartridge it must be formatted. Follow the instructions USING MlCRODRlVE
in the /niroduction. The choice of name for the cartridge follows the same rules as CARTR'DGES
SuperBASIC identifers, etc. but limited to only 10 characters. It is a good idea to wrile

the name of the cartridge on the cartridge itself using one of the supplied sticky labels.

You should always keep at least cne back-up copy of any program or data. Foliow the
. instructions in the Information section of the User Guide.

The following program sets borders, 8 pixels wide, in red (code 2), in three windows ~ SAVING PROGRAMS
designated #0, #1, #2.

100 REMark Border
110 FOR k = 0 TO 2 : BORDER #k,8,2

You can save it on a microdrive by inserting a cartridge and typing:
'SAVE mdv1_bord
The program wil be saved in a Microdrive file called bord.

If you want 1o know what programs or data fies are on a particular cartridge place it CHECKING A
in Microdrive 1 and type: CARTRIDGE

DIR mdv1_

The directory will be displayed on the screen. If the cartridge is in Microdrive 2 then
type instead:

DIR mdve_

12/84 25

Known Good Praclice

26

- COPYING
PROGRAMS AND
FILES

DELETING A
CARTRIDGE FILE

LOADING
PROGRAMS

MERGING
PROGRAMS

GENERAL

Once a program is stored as a fie on a Microdrive cartridge it can be copied to other
files. This is one way of making a backup copy of a Microdrive cartridge. You might
copy all the previous pregrams, and similar commands for other programs, onto another
carridge in Microdrive 2 by typing:

COPY mdv1 bord TO mdv2_bord

A file is anything, such as a program or data, stored on a cartridge. To deiete a program
calied prog you type:

DELETE mdv1_prog

A program can be loaded from a Microdrive cartridge by typing:
LOAD mdv2_bord

I the program loads correctly it will prove that both copies are good. You can test the
program by using:

LIST to list it.

RUN to run it

Instead of using LOAD followed by RUN you can combine the two operations in one
command.

'

LRUN mdv2_bord
The program will load and execute immediately.

Suppose that you have two programs saved cn Microdrive 1 as prog? and progz:

100 PRINT ""First"
110 PRINT "Second"

If you type:
LOAD mdv1 _progl
followed by:
MERGE mdv1_prog2
The two programs will be merged into one. 1o verify this, type LIST and you should see:

100 PRINT "First"
110 PRINT "Second"

If you MERGE a program make sure that all its line numbers are different from the
program already in main memory. Otherwise it will overwrite some of the lines of the
first program. This facility becomes very valuable as you become proficient in handling
procedures. It is then quite natural to build a program up by adding procedures or
functions to it.

Be careful and methodical with cartridges. Always keep one back-up copy and if you
suspect any problem with a carridge or microdrive keep a second back-up Copy.
Computer professionals very rarely lose data. They know that even the best machines
or devices will be occasional fauits and they aliow for this.

It you want to call a program by a particular name, say, square, it may be a good idea
to use names like sq7, sq2... for preliminary versions. When the program is in its final
form take at least two copies called square and the others may be deleted by re-formatting
or by some more selective method.

12/84

You can score a maximum of 14 peints from the following test. Check your score with
the answers on page 108.

1.

s W

[%)]

© o N

12/84

Why are lower case letters preferred for program words which you choose?
What is the purpose of indenting?
What should normally guide your choice of identifiers for variables and loops?

Name three ways of editing a program in the computer’s main memary (three
points).

What should you remember to type at the end of every command or program
line when you enter it?

What should you normally type before you enter a program at the keyboard?
What must be at the beginning of every line to be stored as part of & program?
What must you remember to type to make a program execute?

What keyword enables you to put into a program information which has no effect
on the executior?

Which two keywords help you to store programs on and retrieve from cartridges?
{(two points).

Re-write the following program using lower case lefters to give a better presentation.
Add the words NEW and RUN. Use line numbers and the ENTER symbol just
as you would to enter and run a program. Use REMark to give the program a
name.

LET TWO% = "TWO'r

LET FOURS = ""FOUR"

LET SIX$ = TWOS & FOURS
PRINT LEN{six$)

Explain how two and four can produce 7.

Use indenting, lower case letters, NEW, RUN, line numbers and the ENTER
symbol to show how you would actually enter and run the foitowing program:

REPEAT LOOP
LETTER CODE
LET LETTERSS
PRINT LETTERS

IF LETTERS = 'Z' THEN EXIT LOOP
END REPEAT LOOP

Re-write the following program in better style using meaningful variable names
and good presentation, Write the program as you would enter it:

LET S =0

REPeat TOTAL

LET N = RND(1 TO &)
PRINT ! N !

LET §$ =S + N

IF n=6 THEN EXIT TOTAL
END REPeat TOTAL

PRINT §

Decide what the program does and then enter and run it to check your decision.

RND (65 TO 900
CHRE(LETTER_CODE)

SELF TEST ON
CHAPTER 5

PROBLEMS ON
CHAPTER 5

CHAPTER 6
ARRAYS AND
FOR LOOPS

WHAT IS AN ARRAY

Program 1

Program 2

28

You know that numbers or character strings can become values of variables. You can
picture this as numbers or words going into internal pigeon holes or houses. Suppose
for example that four employees of a company are to be sentto a small village, perhaps
because cil has been discovered. The viliage s one of the few places where the houses
only have names and there are four available for rent. All the house names end with

a doltar symbol.
Westiea$ akeside$ Roselawn$ Oakireed
The four employees are called:

They can be placed in the houses by one of two methods:

100 LET westiea$ = ""VAL"
410 LET lakeside$ = "HALY
120 LET roselawn$ = "MEL"
130 LET oaktree$ = "DEL"
140 PRINT ! westlea$! Lakeside$ | roselawn$! oaktree$

DEL

Hn

100 READ westlea$, lakeside$, roselawn$, oaktree$
110 PRINT ! westlea$! lakeside$! roselawn$! oaktree$
120 DATA "VAL'", "HAL", UMEL't, "DEL"

westjea$ Iake?ide$ roselfiwnt’s qaktr?efs
VAL HAL MEL DEL

As the amount of data gets larger the advantages of READ and DATA over LET become
greater. But when the data gets realty numerous the problem of finding names for houses
gets as difficult as finding vacant houses in a small village.

The solution to this and many other problems of handling data lies in a new type of
pigeon hole or variable in which many may share a single name. However, they must
be distinct so each variable also has a number like numbered houses in the same strest.
Suppose that you need four vacant houses in High Street aumbered 1 10 4. In
SuperBASIC we say there is an array of four houses. The name of the array is high__st$
and the four houses are to be numbered 1 to 4

But you cannct just use these array variables as you can ordinary (simple) variables.

You have to declare the dimensions {or size) of the array first. The computer allocates

space internally and it needs to know how many string variables there are in the array

and aiso the maximum length of each string variable. You use a DIM statement thus:
DIM high__st$(4,3)

maximum !ength of string
number of string variables

Alter the DIM statement has been executed the variables are available for use. It is as
though the houses have been built but are il empty. The four houses' share a common
name, high__st$, but each has its own number and each can hold up to three characters:

. N
(high_st® > (= 2 LA
I 1 O I 3

I:JE]

o a4

12/84

. There are five programs below which all dc the same thing: they cause the four ‘houses'
to be oocupied' and they PRINT to show that the occupation’ has really worked. The
final method uses only four lines but the other four lead up to it in a way which moves
all the time from known ideas to new ones or new uses of old ones. The movement
is also towards greater economy.

If you understand the first two or three methods perfectly well you may prefer to move
straight ontc methods 4 and & But if you are in any doubt, methads 1, 2 and 3 wil
help to clarify things.

100 DIM high st${4,3)

110 LET high_st$(1) = "VAL"
120 LET high_st$(2) = "HAL"
130 LET high_st3$(3) = "MEL"
140 LET high st$(4) = "DEL"

150 PRINT ! high_st$¢1) | high_st$(2) !
160 PRINT ! high_st$(3) | high_st$(4) |

100 DIM high_st$(4,3)

110 READ high_st$(‘1),high_st$(2),high_st$(3),high_5t$(4)
120 PRINT ! high_st$(1) | high_st(2) !

130 PRINT ! high st$(3) ! high_st{4) !

140 DATA ""VAL'™, '""HAL', ""MEL'", '"'DEL"

This shows how to economise on variable names but the constant repeating of high__st$
is both tedious and the cause of the cluttered appearance of the programs, We can,
again, use a known technique — the REPeat loop — to improve things further. We set
up a counter, number, which increases by one as the REPeat loop proceeds.

100 RESTORE 190

110 DIM high st$(4,3)

120 LET number = 0

130 REPeat houses

140 LET number = number + 1

150 READ high_st$(number)

160 IF num = 4 THEN EXIT houses

170 END REPeat houses

180 PRINT high_st(1)! high_st(2)! high_st(3)) high_st(4)
190 DATA '""VAL', '*HAL', '"MEL", "DEL"

This special type of loop, in which something has to be done a certain number of times,
is well known. A special structure, called a FOR loop, has been invented for it. In such
a loop the count from 1 to 4 is handleg automatically. So is the exit when all four items
have been handled.

1060 RESTORE 140

110 DIM high st$(4,3)

120 FOR number =1 70 &

130 READ high_st$¥{number)

140 PRINT | high st$(number) !
150 END FOR number

160 DATA ""VAL","HAL' 'MEL","DEL"

The output from all four programs is the same:
VAL HAL MEL DEL
Which proves that the data is properly stored internafly in the four array variables:

high__st$ VAL HAL MEL DEL

12/84

Program 1

Program 2

Program 3

Program 4

Asrays and ForLoops

29

Arraysand For Loops

30

Program 5

Program 1

Method 4 is clearly the best so far, because it can deal equally well with 4 or 40 or
400 items by just changing the number 4 and adding more DATA items. You can use

as many DATA statlements as you need.

In its simplest form the FOR loop is rather like the simplest form of REPeat loop. The
two can be compared:

100 REPeat greeting 100 FOR greeting =1 70 40
110 PRINT "Hello” 110 PRINT ""Hello"
120 END REPeat greeting 120 END FOR greeting

Bath these loops would work. The REPeat loop would print Helld' endlessly (stop it
with the BREAK sequence) and the FOR loop would print Hello' just forty times.

Notice that the name of the FOR loop is also a variable, greeting, whose value varies
from 1 1o 40 in the course of running the program. This variable is sometimes called
the loop variable or the control variable of the loop.

Note the structure of both loops takes the form:

Opening statement
Content
Closing statement

However, certain structures have allowable short forms for use when there are anly one
or a few statements in the content of the loop. Short forms of the FOR loop are aliowed
so we could write the program in the most economical form of all.

100 RESTORE 140 : CLS

110 DIM high_st$(4,3)

120 FOR number = 1 TO & : READ high_st$(number)}

130 FOR number = 1 TO & : PRINT ! high_st$(number) !
140 DATA "VAL"™, "HAL", "MEL", "DEL"

Colons serve as end-of-staternent symboals instead of ENTER and the ENTER symbols
of lines 120 and 130 serve as END FOR statements.

There is an even shorer way of writing the above program. To print out the contents
of the array high__st$ we can repiace line 130 by:

130 PRINT ! high_st$!

This uses an array slicer which we will discuss tater in chapter 13.

We have introduced the concept of an array of string variables so that the only numbers
involved would be the subscripts in each variable name, Arrays may be string or numeric,
and the following exampies illustrate the numeric array.

Simulate the throwing of a pair of dice four hundred times. Keep a record of the number
of occurrences of each possible score from 2 10 12,

100 REMark DICE?

110 LET two = O:three = O:zfour = 0:five = 0:six =0
120 LET seven = D:eight =0:nine=0:ten=0:eleven=0:twelve = 0
130 FOR throw = 1 TO 400

140 LET diel = RND(1 TO &)

150 LET die2 = RND(1 TO 6)

160 LET score = diel + die2

170 IF score THEN LET two = two + 1

180 IF score THEN LET three = three + 1

190 IF score THEN LET four = four + 1

200 IF score THEN LET five = five + 1

210 IF scare THEN LET six = six + 1

220 If score THEN LET seven = seven + 1

230 IF score THEN LET eight = eight + 1

240 IF score THEN LET nine = nine + 1

250 IF score = 10 THEN LET ten = ten + 1

260 IF score = 11 THEN LET eleven = eleven + 1
270 IF score = 12 THEN LET twelve = twelve +1
280 END FOR throw

290 PRINT ! two ! three ! four ! five ! six

300 PRINT ! seven ! eight ! nine ! ten ! eleven ! twelve

D0~ NN

LI T 1 T A 1 1 A (I T 1}

12/84

Arrays and ForLoops

In the abaove program we establish eleven simple variables to store the tally of the scores.
If you plot the tallies printed at the end you find that the bar chart is roughly triangular
The higher tallies are for scores six, seven, eight and the lower tallies are for two and
twelve. As every dice player knows this reflects the frequency of the middle range of
scores (six,sevengight) and the rarity of twos or twelves.

100 REMark Dice2 Program 2
110 DIM tally (12}

120 FOR throw = 1 TO 400

130 LET die_1 RND(1 TO 6)

140 LET die_2 = RND(1 TO &)

150 LET score = die_1 + die_2

160 LET tally(score) = tally(score} + 1

170 END FOR throw

180 FOR number = 2 to 12 : PRINT tally(number)

In the first FOR loop, using throw, the subscript of the array variable is score. This means

that the correct array subscript is automatically chosen for an increase in the tally after

each throw. You can think of the array, tally, as a set of pigeon-holes numbered 2 to

12. Each time a particular score accurs the tally of that score ‘s increased by throwing '
a stone into the corresponding pigecr-hole.

In the second (short form) FOR loop the subscript is number. As the value of number
changes from 2 to 12 all the values of the tallies are printed.

Notice that in the DIM staternent for a numeric array you need only declare the number
of variables required. There is nc guestion of maximum length as there is in a string array.

H you have used other versions of BASIC you may wonder what has happened to the
NEXT staternent. All SuperBASIC structures end with END something. That is consistent
and sensible but the NEXT statement has a part to play as you will see in later chapters.

o

You can score a maximum of 18 points from the following test. Check your score with SELF TEST ON

the answers on page 109 CHAPTEH 6

1 Mention twe difficulties which arise when the data needed for a program becomes
numerous and you try to handle it without arrays. (two points)

2. if, in an array, ten variables have the same name then how do you know which
is which?

What must you do normally in & program, before you can use an array variable?

What is ancther word for the number which distinguishes a particular variable of
an array from the other variables which share its name?

5. Can you think of two ideas in ordinary life which correspond to the concept of
an array in programming? (two points)

6. In a REPeat loop, the process ends when some condition causes an EXIT
staternent to be executed. What causes the process in a FOR loop to terminate?

7 A REPeat loop needs a name so that you can EXIT to its END properly. A FOR
loop also has a name but what other function does a FOR loop's name have?

8 What are the two phrases which are used to describe the variable which is also
the name of a FOR loop? (two points)

9 The values of a loop variable change autornatically as a FOR loop is executed.
Name one possible important use of these values.

10. Which of the following do the long form of REPeat loops and the iong form of
FOR loops have in common? For each of the four items either say that both have
it or which type of loop has it.

a An opening keyword or statement.

b A closing keyword or statement.

C A loop name.

d A loop variable or control variable {four points})

12/84 31

32

PROBLEMS ON
CHAPTER 6

—_

Use a FOR loop to place one of four numbers 1,234 randormly in five array
variables:

card(1), carc(2), card(3), card(4), card(s).

It does not matter if some of the four numbers are repeated. Use a second FOR
loop to output the values cf the five card variables.

Imagine that the four numbers 1,234 represent ‘Hearts' ‘Clubs, Diarncnds, Spades!
What extra program lines would need 1o be inserted to get output in the form of
these worgs instead of numbers?

Use a FOR loop to place five random numbers in the range 1 to 13 in ar array
of five variables:

card(1), card(2), card(3), card(4) and card(5).
Use a second FOR loop to output the values of the five card variables.

imagine that the random numbers generated in problem 1 represent cards. Write
down the extra statements that would cause the following output:

v

Number Qutput

1 the word Ace’

2 to 10 the actual number
1 the word Jack'

12 the word Queen’
13 the word King’

12/84

If you were to try to write computer programs to solve complex problems you might
find it difficult to keep track of things. A methodical problem sclver therefore divides a
large or complex job into smaller sections or tasks, and then divides these tasks again
into smaller tasks, and sc on untl each can be be easily tackled.

This is similar to the arrangement of complex human affairs. Successful government
depends on a delegation of responsibility. The Prime Minister divides the work armongst
ministers, who divide it further through the Civil Service until tasks can be done by
individuals without further division. There are complicating features such as common
services and interplay between the same and different levels, but the hierarchical structure
is the dominant one.

A good programmer will also work in this way and a modern language fike SuperBASIC
which allows properly named, well defined procedures will be much more helpful than
older versions which do not have such features.

The idea is that a separately named block of code should be written for a particular
task. It doesnt matter where the block of code is in the program. If it is there somewhere,
the use of its name will :

activate the code
return control to the point in the program immediately after that use.

If & procedure, square, draws a square the scheme is as shown below:
procedure definition procedure call

DEFine PROCedure square
REMark Code to draw square
END DEFine

|

draws a square

P TUS— - (71 -

In practice the separate tasks within a job can be identified and named before the
definition code is written. The name is all that is needed in cailing the procedure so
the main outline of the program can be written before all the tasks are defined.

Alternatively if it is preferred, the tasks can be written first and tested. If 1 works you
can then forget the details and just remember the name and what the procedure does.

The following example could quite easily be written without procedures but it shows how
they can be used in a reasonably simple context. Almost any task can be broken down
in a simitar fashion which means that you never have to worry about more than, say,
five to thirty lines at any one time. If you can write thirty-line programs well and handle
procedures, then you have the capability to write three-hundred-line programs.

You can produce ready made buzz phrases for politicians or others who wish to give
an impression of technological fluency without actually knowing anything. Store the
following words in three arrays and then produce ten random buzz phrases.

adjeci$ adjec2$ noun$

Full fifth-generation systems
Systematic knowledge-based machines
Intelligent compatible computers
Controlled cybernetic feedback
Automated user-friendly transputers
Synchrenised parallel micro-chips
Functional learning capability
Optional adaptable programming
Positive modular packages
Balanced structured databases
Integrated logic-oriented spreadsheets
Coordinated file-oriented word-processors
Sophisticated standardised objectives

12/84

CHAPTER 7
SIMPLE
PROCEDURES

Example

33

Simple Procedures

34

- ANALYSIS

DESIGN

VARIABLES

PROCEDURES

MAIN PROGRAM

Program

We will write a program to produce ten buzzword phrases. The stages of the program are:

1

2
3
4

Store the words n three string arrays.
Choose three random numbers which will be the subscripts of the array variables.

Print the phrase.
Repeat 2 and 3 ten times.

We identify three arrays of which the first two will contain adjectives or words used as
adjectives — describing words. The third array will hold the nouns. There are 13 words
in each section and the longest word has 16 characters including a hyphen.

Array Furpose

adjec1$(13,12) first adjectives

adjec23(13,16) second adjectives

noun$(13,15) nouns ’

We use three procedures io match the jobs identified.

This

100
110
120
130
140
150
160
170
180
190
200
z10
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

store _data stores the three sets of thirteen words
get__random gets three random numbers in range 1 to 13.
make__phrase prints a phrase.

is very simple because the main work is done by the procedures.

Declare (DIM) the arrays
Store__data

FOR ten phrases
get__random
make__phrase

END

REMark **#axksxikirxx
REMark * Buzzword *
REMark *xxhkkkkhkhkik
DIM adjec1%(13,12), adjec2$(13,16) ,noun$ (13,15
store_data
FOR phrase = 170 10
get_random
make phrase
END FOR phrase

REMark dkhkhk ik hkkkhkkrrhhkhhkkik

REMark * Procedure Definitions =
REMark Ak kAR rAhA A Ak khrkkhkrkkki
DEFine PROCedure store_data
REMark ***x procedure to store the buzzword data ***
RESTORE 420
FOR item =1 TO 13
READ adjec1s(item), adjec2$(item),nouns(item}
END FOR item
END DEFine
DEFine PROCedure get_random
REMark **+ procedure to select the phrase *x%
LET ad1 = RND(1 TO 133
LET ad2 = RND(1 TO 130
LET n = RND(1 TO 13}
END DEFine
DEFine PROCedure make_phrase
REMark *** procedure to print out the phrase *x*
PRINT ! adjec1%$€ad1) ! adjec2$(ad2) ! noun$(n)

12/84

Simple Procedures

380 END DEFine

390 REMark *wxkkkrrkkdkkhkikk

400 REMark * Program Data *

410 REMark *xkdkkddkdkdkdddkdd

420 DATA "Full', "fifth-generaticn", "systems'

430 DATA "Systematic', "knowledge-based", "machines
440 DATA "Intelligent', "compatible', "computers"
450 DATA "Controlled'", "cybernetic®, "feedback"
460 ODATA "Automated", "user—~friendly", "transputers"

470 DATA "Synchronised”, "parallel', "micro-chips"

480 DATA "Functional', "learning', "capability"”

490 DATA "Optional, "adaptable', "programming"

500 DATA "Positive'™, "modular", "'packages'

510 DATA "Balanced", "structured'", ""databases"

520 DATA "Integrated", "logic-oriented", "spreadsheets"
530 DATA "Coordinated", "file-oriented", '"word-processors"
540 DATA "Sophisticated', "standardised", "objectives"

Automated fifth-generation capability
Functional Learning packages . FOR SERV'EE MANUALS
Full parallel objectives CONTACT:
Positive user-friendly spreadsheets MAURITRON TECHNICAL SERVICES
Intelligent file-oriented capability WWW.Mauritron.co.uk
Synchronised cybernetic transputers i
Functional logic-oriented micro-chips TEL: 01844 - 351694

FAX: 01844 - 352554

Positive parallel feedback
Balanced learning databases
Controlled cybernetic objectives

Suppose we wish to draw squares of various sizes and various colours in various pasitions PASSI NG

on the scale graphics screen. lNFORMATlON TO

If we define a procedure, square, to do this it will require four items of information: PROCEDURES

length of cne side
cotour (colour code)
position {across and up)

The square’s position is determined by giving two values, across and up, which fix the
bottom left hand corner of the square as shown below

ac,up+side ac+side,up+side

ac+side,up

ac

The colour of the square is easily fixed but the square itself uses the values of side and
ac and up as follows.

200 DEFine PROCedure square(side,ac,up)
210 LINE ac,up TO ac+side,up

220 LINE TO ac+side,up+side

230 LINE TO ac,up+side TO ac,up

240 END DEFine

In order to make this procedure work values of sideac and up must be provided. These
values are provided when the procedure is called. For example you could add ihe
following main program to get one green square of side 20.

12/84 35

Smple Procedures

36

100 PAPER 7: CLS

110 INK &

120 square 20,50,50
The numbers 205050 are called parameters and they are passed 1o the variables named
in the procedure definition thus:

square %O,io,io
DEFine PROCedure square(side,ac,up)

The numbers 20,5050 are called actual parameters. They are numbers in this case but
they could be variables or expressions. The variables sideacup are called formal
parameters. They must be variables because the recelve’ values.

A more interesting main program uses the same procedure o create a random pattern
of coloured pairs of squares. Each pair of squares is cbtained by offsetting the second
one across and up by cne-ifth of the side length thus:

Assuming that the procedure square is still present at line 200 then the following program
will have the classical effect.

100 REMark Squares Pattern

110 PAPER 7 : CLS

120 FOR pair =1 TO 20

130 INK RND(5)

140 LET side = RND(10 70 200

150 LET ac = RND(S0) : up = RND(7O)
160 square side,ac,up

170 LET ac=ac+side/5 : up = up+side/5
180 square side,ac,up

190 END FOR pair

The advantage of procedures are:
1. You can use the same code more than ance in the same program or in others.

2. You can break down a task into sub-tasks and write procedures for each sub-task.
This helps the analysis and design.

3 Procedures can be tested separately. This helps the testing and debugging.

4 Meaningful procedure names and clearly defined beginnings and ends help to
make a program readable.

When you get used to properly named procedures with good parameter facilities, you
should find that your probiem-solving and programming powers are greatly enhanced.

12/84

- You can score a maximum of 14 points from the following test. Check your score with
the answers on page 110,

1

.

12/84

How do we normally tackle the problem of great size and complexity in human
affairs?

How can this principle be applied in programming?
What are the two most obvious features of a simple procedure definition? (two paints)

What are the two main effects of using a procedure name to call’ the procedure?
(two points)

What is the advantage of using precedure names in a main program before the
procedure definitions are written?

What is the advantage of writing a procedure definition before using its name in
a main program?

How can the use of procedures help a thirty-line-programmer’ 1o write much bigger
programs?

Some programs use more memory in defining procedures, but in what
circumstances do procedures save memory space?

Name two ways by which information can be passed from a main program to
a procedure. (two points)

What is an actual parameter?

SELF TEST ON
CHAPTER 7

What is a formal parameter? FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHMICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

Write a procedure which outputs one of the four suits : 'Hearts, 'Clubs, ‘Diamonds,
or ‘Spades. Calf the procedure five times to get five random suits.

Write another program for problem % using a number inthe range 1 to 4 as a
parameter to determine the output word. If you have already done this, then try
writing the program without parameters.

Write a procedure which will output the value of a card that is a number in the

range 2 to 10 or one of the words Ace, Jack! 'Queen, King!

Write a program which calls this procedure five times so that five random values
are output.

Write the program of problem 3 again using a number in the range 1 to 13 as
a parameter to be passed to the procedure. if this was the method you used first
time, then try writing the program without parameters.

Write the most elegant program you can, using procedures, to cutput four hands
of five cards each. Do not worry about duplicate cards. You can take elegance
to mean an appropriate mixture of readability, shortness and efficiency. Different
people andior different circumstances will place different importance on these three
qualities which sometimes work against each cther.

PROBLEMS ON
CHAPTER 7

37

CHAPTER 8
FROM BASIC
TO
SUPERBASIC

ALPHABETIC
COMPARISONS

38

If you are familiar with one of the earlier versions of BASIC you may find it possible to
omit the first seven chapters and use this chapter instead as a bridge between what
you know already and the remaining chapters. If you do this and still find areas of difficulty
it may be helpful to backtrack a litlle into some of the earlier chapters.

If you have worked through the eartier chapters this one should be easy reading. You
may find that, as well as introducing some new ideas, i gives an interesting slant on
the way BASIC is developing. Apart from its program structuring faciities SuperBASIC
alsa pushes forward the frontiers of good screen presentation, editing, operating facilities
and graphics. In short it is a combination of user-friendliness and computing power which
has not existed before.

So, when you make the transition from BASIC to SuperBASIC you are moving not only
to a more powerful, more helpful language, you are also moving into a remarkably
advanced computing environment.

We will now discuss some of the main features of SuperBASIC and some of the features
which distinguish it from cther BASICs.

The usual simple arithmetic comparisons are possible. You can write:

LET pet1%$ = "CAT"
LET pet2% = '""DOG"
IF pet1$ < pet2$ THEN PRINT "Meow"

The output will be Meow because in this context the symbal < means:
earlier (nearer to A in the alphabet}

SuperBASIC makes comparisons sensible. For example you would expect:
cat' to come before ‘DOG'

and
'ERDY8L to come before ‘ERD746L

A simplistic approach, blindly using internal character coding, would give the ‘wrong'
result in both the above cases but try the following program which finds the earliest
of two character strings.

100 INPUT item1$, item2$

110 IF item1$ < item2% THEN PRINT iteml1$
120 If item1% = item2% THEN PRINT "Equal"
130 IF item1% > item 2% THEN PRINT item2$

INPUT QUTPUT
cat dog cat
cat 006G cat
ERD98L ERD746L ERD98L
ABC abe ABC

Tne Concept Reference Guide section will give full details about the way comparisons
of strings are made in SuperBASIC.

12/84

- Most BASICs have numeric and string variables. As in other BASICs the distinguishing
teature of a string variable name in SuperBASIC is the dollar sign on the end. Thus:

numeric: count string: word$
sum high__st$
total day__of _week$

You may not have met such meaningful variable names before though some of the more
recent BASICs do allow them. The rules for identifiers in SuperBASIC are given in the
Concept Reference Guide. The maximum iength of an identifier is 255 characters. Your
choice of Identifiers is a perscnal one. Sometimes the longer anes are more helpful in
conveying to the human reader what a program should do. But they have to be typed
and, as in ordinary English, spade is more sensible than horticuftural earth-tuming
implement. Shorter words are preferred if they convey the meaning but very short words
or single letters should be used sparingly. Variable names like X,.Z,£3,Q2 introduce a
level of abstraction which most pecple find unhelpfut.

SuperBASIC allows integer variables which take only whole-number values. We distinguish
these with a percentage sign thus:

count®o
number%
nearest__pound%o

There are now two kinds of numeric variable. We call the other type, which can take
whole or fractional values, floating point. Thus you can write:

LET price = 9
LET cost = 7.31
LET count% = 13

But if you write:
LET countX = 5.43
the value of count9 will become 5. On the other hand:
LET count? = 5.73
will cause the value of count% to be 6. You can see that SuperBASIC does the best
it can, rounding off to the nearest whole number.

The principle of always trying to be intelligently heipful, rather than give an error message
or do something obviously unwanted, is carried further. For example, if a string variable
mark$ has the value

|64|
then:
LET score = mark$

will produce a numeric value of 64 for score. Other versions of BASIC would be likely
to halt and say something like:

Type mis-match’
or ‘Nonsense in BASIC’

if the string cannot be converted then an error is reported.

There is one other type of variable in SuperBASIC, or rather the SuperBASIC system
makes it seem so. Consider the SuperBASIC statement:

IF windy THEN fly kite
In other BASICs you might write:
IF w=1 THEN GOSUB 300

12/84

From BasictoSuperBASIC

VARIABLES AND
NAMES -
IDENTIFIERS

INTEGER VARIABLES

COERCION

LOGICAL VARIABLES
AND SIMPLE
PROCEDURES

39

From Basic to SuperBASIC

In this case w=1 is a condition or logical expression which is either true or faise. If it
is true then a subroutine starting at line 300 would be executed. This subroutine may
deal with kite flying but you cannot tell from the above line. A careful programmer would

write:
IF w=1 THEN GOSUB 300 : REM fily kite

to make it more readable. But the SuperBASIC statement is readable as it stands. The
identifier windy is interpreted as true or false though itis actually a fioating point variable.
A value of 1 or any non-zerc value is taken as true. Zero is taken as false. Thus the
single word, windy, has the same effect as a condition of logical expression.

The cther word, fly__kite, is a procedure. It does a job similar to, but rather detter than,
GOsUB 300.

The following program will convey the idea of logical variables and the simpilest type
of named procedure.

100 INPUT windy

110 IF windy THEN fly_kite

120 IF NOT windy THEN t‘idy_shed .
130 DEFine PROCedure fly_kite

140 PRINT "See it in the air.”

150 END DEFine

160 DEFine PROCedure tidy_shed

170 PRINT "Sort out rubbish.'

180 END DEFine

INPUT OUTPUT

0 Sort out rubbish.
1 See it in the air
2 See it in the air
=2 See it in the air

You can see that only zero is taken as meaning false. You would not normally write
procedures with only one action statement but the program llustrates the idea and syntax
in a very simple context. More is said about procedures later in this chapter.

LET STATEMENTS In SuperBASIC LET is optional but we use it in this manual so that there will be less
chance of confusion caused by the two possible uses of =. The meanings of = in:
LET count =3
and in
IF count =3 THEN EXIT

are different and the LET helps to emphasise this. However, if there are two or a few
LET staternents doing some simple job such as setting initial values, an exception may
be made.

For exampie:

100 LET first =0
110 LET second = 0
120 LET third = 0

may be re-written as:
100 LET first = 0 : second =0 : third =0

without loss of clarity or style. It is also consistent with the general concept of allowing
short forms of other constructions where they are used in simpie ways.

The colon : is a valid staterment terminator and may be used with other statements besides
LET.

40 12/84

In a later chapter we will explain how other graphics faciities, such as drawing circles,
can be handled but here we outline the pixel-oriented features. There are two modes
which may be activated by any of the following:

Low resolution
8 Colour Mode mggg 256
256 pixels across, 256 down
High resolution

MOQDE 512
4 Colour Mode MODE 4

512 pixels across, 256 down

In both modes pixels are addressed by the range of numbers:

0 - 511 across
and 0 - 255 down

Since mode 8 has only half the number of pixels across the screen as mode 4, mode
8 pixels are twice as wide as mode 4 pixeis and so in mode 8 each pixel can be specified
by two coordinates. For example:

Oori 2o0r3 510 or 511

It also means that you use the same range of numbers for addressing pixels irrespective
of the mode. Always think 0-511 acress and 0-255 down,

i you are using a television then not all the pixels may be visible.

The colours available are:

MODE 256 Code MODE 512
biack 0 black

blue 1

red 2 red
magenta 3

green 4 green

cyan 5

yellow 6 white

white 7

You may find the following mnemonic helpful in remembering the codes:
Bonny Babies Really Make Good Children, You Wonder

in the high-resolution mode each colour can be selected by one of two codes. You will
see later how a starlling range of colour and stipple (texture) effects can be produced
if you have a good quality colour monitor.

Some of the screen presentation keywords are as follows:

INK coiour foreground colour

BORDER width, colour draw border at edge of screen
or window

PAPER colour background colour

BLOCK widih, height, across, down, colour colour a rectangle which has its
top left hand corner at position
across, down

12/84

From Basic 1o SuperBASIC

THE BASIC SCREEN

COLOURS

From Basic to SuperBASIC

42

CREEN When you switch on your QL the screen display is split into three areas called windows
S as shown below. Note than in order to fit these windows info the area covered by a
ORGAN'SAT|ON television screen, some pixels around the border are not used in Television mode.

010 51

0ws5l ——————

#1

#2 #1 & #2

255

Manitor

Television

The windows are identified by #0, #1 and # 2 so that you can relate various effects
to particuiar windows. For example:

CLS

will clear window # 1 (the system chooses) so if you want the left hand area cleared

you must type:
CLS H2

If you want a different paper (background colour) type for green:

PAPER 4 : CLS

or

PAPER #2,4 : CLS #2

if you want to clear window # 2 to the background colour green.

The numbers #0, #1, #2 are called channel numbers. In this particular case they
enable you to direct certain effects to the window cf your choice. You will discover later
that channel nurmbers have many other uses but for the moment note that all of the
following statements may have a channel number The third column shows the default
channel — the one chosen by the system if you do not specify one.

Note that windows may overlap. If you use a TV screen the system automatically overlaps
windows #1 and #2 so that more character positions per line are availabie for program

listings.
Keyword Effect Default
AT Character Position #1
BLOCK Draws block #1
BORDER Draw border #1
CLS Clear screen #1
CSIZE Character size #1
CURSCR Position cursor #1
FLASH Causes/cancels flashing #1
INK Foreground colour #1
OVER Effect of printing and graphics #1
PAN Moves screen sideways #1
PAPER Background colour #1
RECOL Changes colour #1
SCROLL Moves screen vertically #1
STRIP Background for printing #1
UNDER Underlines #1
WINDOW Changes existing window #1
LIST Lists program #2
DIR Lists directory #1
PRINT Prints characters #1
INPUT Takes keyboard input #1

Statements or direct commands appear in window #0.
For more detail about the syrtax or use of these keywords see other parts of the manual.

12/84

From Basic to SuperBASIC

The program below draws a green rectangle in 256 mode on red paper with a yellow RECTANGLES AND
‘border one pixel wide. The rectangie has its top left corner at pixel co-ordinates 100,100 Ll N ES
{see QL Concepts). Its width is 80 units across (40 pixels) and its height is 20 units down
(20 pixels).
100 REMark Rectangle
110 MODE 256
120 BORDER 1,6
130 PAPER 2 : CLS
140 BLOCK 80,20,100,100,4

You have to be a bit careful in mode 256 because across values range from O to 51
even though there are only 256 pixels. We cannot say that the block produced by the
above program is 80 pixels wide so we say 80 units.

SUPErBASIC has the usual LET, INPUT, READ and DATA statements for npuz The INPUT AND OUTPUT
PRINT staterment handles most text output in the usual way with the separators:

tabulates output
; just separates - no formatting effect .
\ forces new line

! nermally provides a space but not at the start of line. If an item will not fit at the
end of a line it performs a new line operation.

TO Allows tabulation to a designated column pasition.

You will be familiar with two types of repelitive loop exemplified as follows: LOOPS

(@ Simulate 6 throws of an ordinary six-sided die.
100 FOR throw =1 T0 6
110 PRINT RND(1 TO 62
120 NEXT throw

(by Simulate throws of a die until a six appears.
100 die = RND(1 TO 6)

110 PRINT die
120 IF die <> 6 THEN GOTO 10

Both of these programs will work in SuperBASIC but we recommend the following instead.
They do exactly the same jobs. Although program (b) is a litle mare compiex there are
good reasons for preferring it

(a) 100 FOR throw =1 T0 6 FOR SERVICE MANUALS

110 PRINT RND(1 TO 6) CONTACT:

120 END FOR throw MAURITRON TECHNICAL SERVICES
(b) 100 REPeat throws www.mauritron.co.uk

110 die = RND{1 TO 6) TEL: 01844 - 351694

120 PRINT die FAX: 01844 - 352554

130 IF die = &6 THEN EXIT throws
140 END REPeat throws

It is logical to provide a structure for a loop which terminates on a condition (REPeat
loops) as well as those which are controlled by a count.

The fundamental REPeat structure is:

REPeat identtfier
staternents
END REPeat identifier

The EXIT statement can be placed anywhere in the structure but it must be followed
by an identifier to tell SuperBASIC which loop to exit; for example:

EXIT throws
would transfer control to the statement after

END REPeat throws.
This may seem like a using a sledgehammer to crack the nut of the simple problem
ilustrated. However the REPeat structure is very powerful. It will take you a long way.

12/84

Frorm Basic to SuperBASIC

a4

If you know other languages you may see that it will do the jobs of both REPEAT and
WHILE structures and alsc cope with other, more awkward, situations.

The SuperBASIC REPeat lcop is named sc that a correct clear exit is made. The FOR
loop, like all SuperBASIC structures, ends with END, and its name is given for reasons
which will become clear later.

You will also see later now these loop structures can be used in simple or complex
situations to match exactly what you need to do. We will mention only three more features
of loops at this stage. They will be familiar if you are an experienced user of BASIC.

The increment of the contrel variable of a FOR loop is normally 1 but you can make
it other values by using the STEP keyword. As the examples show

i. 100 FOR even = 2 TO 10 STEP 2
110 PRINT ! even !
120 END FOR even

outputis 2 4 6 8 10

fl, 100 FOR backwards = 9 TO 1 STEP -1
110 PRINT ! backwards ! .
120 END FOR backwards

outputis 987 65 4321

The second feature is that loops can be nested. You may be familiar with nested FOR
lcops. For example the following program outputs four rows of ten crosses.

100 REMark Crosses

110 FOR row =1 TO 4

120 PRINT 'Row number'! row
130 FOR cross =1 TO 10

140 PRINT 1'X"!
150 END FOR cross
160 PRINT

170 PRINT \ "End of row number'! row
180 END FOR row

output is

Row number 1

XX X X XX X XXX
End of row number 1
Row number 2

X X X X X X X X XX
End of row number 2
Row number 3

XX X %X X X X X X X
End of row number 3
Row number 4

X X X X X X X X X X
End of row number &4

A big advantage of SuperBASIC is that it has structures for all purposes, not just FOR
loops, and they can all be nested one inside the other reltecting the needs of a task.
We can put a REPeat loop in a FOR loop. The program below produces scores of
two dice in each row untii @ seven occurs, instead of crosses.

100 REMark Dice rows
110 FOR row =1 TO 4
120 PRINT 'Row number '! row
130 REPeat throws

140 LET diel = RND(1 TO 6)

150 LET die2 = RND(1 TO 6)

160 LET score = die 1 + die2

170 PRINT ! score !

180 IF score = 7 THEN EXIT throws

190 END REPeat throws
200 PRINT \'End of row' | row
210 END FOR row

12/84

From Bask: 0 SuperBASIC

sample output:

Row number 1
811637

End of row number 1
Row number 2
462945127

End of row number 2
Row number 3

?

End of row number 3
Row number &4
624997

End of row number &

The third feature of loops in SuperBASIC allows more flexibility in providing the'rarjge
of values in a FOR loop. The following program illustrates this by printing all the divisible
numbers from 1 to 20. (A divisible number is divisible evenly by a number other than
itself or 1))

100 REMark Divisible numbers

110 FOR num = 4,6,8, T0 10,12,14 70 16,18,20
120 PRINT ! num !

130 END FOR num

More will be said about handling repetition in a later chapter but the features described
above will handle all but a few uncommon or advanced situations.

You will have noticed the simple type of decision: DECIS'ON MAKING

IF die = 6 THEN EXIT throws

This is available in most BASICs but SuperBASIC offers extensions of this structure and
a completely new one for handling situations with more than two alternative courses
of action.

However, you may find the following long forms of IF ... THEN useful. They should explain
themselves.

i. 100 REMark Long form IF.._END IF
110 LET sunny = RND(O TO 1)
120 IF sunny THEN
130 PRINT 'Wear sungliasses'
140 PRINT 'Go for walk®
150 END IF

ii. 100 REMark Long form If...ELSE...END IF
110 LET sunny = RNDCO 7O 1)
120 IF sunny THEN
130 PRINT "Wear sunglasses'
140 PRINT 'Go for walk'
150 ELSE
160 PRINT 'Wear coat'
170 PRINT 'Go to cinema’
180 END IF

The separator, THEN, is optional in long forms or it can be replaced by a ¢olon in short
forms. The long decision structures have the same status as loops. You can nest them
of put other structures into them. When a single variable appears where you expect
a condition the value zero will be taken as false and other values as true.

Most BASICs have a GOSUB statement which may e used to activate particular blocks SU BROUTINES AND

of code called subroutines. The GOSUB statement is unsatistactory in a number of ways PHOCEDU RES
and SuperBASIC offers properly named procedures with some very useful features.

Consider the following programs both of which draw a green 'square’ of side length
50 pixel screen units at a position 200 across 100 down on a red background.

12/84 45

From Basic to SuperBASIC

46

Examples

(a) Using GOSUB

100 LET colour = & : background = 2
110 LET across = 20

120 LET down =
130 LET side
140 6osuB 170

150 PRINT 'END'

160 STOP

170 REMark Subroutine to draw square

180 PAPER background : CLS

190 BLOCK side, side, across, down, colour
200 RETurn

n o
o

(b) Using a procedure with parameters

100 square 4, 50, 20, 100, 2
110 PRINT 'END'

120 DEFine PROCedure square{colour,side,across,down, background)

130 PAPER background : CLS
140 BLOCK side, side, across, down, colour
150 END DEFine

In the first program the values of colour, across, down, side are fixed by LET statements
before the GOSUB statement activates ines 180 and 190. Control is then sent back
by the RETURN statement.

In the second program the values are given in the first line as parameters in the procedure
call, sguare, which activates the procedure and at the same time provides the values
it needs.

1

In its simplest form a procedure has no parameters. It merely separates a particular piece
of code, though even in this simpler use the procedure has the advantage over GOSUB
because it is properly named and properly isolated into a self-contained unit.

The power and simplifying effects of procedures are more obvious as programs get
larger. What procedures do, as programs get larger, is not so much make programming
easier as prevent it from getting harder with increasing program size. The above example
just itustrates the way they work in a simple context.

The following exampies indicate the range of vocabulary and syntax of SuperBASIC which
has been covered in this and earlier chapters, and will form a foundation on which the
second part of this manual wil build.

The letters of a palindrome are given as single iterms in DATA statements. The terminating
itern is an asterisk and you assume no knowiedge of the number of letters in the
palindrome. READ the letters into an array and print them backwards. Some palindrocmes
such as ‘MADAM I'M ADAM' only work if spaces and punctuation are ignored. The
one used here works properly.

100 REMark Palindromes

110 DIM text$(30)

120 LET text$ = FILLS (' ',30)

130 LET ¢ount = 30

140 REPeat get letters

150 READ character$

160 IF character$ = '=' THEN EXIT get_letters

170 LET count = count-1

180 LET text$(count) = character$

190 END REPeat get_letters

200 PRINT text$

210 DATA 'A',lB','L','E' 'lwl'lAl'Isl ,.I' ..E.,'RI
220 DATA IEI .lIl 'ISI'IAIIIHI ‘.E.,IL',lBl,IAl,l*l

The following program accepts as input numbers in the range 1 to 3999 and converts

them into the equivaient in Roman nurnerals. It does not generate the most elegant form.
it produces llll rather than V.

12/84

From Basic 10 SuperBASIC

100 REMark Roman numbers
110 INPUT number

120 RESTORE 210

120 FOR type =1 T0 7
140 READ letterd, value
150 REPeat output

160 IF number < value : EXIT output
170 PRINT letters;
180 LET number = number - value

120 END REPeat ocutput
200 END FOR type
210 DATA 'M',1000,'0D',500,'cC',100,'L",5C,'X",10,'¥",5,"'I"' 1

You should study the above examples carefully using dry runs if necessary unti you
are sure that you understand them.

In SuperBASIC full structuring features are provided so that program elements either CONCLUSION
follow in sequence or fit into one another neatly. All structures must be identified 1o the \

systemn and named. There are many unifying and simplifying features and many extra

facilities.

Most of these are explained and illustrated in the remaining chapters ¢f this manual,
which should be easier to read than the Keyword and Concept Reference sections.
However, it is easier to read because it does not give every technical detail and exhaust
every topic which it treats. There may, therefore, be a few occasions when you need
to consult the reference sections. On the other hand some major advances are discussed
in the following chapters. Few readers will need to use all of them and you may find
it helpful to omit certain parts, at least on first reading.

12/84 a

CHAPTER 9

DATA TYPES

VARIABLES
AND

IDENTIFIERS

43

IDENTIFIERS AND
VARIABLES

FLOATING POINT
VARIABLES

You will have noticed that a program (& sequence of statements) usually gets some data
to work on {input) and produces some kind of results (output). You will also have
understood that there are internal arrangements for storing this data. In order to avoid
unnecessary technical explanations we have suggested that you imagine pigeon holes
and that you choose meaningful names for the pigecn holes. For example, if it is
necessary to store a number which represents the score from simulated dice-throws you
imagine a pigeon hole named score which might contain a number such as 8.

Internally the pigeon holes are numbered and the systern maintains a dictionary which
connects particular names with particular numbered pigeon holes. We say that the name,
score, points 1o its particular pigeon-hole (by means of the internal dictionary).

SCOrE wm——— 8

The whole arrangement is called a variable.

What you see is the word score. We say that this word, score is an identifier It is what
we see and it identifies the concept we need, in this case the result, 8, of throwing a
pair of dice. Because the identifier is what we see it becomes the thing we talk or write
or think about We write about score and its value at any particular moment

There are four simple data types called floating point, integer, string and logical and
these are explained below. We talk about data types rather than variable types because
data can ocour on its own, for example 3.4 or Blue hat' as the value of a variable. But
if you understand the different types of variables, you must also understand the different
types of data.

—

A SuperBASIC identifier must begin with a letter and is a sequence of:

upper or lower case letters
digits or underscore

2. An identifier may be up to 255 characters in length so there is no effective limit
in practice.

An identifier cannot be the same as a keyword of SuperBASIC.
An integer variable name is an identifier with % on the end.

A string variable name is an identifier with $ on the end.

No other identifiers must use the symbois % and $.

An identifier should usually be chosen so that it means something to a human
reader, but for SuperBASIC it does not have any particular meaning other than
that it identifies certain things.

~N s W

Examples of the use of floating point variables are:

400 LET days = 24

110 LET sales = 3649.84

120 LET sales_per_day = sales/days
130 PRINT sales_per day

12/84

Data Types, Variables and Idertifiers

The value of a flcating point variable may be anything in the range:
- +10°5% to +10*%5 with 8 significant figures.
Suppose in the above program sales were, exceptionally, only 3p. Change line 110 to:
110 LET sales = 0.03
This system will change this to:
110 LET sales = 3E-2

To interpret this, start with 3 or 30 and move the decimal point -2 places, ie. two places
left. This shows that:

3E-2 is the same as 003
After running the program, the average dally sales are:
1.25E-3 which is the same as 000125
Numbers with an E are said to be in exponent form:
(mantissa) £ {exponent) = (mantissa) x 10 to the power (exponent)

Integer variables can have only whole number values in the range -32678 to 32768 The |NTEGER VARIABLES
following are examples of valid integer variabie names which must end with %.

LET count?% = 10
LET six_tally% = RNDC1IOD
LET number 3% =3

The only disadvantage of integer variables, when whole numbers are required, is the
slightly misleading % symbol on the end of the identifier. It has nothing to do with the
concept of percentage. It is just a convenient symbol tagged on to show that the variable
is an integer.

Using a function is a bit fike making an omelette. You put in an egg which is processed NUMERIC
according to certain rules (the recipe) and get out an omelette. For example the functicn FUNCTION S
INT takes any number as input and outputs the whole number part. Anything which

is input to a function is called a parameter or argument. INT is a function which gives

the integer part of an expression. You may write:

PRINT INT(5.6)

and 5 would be the cutput. We say that 56 is the parameter and the function returns
the value 5. A function may have more than one parameter. You have already met:

RND(T TO 63

which is a function with two parameters. But functions always return exactly one value.
This must be so because you can put functions into expressions. For example:

PRINT 2 * INT(5.6)

would produce the output 10. It is an important property of functicns that you-can use
them in expressions. It follows that they must return a single value which is then used
in the expression. INT and RND are system functions; they come with the system, but
later you will see how to write your own.

The following examples show common uses of the INT function.

100 REMark Rounding
110 INPUT decimal
120 PRINT INT(decimal + 0.5)

in the example you input & decimal fraction and the output is rounded. Thus 4.7 would
become 5 but 43 would become 4.

You can achieve the same result using an integer variable and coercion.

Trigonometricai functions will be dealt with in a later section but cther common numeric
functions are given in the list below.

12/84 49

Data Types, Variables and Identifiers

50

NUMERIC
OPERATIONS

Function Effect Examples Returned values
ABS Absolute or ABS(7) 7
unsigned value ABS(-43) 43
Integer part of a INT(2.4) 2
INT floating point INT(0.4) 0
numier INT{(--2.7) -3
SGRT(2) 1.414214
SQRT Square root SQRT(18) 4
SQRT(26} 1612452

There is a way of computing square roots which is easy to understand. To compute
the square root of 8 first make a guess. It doesnt matter how bad the guess maybe.
Suppose you simply take half of 8 as the first guess which is 4.

Because 4 is greater than the square roct of 8 then 8/ 4 must be less than it. The reverse
is also true. If you had guessed 2 which is less than the square root then 8 / 2 must

be greater than it

It follows that if we take any guess and compute number / guess we have two numbers,
one too small and one too big. We take the average of these numbers as our next
approximation and thus get closer to the correct answer

We repeat this process until successive approximations are so close as 1o make litle
difference.

100 REMark Square Roots

110 LET number = 8

120 LET apprax = number/2

130 REPeat root

140 LET newval = (approx + number/approx) /2
150 IF newval == approx THEN EXIT root

160 LET approx = newval

170 END REPeat root

180 PRINT 'Square root of' | number ! "is' | newval

sample output
Square root of 8 is 2.828427

Notice that the conditional EXIT from the lcop must be in the middle. The traditional
structures do not cope with this situation as well as SuperBASIC does.

The == sign in line 150 means ‘approximately equal 1] that is equal to within 0000001
of the values being compared.

SuperBASIC allows the usual mathematical operations. You may notice that they are like
functions with exactly two operands each. It is also conventional in these cases to put
an operand on each side of the symbol. Sometimes the operation is denoted by a familiar
symbol such as + or *. Sometimes the operation is denoted by a keyword like DIV
or MOD but there is no real difference. Numeric operations have an order of priority.
For example, the result of:

PRINT 7 + 3*2
is 13 because the multiplication has a higher priority. However:
PRINT (7 + 322

will output 20, because brackets over-ride the usual priority. As you will see later so many
things can be done with SuperBASIC expressions that a full statement about priority
cannot be made at this stage (see the Concept Reference Guide if you wish) but the
operations we now deal with have the following order of priority:

highest - raising to a power
multiplication and division (including DIV, MOD)
lowest — add and subtract

12/84

Data Types, Variables and Identifiers

The symbols + and — are also used with only one operand which simply denotes
positive or negative. Symboals used in this way have the highest priority of all and can
only be over-ridden by the use of brackets.

Finally if two symbols have equal pricrity the leftmost operation is performed first so that:
PRINT 7-2 + 5

will cause the subtraction before the addition. This might be important if you should ever
deal with very large or very small numbers.

Operation Symbel Examples Results Note
Add + - 74686 . 136
Subtract - 7-68 04
Multipty * 3*27 63
21 %(=3) -63
Divide / 772 35 Do not divide by zero ‘
=175 -34
Raise to power A 4715 8
Integer divide DIV -8 DIV 2 -4 Integers only
70V 2 3 Do nct divide by zero
Modulus MOD 13 MCD 5 3
21 MOD 7 0
-17 MOD 8 7

Modulus returns the remainder part of a division. Any attempt 1o divide by zero will
generate an error and terminate program exection.

Strictly speaking, a numeric expression is an expression which evaluates to a number NUMERlC

and there are more possibilities than we need to discuss here. SuperBASIC allows you EXPRESS'ONS
to do complex things if you want to but it also allows you to do simple things in simple

ways. In this section we concentrate on those usual straightforward uses of mathematical

features.

Basically numeric expressions in SuperBASIC are the same as those of mathematics
but you must put the whoie expression in the form of a sequence.

5+ 3
6 — 4

becomes in SuperBASIC (or other BASIC):
(5 + 36 - 4

In secondary school algetra there s an expression for one solution of a guadratic
equation:

axz? + bx + ¢ =0
One solution in mathematical notation is:

x= -b+ / b2 -4ac

2a
if we start with the equation:
22 - 3x +1 =20
The following program will find one solution. Example 1

100 READ a,b,c
110 PRINT 'Root is' ! {(-b +SQRT(b"2 - 4x*axc))/(Z2*a)
120 DATA 2,-3,1

12/84 51

D.Ma Types, Vanables and Identifiers

Example 2

LOGICAL VARIABLES

STRING VARIABLES

Y4

In problems which need to simulate the dealing of cards you can make cards correspend
to the numbers 1 to 52 as follows:

11013 Ace, two........ king of hearts
14 to 26 Ace, two........ king of clubs
27 to 39 Ace, twao........ king of diamonds
40 to 52 Ace, two........ king of spades

A particular card can be identified as follows:

100 REM Card identification

110 LET card = 23

120 LET suit = {card=1) DIV 13

130 LET value = card MOD 13

140 IF value = 0 THEN LET value =13
150 IF value 4 THEN PRINT "fAce of '";
160 IF value >= 2 AND value <= 10 THEN PRINT value ! tof
170 IF value = 11 THEN PRINT "Jack of ";
180 IF value = 12 THEN PRINT "Queen of ";
190 IF value = 13 THEN PRINT "King of '';

nou

LI U T I P T T 1|

200 I1F suit = 0 THEN PRINT "hearts'
210 IF suit =1 THEN PRINT "clubs"
220 IF suit = 2 THEN PRINT "diamonds'
230 IF suit = 3 THEN PRINT ''spades"”

There are new ideas in this program. They are in line 160. The meaning is clearly that
the number is actually printed cniy if two logical statements are irue. These are:

value is greater than or equal to 2 AND vaiue is less than or equal to 10
Cards outside this range are either aces or tourt cards’ and must be treated differently.

Note also the use of | in the PRINT statement to provide a space and ; to ensure that
output continues on the same line.

There are two groups of matnematical functions which we have nat discussed here. They
are the trigonometric and logarithmic. You may need the former in organising screen
displays. Types of functions are also fully defined in the reference section.

Strictly speaking, SuperBASIC does not allow logical variables but it allows you to use
other variables as logical ones. For example you can run the following program:

100 REMark Logical Variable
110 LET hungry =1
120 1F hungry THEN PRINT *'Have a bun"

You expect a logical expression in fine 120 but the numeric variable, hungry, is there
on its own, The system interprets the value, 1, of hungry as true and the output is:

Have a bun
If line 110 read:
LET hungry = O

there would be no output. The system interprets zero as faise and all other values as
true. That is useful but you can disguise the numeric guality of hungry by writing:

100 REMark Lagical Variable

110 LET true =1 : false = 0

120 LET hungry = true

130 IF hungry THEN PRINT 'Have a bun"

There is much to be said about handling strings and string variables and this is left to
a separate chapter.

12/84

12/84

A rich oil dealer gambies by tossing a coin in the following way. If it comes down
heads he gets 1. If it comes down tails he throws again but the possibie reward
is doubled. This is repeated so that the rewards are as shown.

THROW 1234 5 6 7
REWARDS 12 48 16 32 64

By simuiating the game try to decide what would be a fair initia: payment for each
such game:

{a) if the player is limited to a maximum of seven throws per game.
(b) if there is no maximum number of throws.

Bill and Ben agree to gamble as follows. At a given signal each divides his money
into two halves and passes one half to the other player. Each then divides his new
total and passes half 1o the other Show what happens as the game proceeds
if Bill starts with 16p and Ben starts with 64p.

What happens if the game is changed so that each hands over an amount equal
to haif of what the other possesses?

Write a program which forms random three-letter words chosen from A BC,D and
prints them untl 'BAD’ appears.

Modify the last program so that it terminates when any real three letter word appears.

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

PROBLEMS ON
CHAPTER 9

CHAPTER 10
LOGIC

AND

OR

If you have read previous chapters you will probably agree that repetiticn, decision making
and breaking tasks into sub-tasks are major concepts in problem analysis, program design
and encoding programs. Two of these concepts, repetition and decision making, need
logical expressions such as those in the following program lines:

IF score = 7 THEN EXIT throws
IF suit = 3 THEN PRINT "spades"

The first enables EXIT from a REPeat loop. The second is simply a decision to do
something or not. A mathematical expression evaluates to one of millions of possible
numeric values. Similarly, a string expression can evaluate 1o millions of possible strings
of characters. You may find it strange that logical expressions, for which great importance
is claimed, can evaluate to one of only two possible values: true or false.

In the case of:
score = 7

this s obvicusly correct. Either score equals 7 or it doesn't ! The expression must be
true or false — assuming that it's not meaningless. It may be that you do not know the
value at some time, but that will be put right in due course.

You have to be a bit more careful of expressions involving words such as OR, AND,
NOT but they are well worth investigating — indeed, they are essential to good
programming. They will become even more important with the trend towards other kinds

of languages based more on precise cescriptions of what you require rather than what
the computer must do.

The word AND in SuperBASIC is like the word ‘and’ in crdinary English. Consider the
following program.

100 REMark AND
110 PRINT "Enter two values" \ "1 for TRUE or 0 for FALSE"

120 INPUT raining, hole_in_roof
130 IF raining AND hole_in_roof THEN PRINT 'Get wet"

As in real life, you will only get wet if it is raining and there is a hole in the roof. If one
(or both) of the simple logical variables

raining
hele__in__root
is false then the compound logical expression
raining AND hole__in__roof

is also false. It takes two true values to make the whole expression true. This can be
seen from the rues below. Only when the compound expression is true do you get wet.

raining hole__in__roof raining AND hole__in__roof effect
FALSE FALSE FALSE DRY
FALSE TRUE FALSE DRY
TRUE FALSE FALSE DRY
TRUE TRUE TRUE WET

Rules for ANO

In everyday life the word or’ is used in two ways. We can llustrate the inclusive use of
OR by thinking of a cricket captain looking for players. He might ask “Can you bat or
bowl?" He would be pleased if a player could do just one thing well but he would also
be pleased if someone could do both. So itis in programming: a compound expression
using OR is true if either or both of the simple statements or variables are true. Try the
following program.

100 REMark OR test

110 PRINT "Enter two values' \ "1 for TRUE or O for FALSE"

120 INPUT "Can you bat?", batsman
130 INPUT ""Can you bowl?", bowler
140 IF batsman OR bowler THEN PRINT "In the team"

12/84

You can see the effects of different combinations if answers in the rules below:

batsman bowler batsman OR bowler effect
FALSE FALSE FALSE not In team
FALSE TRUE TRUE in the team
TRUE FALSE TRUE in the team
TRUE TRUE TRUE in the team
Rules for OR

When the inclusive OR is used a trug value in either of the simple statements will produce
a true value in the compound expression. If lan Botham, the England all-rounder, were
to answer the questions both as a bowler and as a batsman, both simple staterments
would be true and so wouid the compound expression. He would be in the team.

If you write O for false and 1 for true you will get all the possible combinations by counting
in binary numbers:

00
01
10
|
The word NOT has the obwious meaning.

NQT true is the same as false
NOT false is the same as true

However you need to be carefu!. Suppose you hald a red triangle and say that it is:
NOT red AND square

tn Englisn this may be ambiguous.

If you mean:
{NOT red) AND square

then for a red triangle the expression is false.

If you mean:
NOT (red AND sqguare)

then for a red triangle the whole expression is true. There must be a rule in programming
to make it ciear what is meant. The rule is that NOT takes precedence over AND so
the interpretation:

{(NOT reqd) AND square
is the correct one. This is the same as:
NOT red AND sguare

To get the other interpretation you must use brackets. If you need to use a complex
logical expression 1t is best to use brackets and NOT if their usage naturally reflects what
you want. But you can if you wish always remove brackets by using the following laws
(attributed to Augustus De Morgan) .

NOT (a AND b) is the same as NOT a OR NOT b
NOT (a OR b) is the same as NOT a AND NOT b
For example:

NOT (tall AND fair) is the same as
NOT taff OR NQT fair

NOT (hungry OR thirsty) is the same as
NOT hungry AND NOT thirsty

12/84

NOT

Logc

55

Logc

XOR-Exclusive OR

il

PRIORITIES

Test this by entering:

100 REMark NOT and brackets

110 PRINT "Enter two values"\'"1 for TRUE or O for FALSE"
120 INPUT "tall"; tall

130 INPUT "fair'; fair

140 IF NOT (tall AND fair) THEN PRINT "FIRST"

150 IF NOT tall OR NOT fair THEN PRINT “SECOND"

Whatever combination of numbers you give as input, the output will always be either
two words or nene, never one. This will suggest that the two compeund logical EXPressions
are equivalent.

Suppose a golf professional wanted an assistant who could either run the shop or give
golf lessons. If an applicant turned up with both abilities he might nat get the job because
the golf professional might fear that such an able assistant would try to take over. He
would accept a geod goifer who could not run the shop. He would also accept a poor
golfer who could run the shop. This is an exclusive QR situation: either is acceptable
but not both. The following program would test applicants:

100 REMark XOR test

110 PRINT "Enter 1 for yes or O for no."
120 INPUT "Can you run a shop?", shop

130 INPUT ""Can you teach golf?", golf

140 IF shop XOR golf THEN PRINT '"Suitable”

The only combinations of answers that will cause the output “Suitable” are (0 and 1)
or (1 and 0). The rules for XOR are given below.

Able to run shop Able to teach Shop XOR teach effect
FALSE FALSE FALSE no job
FALSE TRUE TRUE gets the job
TRUE FALSE TRUE gets the job
TRUE TRUE FALSE no job
rules for XOR

The order of pricrity for the logical operators is (highest first):

NOT
AND
OR XOR

For example the expression

rich OR tall AND fair
means the same as:

rich OR (taif AND fair)

The AND operation is performed first. To prove that the two logical expressions have
identical efiects run the following program:

100 REMark Priorities

110 PRINT "Enter three values"\"Type 1 for Yes and 0 for No'!
120 INPUT rich,tall,fair

130 IF rich OR tall AND fair THEN PRINT "YES"

140 IF rich OR (tall AND fair) THEN PRINT "AYE"

Whatever combination of three zeroes or ones you input at line 120 the output will be
gither nothing or:

YES
AYE

You can make sure that you test all possibilities by entering data which forms eight three-
digit binary numbers 000 to 111:

000 001 010 011 100 101 110 111

12/84

12784

Place ten numbers in a DATA statement. READ each number and f it is greater
than 20 then print it.

Test all the numbers from 1 to 100 and print only those which are perfect squares
or divisible by 7.

Toys are described as Safe (S), or Unsafe (U), Expensive (E) or Cheap (C), and
either for Girls (G), Boys (B} or Anyone (A). A trio of letters encodes the qualities
of each toy. Place five such trios in a DATA statement and then search it printing
only those which are safe and suitable for girls.

Modify program 3 to print those which are expensive and not safe.

Madify pregram 3 to print those which are safe, not expensive and suitable for
anyone,

PROBLEMS ON
CHAPTER 10

57

CHAPTER 11
HANDLING
TEXT -
STRINGS

ASSIGNING
STRINGS

JOINING STRINGS

COPY A STRING
SLICE

You have used string variables to store character strings and you know that the rules
for manipulating string variables or string constants are not the same as those for numeric
variables or numeric constants. SuperBASIC offers a fult range of facilities for manipulating
character strings effectively. in particular the concept of string-slicing both extends and
simplifies the business of handling substrings or slices of a string.

Storage for string variables is allocated as it is required by a program. For example,
the lines: '

100 LET words$ = ""LONG"
110 LET words$ = ""LONGER™
120 PRINT wards$

would cause the six letter word, LONGER, to be printed. The firstline would cause space
for four letters to be allocated but this allecation would be averruied by the second line
which requires space for six characters.

it is, however, possible to dimension (i.e. reserve space for) a string variable, in which
case the maximum length becomes defined, and the variable behaves as an array.

You may wish 1o construct records in data processing frorn a number of sources. Suppose,
for example, that you are a teacher and you want to store a set of three marks for each
student in Literature, History, and Geography. The marks are held in variables as shown:

lit$ 82 hist$ geog$

As part of student record keeping you may wish to combine the three string values into
one six-character string called mark$. You simply write:

LET mark$ = Lit$ & hist$ & geog$

You have created a further variable as shown:

mark$ | 625671

But remember that you are dealing with a character string which happens to contain
number characters rather than an actual number. Note that in SuperBASIC the & symbol
is used to join strings together, whereas in some other BASICs, the + symbol is used
for that purpose.

A string siice is part of a string. It may be anything from a single character to the whole
string. In order to identify the string slice you need to know the positions of the required
characters.

Suppose you are constructing a children's game in which they have to recognise a word
hidden in a jumble of letters. Each letler has an internal number — an index —
corresponding to its position in the string. Suppose the whole string s stored in the variable
jumble$, and the clue is Big cat

I

1

|

|

1
|
\ string slice

jumble$APOOLLIONATSUZ

1234567891011121314

12/84

You can see that the answer is defined by the numbers 6 to 9 which indicate where
it is. You can abstract the answer as shown:

100 jumble$ = "APQOLLIONATSUZ"
110 LET an% = jumble$(6 TO 9)
120 PRINT an$

Now suppose that you wish to change the hidden animal into a bull. You can write two
extra lines:

130 LET jumble$(é6 TO 9) = ByLL"
140 PRINT jumble$

The output from the whole five-line program is:

LION
APQOLBULLATSUZ

All string variables are initially empty, they have length zero. If you attempt to copy a
string into a string-slice which has insufficient length then the assignment may not be
recognised by SuperBASIC.

If you wish to copy a string into a string-slice then it is best to ensure the destination
string is long enough by padding it first with spaces.

100 LET subject$ = "ENGLISH MATHS COMPUTING"
110 LET student$ = ' "
120 LET student$(9 TO 13) = subject$(9 TO 13)

We say that “BULL" is a stice of the string "APQOLBULLATSUZ” The defining phrase:
(6 70 9)

is called a siicer. It has other uses. Notice how the same notation may be used on both
sides of the LET statement. If you warnt to refer to a singie character it would be clumsy
1o write:

jumble$(s TO 6>
just to pick out the "B" (possibly as a clue} so you can write instead :
jumble$(6)
to refer to a single character.
Suppose you have a variable, mark$ holding a record of examination marks. The slice

giving the history mark may be extracted and scaled up, perhaps because the history
teacher has been too strict in the marking. The following lines will extract the history mark:

100 LET mark$ = "625671"
110 LET hist$ = mark$(3 TO &)

The problem now is that the value “56" of the variable, hist$ is a string of characters
not numeric data. If you want to scale it up by multiplying by, say, 1.125, the value of
histé must be converted to numeric data first, SuperBASIC will do this conversion
automatically when we type:

120 LET num = 1.125 * hist$
Line 120 converis the string “56" to the number 56 and multiplies it by 1125 giving 63.

Now we should replace the old mark by the new mark but now the new mark is stil
the number 63 and before it can be inserted back into the original string it must be
converted back 1o the string '63. Again SuperBASIC will convert the number automaticaily
when we type:

130 LET mark$(3 TO 4) = num
140 PRINT mark$

The output from the whole program is:
626371
which shows the history mark increased 1o 63.

i2/84

Handing Text

REPLACE A STRING

SLICE

COERCION

59

Handing Text

SEARCHING A
STRING

QTHER STRING
FUNCTIONS

Strictly speaking it is ilegal to mix data types in a LET statement. It would be silly to write:

LET num = "LION"
and you would get an error message if you tried, but if you write:

LET num = "65"

the system will conclude that you want the numbsar 65 to become the value of num
and do that The complete program is:

100 LET mark$ = "625671"

110 LET hist$ = mark$(3 TO &)
120 LET num = 1.125% = hist$
120 LET mark${(3 TQ 4) = num
140 PRINT mark$

Again the output is the same!

In line 120 a string value was converted into numeric form so that it could be multiplied:
In line 130 a number was converted into string form. This converting of data types is
known as type coercion. *

You can write the program more economically if you understand both string-slicing and
COErcion Now:

100 LET mark$ = "625671"
110 LET mark$¢3 TO 4> = 1.125 * mark$(3 70 &
120 PRINT mark$

If you have worked with other BASICs you will appreciate the simplicity and power of
string-slicing and coercion.

You can search a string for a given substring. The following program displays a jumble
of letters and invites you to spot the animal.

100 REM Animal Spotting

110 LET jumble$ = "SYNDICATE"

120 PRINT jumble$

130 INPUT "What is the animal?'" | an$
140 IF an$ INSTR jumble$ AND an$(1) = "(C"
150 PRINT '"Correct'

150 ELSE

170 PRINT ""Not correct"

180 END IF

The operator INSTR, returns zero if the guess is incorrect. If the guess is correct INSTR
returns the number which is the starting position of the string-slice, in this case 6.

Because the expression:
an® INSTR jumble$

can be treated as a logical expression the position of the string in a successful search
can be regarded as true, while in an unsuccessful search it can be regarded as false.

You have already met LEN which returns the length (number of characters) of a string.

You may wish to repeat a particular string or character several times. For example, if
you wish to output a row of asterisks, rather than actually enter forty asterisks in @ PRINT
statement or organise a loop you can simply write:

PRINT FILLS ('»",40)

Finaliy it is possible to use the function CHRS$ to convert internal codes into string
characters. For example:

PRINT CHR$(65)
would output A.

12/84

A great deal of computing is concerned with organising data so that it can be searched COMPAR'NG
quickly. Sometimes it is necessary to sort it in to aiphabetical order, The basis of various STRINGS
sorting processes is the facility for comparing two strings to see which comes first.

Because the letters A BC... are internally coded as 656667... i is natural to regard as

correct the following statements:

A is less than B
B is less than C

and because internal character by character comparison is automatically provided:

CAT is less than DOG
CAN is less than CAT

You can write, for example:
: FOR SERVICE MANUALS

IF "CAT" < "DOG" THEN PRINT ""MEOW" CONTACT:

and the output would be: MAURITRON TECHNICAL SERVICES
MEOW Www.mauritron.co.uk
— TEL: 01844 - 351694
Similarly: FAX: 01844 - 352554

IF "DOG" > ""CAT" THEN PRINT "WOOF"
would give the output:
WOOF

We use the comparison symbols of mathematics for string comparisons. All the following
logicai statements expressions are both permissible and true.

MALF" < “BEN'

IIKITII > IlBENH

IIKITII <= IILENI‘I
VEIT™ >= 1KITH
IIPATII >= IILENII
IILENH <= IILENII
IIPAT" <> IIPETH

So far, comparisons based simply on internal codes make sense, but data is not always
conveniently restricted to upper case letters. We would like, for example:

Cat to be less than COT
and K2N to be less than K27N

A simple character by character comparison based on internal codes would not give
these resuilts, so SuperBASIC behaves in a more intelligent way. The following program,
with suggested input and the output that will result, ilustrates the rules for comparison
of strings.

100 REMark comparisons

110 REPeat comp

120 INPUT "input a string' ! first$

130 INPUT "input another string' ! second$
140 IF first$® < second$ THEN PRINT "Less"
150 IF first® > second$® THEN PRINT "Greater'
160 IF first$ = second$ THEN PRINT "Equal"
170 END REPeat comp

input output

CAT CCTr Greater
CAT CAT Egual
PET PETE Less
K& K7 Less

K66 K7 Greater

K12ZN KeN Greater

12/84

Logic

61

Loge

62

PROBLEMS ON
CHAPTER 11

-_

Greater than — Case dependent comparision, numbers compared in numerical
order.

Less than — Case dependent, numbers compared in numerical order
Equals — Case dependent, strings must be the same

Equivalent — String must be almost the same, Case independent, numbers
compared in numerical grder.

Greater than or equal to — Case dependent, numbers compared in numerical
order

Less than or equal to — Case dependent, numbers compared in numerical order.

Place 12 letters, all different, in a string variable and ancther six letters in a second
string variable. Search the first string for each of the six letters in turn saying in
each case whether it is found or not found.

Repeat using single character arays instead of strings. Place twenty random upper
case letters in a string and list those which are repeated.

Write a program to read a sample of text all in upper case letters. Count the
frequency of each letter and print the results.

“GOVERNMENT IS A TRUST, AND THE OFFICERS OF THE
GOVERNMENT ARE TRUSTEES; AND BOTH THE TRUST AND THE
TRUSTEES ARE CREATED FOR THE BENEFIT OF THE PEOPLE. -
HENRY CLAY, 1829"

Write a program to count the number of words in the following text. A word is
recognised because it starts with a letter and is followed by a space, full stop or
other punctuation character.

“THE REPORTS OF MY DEATH ARE GREATLY EXAGGERATED. -
CABLE FROM MARK TWAIN TO THE ASSOCIATED PRESS, LONDON
1896

Rewrite the last program illustrating the use of logical variables and procedures.

12/84

SuperBASIC has so extended the scope and variety of facilities for screen presentation
that we describe the features in two sections: Simple Printing and Screen.

The first section describes the output of ordinary text. Here we explain the minimal welt
established methods of displaying messages, text, or numerical output. Even in this
mundane section there is innovation in the concept of the ‘inteligent’ space — an example
of combining ease of use with very useful effects.

The second section is much bigger because # has a great deal to say. The wide range
of features actually makes things easier. For example, you can draw a circle by simgly
writing the word CIRCLE followed by a few details to define such things as its position
and size. Many other systems require you to understand some geometry and trigonometry
in order to do what is, in concept, simple.

Each keyword has been carefully chosen to relect the effect it causes. WINDOW defines
an area of the screen; BORDER puts a border round it; PAPER defines the background
colour; iNK determines the colour of what you put on the paper.

If you wark through this chapter and get a little practice you will easlly remember which
keyword causes which effect. You will add that extra quality to your programming fairly
easily. With experience you may see why computer graphics is becoming a new art form.

The keyword PRINT can be followed by a sequence of print items. A print item may
be any of:

text such as: “This is text”
variables such as: num, word®
expressions such as; 3 * num, davd & week$

Print items may be mixed in any print statement but there must be one or more print
separators between each pair Print separators may be any of:

; No effect ~ it just separates print items.

! Normally inserts a space between output items. If an item will not fit on the current
line it behaves as a new line symbol. If the item is at the start of line a space is
not generated.

, A tabulator causes the output to be tabulated in columns of 8 characters
\ A new line symbol will force a new line.
TO Allows tabbing.

The numbers 1,23 are legitimate print items and are convenient for illustrating the effects
of print separators

Statement Effect
100 PRINT 1,2,3 1 2 3
100 print 112131 1273
100 PRINT 1\2\3 1

2

3
100 PRINT 1:2;3 123
100 PRINT "This is text" This is text
100 LET word$ =" v maves print position
110 PRINT word$
100 LET num = 13 13

110 PRINT num

100 LET an$ = "yes"
110 PRINT "I say" | an$ I say yes

110 PRINT "Sum js' ! 4 + 2 Sum is 6

12/84

CHAPTER 12
SCREEN
OUTPUT

SIMPLE PRINTING

Screen Ouiput

SCREEN

COLOUR

STIPPLES

You can position print output anywhere on the screen with the AT command.

For example:
AT 10,15 : PRINT "This is on row 10 at column 15"
The CURSOR command can be used to position the print output anywhere on the
screen's scale systern. For example:
CURSOR 100,150 : PRINT "this is 100 pixel grid units across and
150 down"

If you read the Keyword Reference Guide you may find it difficult to reconcile the section
on PRINT with the above description. Two of the difficulties disappear if you understand

that:
Text in guotes, variables and numbers are all girictly speaking, expressions; they
are the simplest {degenerate) forms of expressicns.

Print separators are strictly classified as print items.

This section introduces general effects which apply whether you wish to output text or
graphics. The staterment:

MODE & or MODE 256
will select MODE 8 in which there are:

256 pixels across numbered 0-511 (two numbers per pixel)
256 pixels down numbered 0-255
8 colours

A pixel is the smallest area of colour which can be displayed. We use the term, solid
colour because these start with ordinary solid-looking colours of which there are cnly
eight However, by using various effects a variety of shades and textures can be achieved.
If you are using your QL with an ordinary television set then the television set will not
be able to reproduce any of these exira effects.

The statement:
MODE & or MODE 512
will select MODE 4 in which there are:

512 pixels across numbered 0 to 511
256 pixels down numbered 0 to 255
4 colours

You can select a colour by using the following code in combination with suitable keywords
such as PAPER, INK etc. Note that the numbers by themselves mean nothing. The
numbers are only interpreted as colours when they are used with PAPER and INK, efc.

8 Colour Mode Code 4 Colour Mode

black 0 black
blue 1 black
red 2 red

magenta 3 red

green 4 dgreen
cyan 5 green
yellow 6 white
white 7 white

Colour Codes
For example INK 3 would give magenta in MODE 8.
You can if you wish specify two colours in a suitable statement. For example 2,4 would
give a chequerboard stipple as shown. In each group of four pixels two would be red

{code 2) corresponding to the colour seiected first The other two pixels would be a
contrast. It is not really possible to display this effect on a domestic television set

12/84

Screen Cutput

red conirast

If you write:
INK 2,4

the mix colour is formed from the two codes 2 and 4. We will call these choices colour
and contrast!

INK colour, contrast

You can find out what the stipple effects are by trying them but we give more technical
details below.

100 REMark Colour/Contrast
110 FOR coleour =0 TO 7 STEP 2 '
120 PAPER colour : CLS

140 FOR contrast =0 TQO 7 STEP 2
150 BLOCK 100,50,40,50,colour,contrast
160 PAUSE 50

170 END FOR contrast
480 END FOR colour

If you wish to try different stipples you can add a third cede number to the colour
specification. For example:

INK 2,4,1
would specity a red and green horizontal stripe effect. A block of four pixels wauld be:

. The possible effects are shown using red

Code Name
0 Single pixel of contrast
1 Horizontal Stripes
2 Vertical Stripes
3 Chequerboard

Stipple Patterns

12/84 65

66

- COLOUR
PARAMETERS

PAPER

INK

CLS
FLASHING

FILES

You can specify a colouristipple effect as described above by using three numbers. For
example:

INK colour, contrast, stipple
could be used with:

colour in range 0 to 7
contrast in range 0 to 7
stippie in range O to 3

You could achieve the same effect with a single number if you wish though it is not
s0 easy 1o construct See the Concept Reference Guide - colour.

The following program will display alt the possible colour effects:

100 REMark Colour Effects

110 FOR num =0 T0O 255

120 BLOCK 100,50,40,50,num
130 PAUSE 50

140 END FOR num

PAPER followed by one, two or three numbers specifies the background. For example:

PAPER 2 [red}
PAPER 2,4 {redigreen chequerboard)]
PAPER 2,4,1 {red/green horizontal stripes}

The colour will nct be visible until something else is done, for example, the screen IS
cleared by typing CLS.

INK followed by one, two or three numbers specifies the colour for printing characters,
lines or other graphics. The colour and stipple effects are the same as for PAPER. For
example:

INK 2 fred ink]
INK 2,4 {red/green chequerboard ink 3}
INK 2,4,1 {red/green horizontal striped ink]

The ink will be changed for ail subsequent output.

CLS means ciear the window to the current paper colour — like a teacher cleaning
a biackboard, except that it is electronic and multi-coloured.

You can make the ink colour flash in mode 8 oniy. To turn flash on you might type:
FLASH 1

and to turn it off:
FLASH D

Allowing flashing characters to overlap can produce alarming results.

You will have used Microdrives for storing programs and you will have used the
commands LOAD and SAVE. Cartridges can be used for storing data as well as
programs. The word fle usually means a sequence of data records, a record being
some set of related information such as name, address and telephone number.

Two of the most widely used types of file are serial and direct access files. tems in a
serial file are usually read in sequence starting with the first. If you want the fiftieth record
you have to read the first forty-nine in order to find it On the other hand the fiftieth record
in a direct access file can be found quickly because the system does not need 1o work
through the earlier records to get it. Pop music on a cassefte is like a serial file but eight
pieces on a long playing record form a direct access file. You can move the pick up
arm directly onto any of the eight tracks.

The simplest possible type of file is just a sequence of numbers. To illustrate the idea
we will place the numbers 1 to 100 in a file called numbers. However, the complete
file name is made up of two parts:

device name
appended information

12/84

Screen Cutput

- Suppose that we wish to create the file, numbers, on a cartridge in Microdrive 1. The
device name is:

mdv1
and the appended information is just the name of the file:
numbers
So the complete file name is:
mdv1_numbers
It is possible for a program to use several files at once, but it is more convenient to refer CHANNELS
to a file by an associated channel number. This can be any integer in the range J to
15. A file is associated with a channe! number by using the OPEN statement or, if it

is a new file, OPEN__NEW. For example you may choose channel 7 for the numbers
file and write:

OPEN_NEW #7,mdv1_numbers

file

device

channel number
keyword

You can now refer to the file just by guoting the number # 7 The complete program is:

100 REMark Simple file

110 OPEN_NEW #7, mdv1_numbers
120 FOR number =1 to 100

1320 PRINT #7, number

140 END FOR number

150 CLOSE #7

The PRINT statement causes the numbers to be ‘printed’ on the cartridge file because
7 has been associated with it. The CLOSE #7 statement is necessary because the
system has some internal work to do when the file has been used. It also releases channel
7 for other possible uses. After the program has executed type:

DIR mdv1_

and the directory should show that the file numbers exists on the cartridge in Microdrive
mavl__.

You also need to know that the fite is correct and you can only be certain of this if the
file is read and checked. The necessary keyword is OPEN__IN, otherwise the program
far reading data from a file is similar to the previous one.

100 REMark Reading a file
110 OPEN_IN #6, mdvi_numbers
120 FOR item =1 70 100

1320 INPUT #, number

140 PRINT ! number !

150 END FOR item

160 CLOSE #6

The program should output the numbers 1 to 100, but only if the cartridge containing
the file numbers is still in Microdrive madvi__.

You have seen one example of a device, a file of data on a Microdrive. We may say, DEVICES AND
loosely, that a file has been opened but strictly we mean that a device has been associated CH ANNELS
with a particular channel. Any further necessary information has aiso been provided.

Certain devices have channels permanently associated with them by the system:

channel use
#0 OUTPUT - command window
INPUT - keyboard
#1 OUTPUT - print window
#2 LIST — list output

12/84 &7

Screen Cutput

- WINDOWS

BORDER

You can create a window of any size anywhere on the screen. The device name for
a window 1s:

scr
and the appended information is, for example:

scr_ 360 50a80_40
1 | down value

across value
height
width

The following program creates a window with the channel number 5 and fills it with
green (code 4) and then closes it:

100 REMark Create a window

110 OPEN #5, scr_400x200a20x50
120 PAPER #5,4 : CLS #5

130 CLOSE #5

Notice that each window can have its own features such as paper. ink, etc. The fact
that a window has been opened does not mean that it is the current default window.

You can change the positicn or shape of an opened window without closing it and
reopening it. Try adding two lines to the previous program:

124 WINDOW #5,300,100,110,65
126 PAPER #5,2 : CLS #5

Re-run the program and you will find a red window within the original green one. This
red window is now the cne assocciated with channel 5, see figure.

You can place a border round the edge of the screen or a window. For example:

BORDER #5,6

would create a border round the channel #5 window. It would be 6 units thick and
the size of the window would be correspondingly reduced. The border would be
transparent, protecting anything that was under it. You can specify a coloured border
by the usual method.

BORDER #5,6,2

would produce a red border. You can make a border of other colours and textures by
the usual methods. For example,

BORDER 10

will add a 10 pixel thick transparent border to the current window (transparent because
no colour was specified) and

BORDER 2,0,7,0
will add a 2 pixel thick black and white stipple border

12/84

Screen Output

- You can specify a block's size, position and cclour with a single statement It is placed BLOCK
in the pixel co-ordinate system relative to the current window or screen. For example:

BLOCK #5,10,20,50,100,2

woulg create a block in the #5 window at a position 50 units across and 100 units
down. It would be 1C units wide and 20 units high. Its colour would be red.

it is worth noting that WINDOW and BLOCK statements work without alteration in 4
and 8 colour mode (though the colours may vary) because the across values are always
on a 0 to 511 scale and there are always 256 pixel positions down.

You can alter the size of characters. For example: SP ECIAL PR'NT|NG
CSIZE 3,1 CSIZE

will give the largest possible characters and:

€size 0,0

will give the smallest. The first number must be 01,2 or 3 and determines the width. :
The second must be 0 or 1 and determines the height. The normal sizes are:

MODE 4 CSIZE 0,0
MODE 8 CSIZE 2,0

The number of lines and columns available for each character size is dependent on
whether the output is viewed on a monitor or on a television set; the row and coiumn
sizes given are for a monitor; those for a television set will be smaller and also wili vary
between different televisions.

If you are using low resolution mode the QL will not allow you to select a character size
smaller than default size.
You can provide a special background for characters to make them stand out For STRIP
example:
STRIP 7
will give a white strip while
STRIP 2,4,2
will give a red/green vertical striped strip. All the normal colour combinations are possible,

Normally printing occurs on the current paper colour. You can alter this by using strip. OVER

You can make further effects by using:

OVER 1 1 prints in ink on a transparent strip
OVER -1 -1 prints in Ink over existing display on screen

Te revert to normal printing on current strip use:
OVER O

You can underline characters. UN DER

UNDER 1 underiines all subsequent output in the current ink
UNDER O switches off underling.

If you wish to draw reasonably true geometric figures on a TV or video screen you cannot SCALE GRAPHICS
easily use a pixel-based system. If you use scale graphics then the system will do the

necessary work to ensure that you can fairly easily draw reasonable circles, squares

and other shapes.

The default scale of the graphics coordinate system is 100 in the vertical direction and
whatever is needed in the across direction to ensure that shapes drawn with the special
graphics keywords (PLOT, DRAW, CIRCLE)) are true.

The graphics origin is not the same as the pixel origin which is used to define the position
of windows and blocks. The graphics origin is at the botiom left hand corner of the current
screen or window,

12/84 89

POINTS. AND LINES

RELATIVE-MODE

CIRCLES AND
ELLIPSES

It is easy to draw points and lines using scale graphics. Using a vertical scale of 100
a point near the centre of the window can be piotted with:

POINT 60,50
The point (60 units across and 50 units up) will be plotted in the current ink colour.

Similarly a line may be drawn with the statement:
LINE 60,50 TO 80,90

Further elements can be added. For example, the foliowing will draw a square:
LINE 60,50 TO 70,50 T0 70,60 TO 60,60 7O 60,50

_____ 60 across ____ D

50 up

Pair of coordinates such as:
across, up

normally define a paint retative to the origin 00 in the botiom left hand corner of a window
(or elsewhere if you choose). It is sometimes more convenient to define points relative
to the current cursor position. For example the square above may be plotted in another
way using the LINE__R statement which means:

“Make all pairs of coordinates relative to the current cursor position.”

POINT 60,50
LINE R 0,0 TO 10,0 TC 0,10 7O -10,0 70 0,-10

First the point 8050 becomes the origin, then, as lines are drawn, the end of a line
becomes the origin for the next one.

The following program will plot a pattern of randomly placed coloured squares.

100 REMark Coloured Squares

110 PAPER 7 : CLS

120 FOR sg = 1 70 100

130 INK RND{1 TO &)

140 POINT RND(90), RND(FD)

150 LINE R G,0 TO 10,0 TO 0,10 TO -10,0 10 ©,-10
160 END FOR sq

The same result couid be achieved entirely with absolute graphics but it would require
a litle more effort.

it you want to draw a circle you need to specify:

position say 5050
radius say 40

The statement
CIRCLE 50,50,40
will draw a circle with the centre at position 50,50 and radius {or height) 40 units, see figure:

12/84

|
|
|
)
|
|
|
|
1
|

A circle

if you add two more parameters:
eg. CIRCLE 50,50,40,.5
You will get an ellipse. The keywords CIRCLE and ELLIPSE are interchangeable.

(5050)

An ellipse

The height of the ellipse is 40 as before but the horizontal radius’ is now only 05 of
the height. The number 05 is called the eccentricity. If the eccentricity is 1 you get a
circle if it is less than 1 and greater than zero you get an ellipse, If you want to tilt an
ellipse you can change the fith parameter, for example:

CIRCLE 50,50,40,.5,1

This will tilt the eliipse anti-clockwise by one radian, about 57 degrees, as shown in figure.

Elipse at angle one radian

A straight angle is 180 degrees or Pi radians, so you can make a pattern of ellipses
with the program:

100 FOR rot = 0 TO 2%PI STEP PI/6
110 CIRCLE 50,50,40,0.5, rot
120 END FOR rot

1284

Screen Quiput

12

Screen Output

Example

ARCS

The order of the parameters for a circle or ellipse is:
centre__across, centre__up, height, [ecceniricity, angle}

The last two parameters are optional and this is indicated by putting them inside square
brackets ({]).

Write & program which does the following:
Open a window 100x100 at (10050)
Scale 100 in mcde 8

Select black paper and clear window
Make green border 2 units wide

Draw a pattern of six coloured circles.

o BN I S A

Close the window.

100 REMark pattern

110 MODE 8

120 GPEN #7, scr_100x100a 100x50
130 SCALE #7,100,0,0

140 PAPER #7,0 : CLS ¥7

150 BORDER #7,2,4

160 FOR colour =1 70 6

170 INK #7, colour

180 LET rot = 2*PI/colour

190 CIRCLE #7,50,50,30,0.5,ro¢t
200 END FOR colour

210 CLOSE #7

You can get some interesting effects by altering the program. For example try the
amendments:

160 FOR colour =1 T0 100
180 LET rot = colour*PI/50
i you want to draw an arc you need to decide:

starting point
end point
amount of curvature.

The first two items are straightforward but the amount of curvature is not so easy. You
can do it by drawing accurately or by trial and emor but you must decide what angle
the arc subtends and then specify the angle in radians. An angle of 15 radians would
give a sharp bend and a small angle would give a very gentle cunvature. Try, for example:

ARC 10,50 TO 50,90, 1
which gives a moderate curvature in the current INK colour.

{5090)

(1050)

12184

. You can fil a closed shape with the current INK colour by simply writing:
FILL
before the shape is drawn. The following program produces a green circle.

INK &
FILL 1
CIRCLE 50,50,30

The FILL command works by drawing touching horizontal lines between suitable points.
The statement:

FILLDO
will turn off the FILL effect

You can scroll or pan the display in a window like a fiim cameraman. You arrange scralling
in terms of pixels. A positive number of pixels indicates upwards scroling, thus

SCROLL 10
moves the display in the current window or screen 10 pixeis downwards.
SCROLL -8
Moves the display 8 pixeis up. You can add a second parameter to induce part-scrolling.
SCROLL -8, 1
wil scroll the part above (not including) the cursor line and :
SCROLL -8,2
will scroll the part below {not including) the cursar line.

As scrolling oceurs, the space left by movement of the display is filed with the current
paper colour, A second parameter O has no effect

You can PAN the display in the current window left or right. The PAN statement works
in a similar manner to SCROLL but

PAN 40 moves dispiay right
PAN -40 moves dispiay left

A second parameter gives a partial PAN

0 - whole screen

3 — the whole of the iine occupied by the cursor

4 — the right hand side of the line occupied by the cursor
The area of the cursor is also included.

If you are using stipples or are in 8 colour mode then windows must be parned or
scrolled in multiples of 2 pixels.

1. Write a program which draws a ‘Snakes and Ladders' grid of ten rows of ten
squares.

2. Place the numbers 1 to 100 in the squares starting at the bottom left and place
F for finish in the fast square.

3 Draw a dartboard on the screen. It should consist of an outer ring which could
hold numbers. A doubles’ ring and triples’ ring as shown and a centre consisting
of a bulls eye’ and a ring around it

12/84

Screen Output

FILL

SCROLLING AND
PANNING

PROBLEMS ON
CHAPTER 12

74

CHAPTER 13
ARRAYS

Suppose you are a prison governor and you have & new prison block which is called
the West Block. It is ready to receive 50 new prisoners. You need to know which prisoner
(known by his number) is in which cell. You could give each cell a name but it is smpler
to give them numbers 1 to 50.

In a computing simulation we will imagine just 5 prisoners with numbers which we can
put in a DATA statement:

DATA 50, 37, 86, 41, 32

We set up an array of variables which share the name, west, and are distinguished by
a number appended in brackets.

\;é;st(4)

wesf(1) west(2) wéét(S)

west(5)
It is necessary to declare an array and give its dimensions with a DIM statement

DIM west(5)

This enables SuperBASIC to allccate space, which might be a large amount. After the
DIM staterment has been executed the five variables can be used.

The corvicts can be READ from the DATA statement into the five array variables:
FOR cell =1 TO S : READ west{(cell)

We can add ancther FOR loop with a PRINT statement to prove that the convicts are
in the cells

west (1) west(2} | . west(4) west(5)

The complete program is shown below:

100 REMark Prisoners

110 DIM west(5)

120 FOR cell =1 TO S : READ west(cell)

130 FOR cell =1 70O S : PRINT cell ! west{cell)
140 DATA 50, 37, 86, 41, 32

The output from the program is:

150
2 37
386
44
532

The numbers 1 to 5 are called subscripts of the array name, west. The array, west, is
a numeric array consisting of five numeric array elements.

You can replace line 130 by:
130 PRINT west
This wit output the vatues only:

0
50
37
86
41
32

The zero at the top of the list appears because subscripts range from zero to the declared
number. We will show later how useful the zero elements in arrays can be.

Note also that when a numeric array is DIMensioned its elements are all given the value

Zero.
12/84

String arrays are similar to numeric arrays but an extra dimension in the DIM staterment
specifies the length of each string variabie in the array. Suppaose that ten of the top players
at Royal Birkdale for the 1982 Sritish Go®Championship were denoted by their first names
and placed in DATA statements.

DATA "Tom', “Graham', "Sevvy", "Jack", "Lee"
DATA "Nick', "Bernard", "Ben'", ""Gregg', "Hal"

You would need ten different variable names, but if there were a hundred ora thoqsand
players the job would become impossibly tedious. An array is a set of variables designed
to cope with problems of this kind. Each variable name consists of two parts:

a name according to the usual rules
a numeric part called a subscrpt

Write the variable names as:
flat$(t), flat$(2), flat$(3). elc

Before you can use the array variables you must tell the system about the array and
its dimensions:

DIM flat$(10,8)

This causes eleven (0 to 10) variables to be reserved for use in the program. Each string
variable in the array may have up to eight characters. DIM statements should usually
be placed all together near the beginning of the program. Once the array has been
declared in a DIM statement all the elements of the array can be used. One importart
advantage is that you can give the numeric part {the subscript} as a numeric variable.
You can write:

FOR number =1 TO 10 : READ flat$(number)
This would place the golfers in their flats.

flat$(1) flat$(2) Aat$(3) oo flat$(10)

Tom Graham Sevvy Hal

You can refer to the variables in the usual way but remember to use the right subscript,
Suppose that Tom and Sevvy wished to exchange flats. In computing terms one of them,
Tormn say, would have to move into a temporary flat to allow Sevwy time to move. You
can write:

LET temp$ = flat$(1): REMark Tom into temporary
LET flat$¢1) = flat$(3): REMark Sevvy into flat3(1)
LET flat$(3) = temp$: REMark Tom into flats(3}

The following program places the ten goifers in an array named flai$ and prints the
names of the occupants with their flat numbers' (array subscripts) to prove that they
are in residence. The occupants of flats 1 and 3 then change places. The list of occupants
is then printed again to show that the exchange has occurred.

100 REMark Golifers' Flats

110 DIM flat$(10,8)

120 FOR number =1 TO 10 : READ flat$(number)

130 printlist

140 exchange

150 printlist

160 REMark End of main program

170 DEFine PROCedure printlist

180 FOR num =1 TO 10 : PRINT num, flat$(num
190 END DEFine

200 DEFine PROCedure exchange

210 LET temp$ = flat$(1)

220 LET flat$(1) = flat$(3)

230 LET flat$(3) = temp$

240 END DEFine

250 DATA "Tom', "Graham', “Sevvy', "Jack", "Lee"
260 DATA "Nick™, "8ernard", "Ben'", "Greg', '"Hal"

o

12/82

STRING ARRAYS

Arrays

75

TWO DIMENSIONAL

ARRAYS

output (line 130)

output {line 150)

OV W =

—

Tom
Graham
Sevvy
Jack
Lee
Nick
Bernard
Ben
Gregg
Hal

—

D00~ W —

Sevvy
Graham
Tom
Jack
Lee
Nick
Bernard
Ben
Gregg
Hal

Sometimes the nature of a problem suggests two dimensions such as 3 floors of 10
flats rather than just a single row of 3Q. ‘

Suppose that 20 or more goifers
three floors of ten flats each. A real

a two-dimensicnal array. You can think of the thirty variables as shown below:

need flats and there is a block of 30 flats divided into
listic method of representing the block would be with

flat${2.0) flat$(2,1) flat$(2,2) ___ - flat$(2,0)
second(2)
flat$(1,0) flat®(1,1) flat$(1.2) _ . - _flat$(1.9)
first(1}
flat${0,0) flat$(0,1) flat$(02) _ - _flat$(09)
ground(0)

Assuming DATA statements with 30 names, a suitable way 1o place the names in the

flats is:

120 FOR floor =0 TO 2
FOR num =0 TO ¢
READ flats$(floor, num

130
140
150

END FOR num

160 END FOR floor

You also need a DIM statement:
20 DIM flat$(2,9,8)

which shows that the first subscript can be from 0 1o 2 (floor number) and the second
subscript can be from O to 9 {room number). The third number states the maximum
number of characters in each array element.

We add a print routine to show that the golfers are in the flats and we use letters to

save SpPace.

100 REMark 30 Golfers
110 DIM flat$(2,9,8)

120 FOR floor =0 TO 2
FOR num =0 70 9

130
140
150

READ flat$(floor,num)

END FOR num

160 END FOR floor
170 REMark End of input
180 FOR floor =0 T0Q 2

PRINT "“Floor number" ! floor

190

: REMark Golfer goes

in

12/84

200 FOR num =0 T0 9

210 PRINT 'Flat' ! num ! flat$(floor,num)

220 END FOR num

230 END FOR floor

240 DATA IIAU'IIBII'HCII’IID”'IIE”'IIFII'IIG!I'IIHII’”I”'”J“
250 DATA "K","L","M”,.”N",”O”,”p”,”Q”,"R”,”S”,”T"
260 DATA |lUll'llVll‘llwll'HXH'IIYEI"PIZII'lra!r'rlfll’lrs!f‘lﬂzu

The output starts:

Floor number O
Flat O A
Flat 1 B
Flat 2 C

and continues giving the thirty occupants.

You may find this section hard to read though it is essentially the same concept as string-
slicing. You will probably need string-slicing if you get beyond the leaming stage of
programming. The need for array-slicing is much rarer and you may wish to omit this
section particularly on a first reading.

We now use the gotfers flats to illustrate the concept of array slicing. The flats will be
numbered 0 to 9 ta keep to single digits and names will be single characters for space
reasons.

20 21 22 22 34 25 26 27 28 29

flaty | U Vv W X Y Z @ £ $ 0%

1,0 11 1,2 13 14 15 16 1,7 18 18
flats$ | K L M N O P Q R S T

00 01 02 03 04 05 06 07 08 08

flaty | A B C D E F G H I J

Given the above values the following are array slices:

flat$(1,3) Means a single array element with value N
flat$(1,1 T0 6) Means six elements with values LM N O P Q

Array Element Value

flats(1,1)
flat$(1,2
flats(1,3)
flat$(1,4)
flat$(1,5)
flat${1,6)

DvoeZgr

Means flat$ (1.0 TO 9)
ten elements with values K LM NOPQRST

In these examples a range of values of a subscript can be given instead of a single
value. If a subscript is missing completely the complete range is assumed. In the third
exampte the second subscript is missing and it is assumed by the systemto be 6 TO 9.

flat$(1)

The techniques of array slicing and string slicing are similar though the latter is more
widely applicable.

12/84

ARRAY SLICING

Arrays

77

PROBLEMS ON
CHAPTER 13

1.

SORTING

Place ten numbers in an array by reading from a DATA statement. Search the array
to find the lowest number. Make this towest number the value of the first element
of a new array. Replace it in the first array with a very large number Repeat this
process making the second lowest number the second value in the new array
and so on until you have a sorted array of numbers which should then be printed.

SNAKES AND LADDERS

Represent a snakes and ladders game with a 100 element numeric array. Each
element should contain either:

Zerg

or a number in the range 10 to0 20 meaning that a player should transfer 10
that number by going ‘up a ladder' or down a snake! ‘

or the digits 1, 2, 3. efc. to dencle a particular player's position.

Set up six snakes and six ladders by placing numbers in the array and simulate
one solo’ run by a single player to test the game. '

CROSSWORD BLANKS

1 2 3 4 5 columns
1
2 .
row 3
4

Crosswords usually have an odd number of rows or columns in which the black
squares have a symmetrical pattern. The pattern is said to have rotational symmetry
because rotation through 180 degrees would not change &,

Note that after rotation through 180 degrees the sguare in row 4, column 3 could
become the square in row 2, column 5. That is row 4, column 1 becomes row
2, column 5ina b x 5 grid.

Write a program to generate and dispiay a symmetrical pattern of this kind.

Modify the crossword pattern so that there are no seguences, across or down,
of less than four white squares.

CARD SHUFFLE

Cards are denoted by the numbers 1-52 stored in an array. They can be converted
easily to actual card values when necessary. The cards should be ‘shuffled’ as
follows.

Choose any position in range 1-51 eg. 7.

Place the card in this position in a temporary store.

Shunt all the cards in positions 52 to 18 down to positions 51 to 17
Place the chosen card from the temporary store 10 position 52.

Deal simiarly with the ranges 1-50, 1-49 .. down to 1-2 s0 that the pack
is well shuffled.

Qutput the result of the shuffie.

Set up six DATA statements each containing a surname, initials and a telephone
number (dialing code and local number). Decide on a suitable structure of arrays
1o store this information and READ it into the arrays.

PRINT the data using a separate FOR loop and explain how the input format
(DATA), the internal format (arrays) and output format are not necessarily alt the same.

12/84

In this chapter we go again over the ground of program structure loops and decisions
or selection. We have lried to present things in as simple a way as pessible but
SuperBASIC is designed to cope properly with the simple and the complex and all levels
in between. Some parts of this chapter are difficult and if you are new 10 programming
you may wish to omit parts . The topics covered are:

LOOpPS

Nested loops
Binary decisions
Multiple decisions

The latter parts of the first section, Loops, get difficult as we show how SuperBASIC copes
with problems that other languages simply igrore. Skip these parts if you feel so inclined
but the other sections are more straightforward.

In this section we attempt to ilustrate the well-known problems of handling repetition
with simulations of some Wild West scenes. The context may be contrived and trivial
but it offers a simple basis for discussion and it illustrates difficulties which arise across
the whole range of programming applications.

CHAPTER 14
PROGRAM
STRUCTURE

LOOPS

A bandit is holed up in the Old School House. The sheriff has six bullets in his gun. EXAMPLE 1
Simulate the firing of the six shots.

100 REMark Western FOR Program 1

110 FOR bullets =1 TQ 6

120 PRINT "Take aim"

130 PRINT "Fire shot"

140 END FOR bullets

100 REMark Western REPeat Program 2

110 LET bullets =6

120 REPeat bandit

130 PRINT "Take aim" FOR SERVICE MANUALS

140 PRINT "Fire shot" CONTACT:

= - C
150 LET bullets = bullets - 1 MAURITRON TECHNICAL SERVICE

160 IF bullets = O THEN EXIT
170 END REPeat bandit

www.mauritron.co.uk
TEL 01844 - 351624

Both these programs produce the same output: FAX: 01844 - 352554

Take aim
Fire a shot

is printed six times.

If, in each program the 6 is changed to any number down to 1 both programs still work
as you would expect. But what if the gun is empty before any shots have been fired?

Suppose that someone has secretly taken all the bullets out of the sheriffs gun. What
happens if you simply change the 6 to 0 in each program?.

100 REMark Western FOR Zero Case
110 FOR bullets =1 ta 0

120 PRINT "Take aim'"

130 PRINT "Fire a shot"

140 END FOR bullets

This works correctly. There is no output The ‘zero case behaves property in SuperBASIC.

100 REMark Western REPeat Fails

110 LET bullets =0

120 REPeat bandit

130 PRINT "Take aim'

140 PRINT "Fire shot"

150 LET bullets = bullets - 1

160 IF bullets = 0 THEN EXIT bandit
170 END REPeat bandit

12/84

EXAMPLE 2

Program 1

Program 2

Program Structure

an

Program 3

EXAMPLE 3

Program 1

The program fails in two ways:

1. Take aim
Fire a shot

is printed though there were never any bullets.

2. By the time the variable, buliets, is tested in line 160 i has the value —1 and it
never becomes zerg afterwards. The program loops indefinitely. You can cure the
infinite looping by re-writing line 160 :

160 IF bullets < 1 THEN EXIT bandit

There is an inherent fault in the pregramming which does not allow for the possible
sero case. This can be correcled by placing the conditional EXIT befere the PRINT
statements.

100 REMark Western REPeat Zero Case
110 LET bullets =0

120 REPeat Bandit

130 IF bullets = 0 THEN EXIT Bandit
140 PRINT "Take aim'

150 PRINT "Fire shot"

160 LET bullets = bullets =1

170 END REPeat Bandit

This program now works properly whatever the initial value of buliets as long as it is
a positive whole number or zero. Method 2 correspends to the REPEAT ... UNTIL loop
of some languages. Method 3 corresponds to the WHILE.... ENDWHILE loop of some
languages. However, the REPeat...END REPeat with EXIT is more flexible than either
or the combination of both.

if you have used other BASICs you may wonder what has happened to the NEXT
staternent. We will re-introduce it soon but you will see that both loops have a similar
structure and both are named.

FOR name = {opening keyword) REPeat name
(statements) (content) (statements)
END FOR name (closing keyword) END REPeat name

In addition the REPeat loop must normally have an EXIT amongst the statements Of
it will never end.

Note also that the EXIT statement causes control 1o go to the statement which is
immediately after the END of the loop.

A NEXT statement may be placed in a loop. it causes control to go to the statement
which is just after the opening keyword FOR or REPeat. It should be considered as
a kind of opposite to the EXIT statement By a curious coincidence the two words, NEXT
and EXIT. both contain EXT. Think of an EXTension to loops and:

N means Now start again’
| means its ended’

The situation is the same as in example 1. The sheriff has a gun loaded with six butiets
and he is to fire at the bandit but two more conditions apply:

1. If he hits the bandit he stops firing and returns io Dodge City.

5 It he runs out of bullets before he hits the bandit, he tells his partner to walch the
bandit while he {sheriff) returns to Dodge City.

100 REMark Western FOR with Epilogue
110 FOR bullets =1 70 6

120 PRINT "Take aim'

130 PRINT "FIRE A SHOT"

140 LET hit = RND(9)

150 IF hit = 7 THEN EXIT bullets
160 NEXT bullets

170 PRINT "Watch Bandit"

180 END FOR bullets

190 PRINT "Return to Dodge City"

12/84

Program Structure

“In this case, the content between NEXT and END FOR is a kind of epiicgue which
is only executed if the FOR loop runs its full course. If there is a premaiure EXIT the
epilogue is not executed.

The same effect can be achieved with 2 REPeat loop though it is not necessarlly the
best way to do it. However, it is worth looking at {perhaps al a second reading) if you
want to understand structures which are simple enough to use in simple ways and
powerful enough to cope with awkward situations when they arise.

100 REMark Western REPeat with Epilogue F’rogram 2
110 LET bullets = 6

120 REPeat Bandit

130 PRINT "Take aim'

140 PRINT "Fire shot"

150 LET hit = RND(%

160 IF hit = 7 THEN EXIT Bandit

170 LET bullets = bullets -1

180 IF bullets <> 0 THEN NEXT Bandit
190 PRINT "Watch Bandit"

200 END REPeat Bandit

210 PRINT "Return to Dodge City"

The program works properly as long as the sheriff has at least one bullet at the start
it fails if line 20 reads:

110 LET bullets = 0

You might think that the sheriff wouid be a foo! to start an enterprise of this kind if he
had no bullets at all, and you would be right. We are now discussing how o preserve
good structure in the most complex type of situation. We have at least kept the problem
context simple; we know what we are trying to do. Compiex structural problems usually
arise in contexts more difficult than Wild West simulations. But if you really want a solution
to the problem which caters for a possible hit, running out of bullets and an epilogue,
and also the zero case then add the following line to the above program:

125 IF bullets = 0 THEN PRINT ""Watch Bandit" : EXIT bandit

We can conceive of no more complex type of probiem than this with a single loop.
SuperBASIC can easily handle it if you want it to.

Consider the following FOR loop which PLOTS a row of points of various randomly NESTED LOOP S
chosen colours (not black).

100 REMark Row of pixels
110 PAPER O : CLS

120 LET up = 50

130 FOR across = 20 TO 60
140 INK RND(Z2 TO 7)
150 POINT across, up
160 END FOR across

This program plots a row of points thus:

If you want to get say 51 rows of points you must plot a row for values up from 30 10
80. But you must always observe the rule that a structure can go completely within ancther
or it can go propetly around it. It can also follow in sequence, but it cannot ‘mesh’ with
ancther structure. Books about programming often show how FOR loops can be related
with a diagram like

—_—————— e ————————> ———>
——
e
Right —
(nested) Right Wrong
(sequence) (Meshed)

12184 81

Program Structure

In SuperBASIC the rule applies to all structures. You can solve all prablems using them
properly. We therefore treat the FOR loop as an entity and design a new program:

FOR up = 30 TO 80

FOR across = 20 TO 60
INK RND(2 To 7)
POINT across, up
END FOR across

END FOR up

When we translate this into a program we are entited not only to expect it to work but
io krow what it wil do. It will glot a rectangle made up of rows of pixels.

100 REMark Rows of pixels

110 PAPER O : CLS

120 FOR up = 30 TO 80

130 FOR across = 20 T0 60

140 INK RND(2 TO 7)

150 POINT across,up .
160 END FOR across

170 END FOR up

Different structures may be nested. Suppose we replace the inner FCR loop of the above
program by a REPeat loop. We wil terminate the REPeat loop when the zero colour
code appears for a selection in the range 0 to 7

100 REMark REPeat in FOR
110 PAPER O : CLS

120 FOR up = 30 TO 80
130 LET across = 19
140 REPeat dots

150 LET colour = RND(7)

160 INK colour

170 LET across = across + 1

180 POINT across, up

190 IF colour = 0 then EXIT dots

200 END REPeat dots
210 END FOR up

Much of the wisdom abaout program control and structure can be expressed in two ruies:

1. Construct your program using only the legitimate structures for loops and decision-
making.

2. Each structure should be properly related in sequence or wholly within another.

BINARY DEC'S'ONS The three types of binary decision can be illustrated easily in terms of what 1o do when

82

it rains.

i 100 REMark Short form IF
410 LET rain = RNDCO TO 1)
120 IF rain THEN PRINT "Open brolly"

ii. 100 REMark Long form IF...END IF
110 LET rain = RND(O TO 12
120 IF rain THEN
130 PRINT "wWear coat"
140 PRINT "Open brolly"
150 PRINT "Walk fast"
160 END IF

fi. 100 REMark Long form IF ...ELSE...END IF
110 LET rain = RND(O TO 1)
120 IF rain THEN
130 PRINT "Take a bus®
140 ELSE
150 PRINT "Walk"
160 END IF

12/84

Program Structure

All these are binary decisions. The first two examples are simpile : eithe_r someth_ing
happens or it does not. The third is a general binary decision with two distinct possible
courses of action, both of which must be defined.

You can omit THEN in the long forms if you wish. In the short form you can substitute
- for THEN.

Consider a more complex exampie in which it seems natural 1o nest binary decisions. EXAMPLE
This type of nesting can be confusing and you should cnly da it i it seems the most
natural thing to do. Careful attention to layout, particularly incenting, is especially important

Analyse a piece of text to count the number of vowels, consonants and other characters,
ignore spaces. For simplicity the text is all upper case.

“COMPUTER HISTORY WAS MADE IN 1984" Data

Reag in the data Design
FOR each character:
IF letter THEN

IF vowel
increase vowel count

ELSE
increase consonant count

END IF

ELSE

IF not space THEN increase other count
END IF
END FOR
PRINT results

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

REMark Character Counts Program
RESTORE 290
READ text$
LET vowels = 0 : cons =0 : others =0
FOR num = 1 TO LEN(text[)
LET ch$ = textS{(num’
IF ch$ >= "A" AND ch% <= "Z"
IF ¢ch$ INSTR "AEIOQU"
LET vowels = vowel + 1
ELSE
LET cons = cons + 1
END IF
ELSE
IF ch% <> ' ' THEN others = others + 1
END IF
END FOR num
PRINT "Vowel count is' | vowels
PRINT "Consonent count is'" ! cons
PRINT "Other count is"” | others
DATA "COMPUTER HISTORY WAS MADE IN 1984"

Vowel count is 9 Output
Consonant count is 15
Other count is &4

MULTIPLE

Where there are three or more possible actions and none is cependant on & previous DEC'S'ONS
choice the natural structure to use is SELect which enables selection from any number SELeCt
of possibilties.

A magic snake grows without limit by adding a section to its front. Each section may EXAMPLE
be up to twenty units long and may be a new colour or it may remain the same. Each

new section must grow in one of the directions Narth, South East or West. The snake

starts from the centre of the window.

12/84

Ba

Method At any time while the snake is still on the screen you choose & random length and irk
colour easily. The direction may be selected by a number 1,23 or 4 as shown:

Design

Program

North 1

West 4 East 2

South 3

Select PAPER
Set snake to centre of window

REPeat

Choase direction, colour, length of growth
FOR unit = 1 to growth
Make snake grow, north, south, east or west
[F snake is off window THEN EXIT
END FOR
END REpeat
PRINT end message

100 REMark Magic Snake

110 PAPER O : CLS

120 LET across = 50 : up = 50
130 REPeat snake

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

LET direction = RNDC¢1 TO 4) : colour = RND(Z TO 7)
LET growth = RND(2 TO 20D
INK colour
FOR unit = 1 TO growth
SELect ON direction
ON direction =1
LET up = up + 1
ON direction = 2
LET across = across + 1
ON direction =3
LET up = up - 1
ON direction = &
LET across = a
END SELect
IF across<1 OR acrass>99 OR up<1 OR up>99 THEN EXIT snake
PQINT across,up
END FOR unit

cross — 1

310 END REPeat snake
320 PRINT "Snake off edge'

The syntax of the SELect ON structure also allows for the possibility of selecting on a
list of values such as

5,6,8,10 70 13

It is also possible to allow for an action 1o be executed if none of the stated values is
found. The full structure is of the form given below.

12/84

SElLect ON num

ON num = list of values
statements

ON num = list of values
statements

ON num = REMAINDER
statements
END SELect

where num is any numeric variable and the REMAINDER clause is optional.

There is a short form of the SElLect structure. For example:

100 INPUT num
110 SELect ON num = Q0 70 @ : PRINT "digit"

will perform as you would expect.

12/184

Store 10 numbers in an array and perform a ‘bubble-sort! This is done by comparing
the first pair and exchanging, if necessary, the second pair (second and third
numbers), Up to the ninth pair (ninth and tenth numbers). The first run of nine
comparisons and possible exchanges guarantees that the highest number wili reach
its correct positicn. Another sight runs will guarantee eight more correct paositions
leaving only the lowest number which must be in the only (correct) position feft.
The simplest form of ‘bubble sort’ of ten numbers requires nine runs of nine
comparisons.

Consider ways of speeding up bubbleson, but do not expect that it will ever be
very efficient

An auctioneer wishes to sell an cld clock and he has instructions to invite a first
bid of £50. If no-one bids he can come down to £40, £30, £20, but no lower, in
an effort to start the bidding. if nc-one bids, the clock is withdrawn from the sale.
When the bidding starts, he takes only £5 increases until the final bid is made.
If the final bid is £35 (the reserve price)} or more, the clock is sold. Otherwise it
is withdrawn.

Simulate the auction using the equivalent of a six-sided die throw 1o start the bidding.
A six at any of the starting prices will start it off.

When the bidding has started there should be a three out of four chance of a
higher bid at each invitation.

In a wild west shoot-out the Sheriff has no ammunition and wishes to arrest a
gunman camped in a forest. He rides amongst the trees tempting the gunman
to fire. He hopes that when six shots have been fired he can rush in and overpower
the gunman as he tries to re-load. Simulate the encounter giving the gunman a
one-twentieth chance of hitting the Sheriff with each shat. If the Sheriff has not
been hit after six shots he will arrest the gunman.

The Sheriff's instructions to his Deputy are:

“If the gun is empty then re-load it and if it aint then keep on firing until you
hit the bandit or he surrenders. if Mexico Pete turns up, get out fast”

Write a program which caters properly for all these situations:

Whatever happens, return to Dodge City.

If Mexico Pete turns up, return immediately.

If the gun is empty, reload it.

if the gun is not empty, ask the bandit to surrender.
If the bandit surrenders, arrest him.

If he deesnt surrender, fire a shot.

It the bandit is hit, arrest him and fix his wound.

Assume an unlimited supply of ammunition. Use a simulated ‘twenty-sided die
and let a seven mean ‘surrender’ and a ‘thirleen’ mean the bandit is hit.

LONG FORM

SHORT FORM

PROBLEMS ON
CHAPTER 14

85

CHAPTER 15

PROCEDURES

86

AND
FUNCTIONS

VALUE
PARAMETERS

EXAMPLE

Program

Qutput

EXAMPLE

In the first part of this chapter we explain the more straightiorward features of SuperBASIC's
procedures and functions. We do this with very smple examples so that you can
understand the working of each feature as it is described. Though the gxamples are
simple and contrived you will appreciate that, once understood, the ideas can be applied
in more complex situations where they realty matter

After the first part there is a discussion which attempts to explain ‘Why procedures’ .
If you understand, more or less, up to that point you will be doing well and you should
be able to use procedures and functions with increasing effectiveness.

SuperBASIC first allows you to do the simpler things in simple ways and then offers you
more if you want it. Extra facilities and some technical matters are axpiained in the second
part of this chapter but you could omit these, certanly at a first reading, and siill be
in a stronger position than most users of older types of BASIC.

4

You have seen in previous chapters how a value can be passed to a procedure. Here
is another example.

In “Chan’s Chinese Take-Away” there are just six items on the menu.

Rice Dishes Sweets
1 prawns 4 ice
2 chicken 5 fritter
3 special 6 lychees

Chan has a simple way of computing prices. He works in pence and the prices are:

for a rice dish 300 + 10 times menu number
for a sweet 12 times menu number

Thus a custormer who ate special rice and an ice would pay:
300 + 10 * 3 + 12 * 4 = 378 pence
A procedure, iterm, accepts a menu number as a value parameter and prints the cost.

100 REMark Cost of Dish

110 item 3

120 item &

130 DEFine PROCedure item(num)
140 T1F num <= 3 THEN LET price
150 IF num >= 4 THEN LET price
160 PRINT ! price

170 END DEFine

330 48

In the main program actual parameters 3 and 4 are used. The precedure definition has
a formal parameter, num, which takes the value passed to it from the main program.
Note that the formal parameters must be In brackets, but that actual parameters need
not be.

300 + 10*num
12*num

nH

Now suppose the working variable, price, was also used in the main program, meaning
something else, say the price of a glass of lager, 70p. The following program fails to
give the desired result.

12/84

100 REMark Global price

110 LET price = 70

120 item 3

130 item 4

140 PRINT | price

150 DEFine PROCedure item(num)

160 IF num <= 3 THEN LET price = 300 + 10%num
170 IF num >= 4 THEN LET price = 12*num

180 PRINT ! price !

190 END DEFine

330 48 48

The price of the lager has been altered by the procedure. We say that the variable, price,
is global because it can be used anywhere in the program.

Make the procedure variable, price, LOCAL to the procedure. This means that
SuperBASIC will treat it as a special variable accessibie only within the procedure, The
variable, price, in the mair program will be a different thing even though it has the same
name.

100 REMark LOCAL price

110 LET price = 70

120 item 3

130 item 4

140 PRINT ! price

150 DEFine PROCedure item{num)
160 LoCal price

170 IF num <= 3 THEN LET price
180 IF num >= 4 THEN LET price
190 PRINT ! price !

200 END DEFine

330 48 70

This time everything works properly. Line 70 causes the procedure variable, price to
be internally marked as ‘belonging’ only to the procedure, item. The other variable, price
s not affected. You can see that local variables are useful things.

300 + 10*num
12%*num

[21

Local variables are so useful that we automatically make procedure formal parameters
iocal. Though we have not mentioned it before parameters such as num in the above
programs cannot interfere with main program variables, To prove this we drop the LOCAL
staternent from the above program and use num for the price of lager Because num
in the procedure is local everything works.

100 REMark LOCAL parameter

110 LET num = 70

120 item 3

130 item 4

140 PRINT ! num !

150 DEFine PROCedure item(num)

160 IF num <=3 THEN LET price = 300 + 10*num
170 IF num >= 4 THEN LET price = 12*num

180 PRINT I price ! '

190 END DEFine

330 48 70

So far we have only used procedure paramelers for passing vaiues to the procedure.
But suppose the main program wants the cost of an item to be passed back so that
it can compute the total bit. We can do this easily by providing ancther parameter in
the procedure call. This must be a variable because it has to receive a value from the
procedure. We therefore call it a variable parameter and it must be matched by a
corresponding variable parameter in the procedure definition.

12/84

Procedures and Functions

Program

Output

EXAMPLE

b

Program

Output

EXAMPLE

Program

OQutput

VARIABLE
PARAMETERS

Procedures and Functions

a8

EXAMPLE

Program

Output

FUNCTIONS

EXAMPLE

Program

QOutput

Use actuat variable parameters, cost_.T and cost__2 G receive the values cf the variabie
price from the procedure. Make the main program compute and print the totai bil.

100 REMark variable parameter

110 LET num = 70

120 item 3,cost_1

130 item 4,cost_2

140 LET bill = num + cost_1 + cost_?

150 PRINT bill

160 DEFine PROCedure item{num, price)

170 IF num <= 3 THEN LET price = 300 + 10%num
180 If num >= 4 THEN LET price = 12*num

190 END DEFine

448

The parameters num and price are both autornatically local so there can be no problems.
The diagrams show how information passes from main program to procedure and back

Menu numbers

Main Procedure
Program Item

prices

That is enough about procedures and parameters for the present.

You already know how a system function works. For example the function:
SART (M

computes the value, 3, which is the square root of & We say the function returns the
value 3. A function, fike a procedure, can have one or more parameters, but the
distinguishing feature of a function is that it returns exactly one value. This means that
you can use it in expressions that you already have You can type:

PRINT 2*SQRT(9)

and get the outout 8. Thus a function behaves like a procedure with one or more value
parameters and exactly one variable parameter holding the returned value; that variable
parameter is the function name itself.

The parameters need not be numeric.
LEN("string')}
has a string argument but it returns the numeric value &
Re-write the program of the last section which used price as a variable parameier. Let
price be the name of the funciion.
The value to be returned is defined by the RETurn statement as shown.

100 REMark FuNction with RETurn

110 LET num = 70

120 LET bill = num + price(3) + price(&)
130 PRINT bill

140 DEFine FuNction price{num) -
150 IF num <= 3 THEN RETurn 300 + 10%num
160 IF num >= 4 THEN RETurn 12*num

170 END DEFine

448

Notice the simplification in the calling of functions as compared with procedure calls.

12/84

The ultimate concept of a procedure is that it should be a hlack box’ which receives
specific information from outside’ and performs certain operations which may include
sending specific information back to the outside! The outside’ may be the main pregram
or ancther procedure.

The term ‘olack box' implies that its internal workings are not important; you only think
about what goes in and what comes out. If, for example, a procedure uses a variabis,
count, and changes its value, that might affect a variable of the same name in the mamn
program. Thirk of a mail order company. You send them an order and cash; they send
you goods. Information is sent to a procedure and it sends back action and/or new
information.

Order by cash
Mail
Order
” Goods Company
Information
Action and/or Procedure
new information
< e—

You do not want the mail order company to use your name and address or other
information for other purposes. That would be an unwanted side-effect. Similarly you
do not want a procedure to cause unpianned changes to values of variables used in
the main program.

Of course you could make sure that there are nc double uses of variable names in a
program. That will work up to a point but we have shown in this chapter how to avoid
trouble even if you forget what variables have been used in any particular procedure.

A second aim in using procedures is to make a program modular. Rather than have
one long main program you can break the job down into what Seymour Papert, the
inventor of LOGO, calls ‘Mind-sized bites. These are the procedures, each one small
enough to understand and contral easily. They are linked together by the procedure
calls in a sequence or hierarchy.

A third aim is to avoid writing the same code twice. Write it once as a procedure and
call it twice if necessary. Functions and procedures written for one program can often
be direclly used, without change, by other programs, and one might create a library
of commonly used procedures and functions.

We give below another example which shows how procedures make a program moduiar.

An order is placed for six dishes at Chans Take Away, where the menu is:

ltem Number Dish Price
1 Prawns 350
2 Chicken 280
3 Special 330

Write procedures for the following tasks.

1. Set up two three-element arrays showing menu, dishes and prices. Use a DATA
statement.

2. Simulate an order for six randomly chosen dishes using a procedure, choose, and
make a tally of the number of times each dish is chosen.

12/84

Frocedures and Functions

WHY
PROCEDURES?

EXAMPLE

89

Procedures and Functions

Design

3. Pass the three numbers to a procedure, waiter, which passes back the cost of
the order to the main program using a pararneter cost. Procedure waiter calls two
other procedures, compute and cook, which compute the cost and simulate
‘cooking”.

4 The procedure, cook, simply prints the number required and the name of each dish.

The main program should call procedures as necessary, get the total cost from procedure,
waiter, add 10% for a tip. and print the amount of the total bifl.

This program illustrates parameter passing in a fairly complex way and we will explain
the program step by step before putting it together,

100 REMark Procedures

110 RESTORE 490

120 DIM item$8(3,7), price(3), dish(3)
130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

210 DEFine PROCedure set_up
220 FORKk=1T03

230 READ item${k}

240 READ price{k’

250 END FOR k

260 END DEFine

490 DATA "Prawns", 3.5, "Chicken", 2.8, "Special', 3.3
The names of menu items and their prices are piaced in the arrays item$ and price.

The next step is fo choose a menu number for each of the six customers. The tally of
the number of each dish required will be kept in the array dish.

160 choose dish

270 DEFine PROCedure choose(dish)

280 FOR pick =1 T0 é

290 LET number = RND(1 TO 3

300 LET dish{number) = dish{number) + 1
310 END FOR pick

320 END DEFine

Note that the formal parameter dish is both:

local to procedure choose
an array in main program

The three vaiues are passed back to the global array alsc called dish. These values
are then passed lo the procedure waiter.

170 waiter dish, bill

330 DEFine PROCedure waiter{(dish, cost)
340 compute dish, cost

350 cook dish

360 END DEFine

The waiter passes the information about the number of each dish required to the
procedure, compute, which computes the cost and returns it.

12/84

Procedures and Functions

370 DEFine PROCedure compute(dish, total)
380 LET total =0

390 FOR k=1 1t03

400 LET total = total + dish(k)*price(k)
410 END FOR k

420 END DEFine

The waiter also passes information to the cook who simply prints the number reguired
for each menu item.

430 DEFine PROCedure cook(dish)

440 FORc =1T03

450 PRINT ! dish{(c) ! item$(c) 1
460 END FOR ¢

470 END DEFine

Again, the array, dish in the procedure cook is local. It receives the information which
the procedure uses in its PRINT statement.

The complete program is listed below.

100 REMark Procedures Program
110 RESTORE 490

120 DIM item$(3,7), price(3), dish(3)

130 REMark **x* PROGRAM *xx

140 LET tip = 0.1

150 set_up

160 choose dish

170 waiter dish, bilt

180 LET bill = bill + tip*bill

120 PRINT ""Total cost is £" ; bill

200 REMark *+** PROCEDURE DEFINITIONS *xx
210 DEFine PROCedure set_up

220 FOR Kk =1T0 3

230 READ item$ (k)

240 READ price(k)}

250 END FOR k

260 END DEFine

270 DEFine PROCedure choose{dish)

280 FOR pick =1 T0 6

290 LET number = RND(1 TO 3

300 LET dish{number) = dish(number) + 1
310 END FOR pick

320 END DEFine

330 DEFine PROCedure waiter{dish, cost)

240 compute dish,cost

350 cook dish

260 END DEFine

370 DEFine PROCedure compute{dish, total)
380 LET total =0

390 FORKk =1T03

400 LET total = total + dish{k)*price(k)
410 END FOR k

420 END DEFine

430 DEFine PROCedure cook{dish)

440 FORc=1T03

450 PRINT ! dish{(c) | item$(c)

460 END FOR ¢

470 END DEFine

480 REMark *x* PROGRAM DATA *xx

490 DATA "Prawns", 3.5, "Chicken",2.8,"Special",3.3

The output depends on the random choice of dishes but the following choice illustrates Quitput
the pattern, and gives a sample of output,

3 Prawns
1 Chicken
2 Special

Total cost is £20.40

12/84 EL

Procedures and Functions

92

COMMENT

EXAMPLE

Program Changes

TYPELESS
PARAMETERS

Program

Qutput

SCOPE OF
VARIABLES

Obviously the use of procedures and parameters in such a simple program is not
necessary but imagine that each sub-task mignt be much more complex. In such a
situation the use of procedures would aliow a modular build-up of the program with
testing at each stage The above example merely ilustrates the main notations and
relationships of procedures.

Similarly the next example ilustrates the use of functions.

Note that in the previous example the procedures waiter and compute both return exactly
one value Rewrite the procedures as functions and show any other changes necessary

as a consequence

DEFine FuNction waiter(dish)
cook dish
RETurn compute(dish)
END DEFine

DEFine FuNction compute{dish)
LET total = O
FORk = 1703
LET totai = total + dish(k)* price(k)
END FOR k
RETurn total
END DEFine

The function call to waiter also takes a different form
LET bill = waiter{dish)

This program works as before. Natice that there are tewer parameters though the program
structure is similar. That is because the function names are also serving as parameters
retuning information 1o the source of the function calt.

All the variables used as formal parameters in procedures or functions are ‘safe’ because
they are automatically focal. Which variables used in the procedures or functions are
not local? What additional statements would be needed to make them local?

The variables k, pick and num are not local. The necessary changes to make them so are:

LOCAL k
LOCAL pick, num

Formal parameters do not have any type. You may prefer that a variable which handles
numbers has the appearance of a numeric variable and which handles strings looks
like a string variable, but however you write your parameters they are typeless. To prove
it, try the following program.

100 REMark Number or word

110 waiter 2

120 waiter '"Chicken"

130 DEFine PROCedure waiter{item)
140 PRINT ! item !

150 END DEFine

2 Chicken

The type of the parameter is determined only when the procedure is called and an actual
parameter ‘arrives.

Consider the following program and try to consider what two numbers will be output.

100 REMark scope

110 LET number = 1

120 test

130 DEFine PROCedure test
140 LoCal number

150 LET number = 2

160 PRINT number

170 try

12/84

Procedures and Functions

180 END DEFine

190 DEFine PROCedure try
200 PRINT number

210 END DEFine

Obviously the first number to be printed will be 2 but is the variable number in line 200
globaf?

The answer is that the value of number in line 160 will be carred into the procedure
try. A variable which is local to a procedure will be the same variabie in a second
procedure caited by the first

Equally if the procedure try is called by the main program, the variable number will
be the same number in both the main program and procedure, try. The implications
may seem strange at first but they are logical.

1. The variable number In line 110 is giobal,
2. The variable number in procedure test is defintely local to the procedure.

3. The variable number in procedure try ‘belongs' to the part of the program which
was the last call to it

We have covered many concepts in this chapter because SuperBASIC functions and
procedures are very powerful. However, you should not expect to use all these features
immediately. Use procedures and functions in simple ways at first. They can be very
effective and tne power is there if you need it

1. Six employees are identified by their surnames only. Each employee has a particular PROBLEMS ON
pension fund rate expressed as a percentage. The following data represent the CH APTER 1 5
total salaries and pension fund rates of the six employees.

Benson 13800 6.25
Hanson 8,700 6,00
Johnson 10300 6.25
Robson 15,000 700
Thomson 6,200 600
Watson 5100 575

Write procedures to:

input the data into arrays
compute the actual pension fund contributions
output the lists of names and computed contributions.

Link the procedures with a main program calling them in sequence.

2. Write a function select with two arguments range and rmiss. The function should
return a random whole number in the given range but it should not be the value
of miss.

Use the function in a program which chooses a random PAPER colour and then
draws random circles in random INK colours so that nene is in the colour of PAPER.

3. Re-write the solution to exercise 1 so that a function pension takes salary and
contribution rate as arguments and returns the computed pension contribution.
Use two procedures, one to input the data and one to output the required
information using the function pension.

4. Write the following:

a procedure which sets up a ‘pack of cards.

a procedure which shuffles the cards.

a function which takes a number as an argument and returns a string value
describing the card.

a procedure which deals’ and dispiays four poker hands of five cards each.
a main program which calls the above procedures.

(see chapter 16 for discussion of a similar problem}

12/84 93

CHAPTER 16
SOME
TECHNIQUES

SIMULATION OF
CARD PLAYING

Program

Input and Output

COMMENT

In this final chapter we present some applications of concepts and facilities already
discussed and we show how some further ideas may be applied.

It is easy to store and manipulate ‘playing cards’ by representing them with the numbers
1 to 52. This is how you might convert such a number to the equivalent card. Suppose,
for example, that the number 29 appears. You may decide that:

cards 1-13 are hearts
cards 14-26 are ciubs
cards 27-39 are diamonds
cards 40-52 are spades

and you will know that 29 means that you have a ‘diamond” You can program the QL
to do this with:

LET suit = (card=-1) DIV 13

This will produce a value in the range 0 to 3 which you can use to cause the appropriate
suit 1o be printed. The value can be reduced to the range 1 to 13 by writng:

LET value = card MOD 13
1F value = 0 THEN LET value = 13

The numbers 1 to 13 can be made to print Ace, 2, 3.... Jack, Queen, King, or, f you
prefer it, such phrases as “two of hearts” can be printed. The following program will
print the name of the card corresponding to your input number.

100 REMark Cards

110 DIM suitname$(4,8),cardval$(i3,5),

120 LET f$ =" of"

130 set_up

140 REPeat cards

150 INPUT "Enter a card number 1-52:" | card

160 IF card <1 OR card> 52 THEN EXIT cards

170 LET suit = (card=1) DIV 13

180 LET value = card MOD 13

190 IF value = O THEN LET value =13

200 PRINT cardval${value) ! f$ | suitname$(suit)
210 END REPeat cards

220 DEFine PROCedure set_up

230 FOR s = 1 TO & : READ suitname$(s)

240 FOR v = 1 TO 43 : READ cardval$(v)

250 END DEFine

260 DATA "hearts',"¢clubs', "diamonds', ' spades'

270 DATA *Ace","Two',"Three","four",“Five", "Six", ""Seven"
280 DATA ”Eight","Nine","Ten","Jack","Queen”,"King”

13

King of hearts
49

Ten of spades
27

Ace of diamonds
o

1

Notice the use of DATA statements to hold a permanent file of data which the program
always uses. The other data which changes each time the program runs is entered
through an INPUT statement If the input data was known before running the pragram
it would be equally correct to use another READ and more DATA statements. This would
give better control.

12/84

Some Techniques

SEQUENTIAL DATA
FILES

The following program will estabiish a file of one hundred numbers. Numeric File

100 REMark Number File

110 OPEN_NEW #6,mdv1_numbers
120 FOR num =1 T0 100

130 PRINT #6,num

140 END FOR num

150 CLOSE #6

After running the program check that the fiename ‘numbers’ is in the directory by typing:
DIR mdv1_numbers

You can get a view of the file without any speciai formatting by copying from Microdrive
to screen:

COPY mdv1_numbers to scr

You can alsc use the following program to read the file and display its records on the
screen.

100 REMark Read File

110 OPEN_IN #6,mdv1_numbers
120 FOR num = 1 TO 100

130 INPUT #é,item

140 PRINT 1 item !

150 END FOR num

160 CLOSE #6

If you wish you can alter the program to get the output in a different form.,

In a similar fashion the foltowing programs will set up a file of cne hundred randomly ~ Character File

selected letters and read them back.

100 REMark Letter File
110 OPEN NEW #6,mdv1 chfile FOR SERVIC.E MA_NUALS
120 FOR num = 1 70 100 CONTACT:

Q
130 LET ch$ = CHR$(RND(&5 TC 90)) MAURITRON TECHNICAL SERVICES
140 PRINT #6,ch$ Www.mauriron.co.uk
150 END FOR num TEL: 01844 - 351694
160 CLOSE #6 EAX: 01844’352554
100 REMark Get Letters
110 OPEN_IN #6,mdv1_chfile

120 FOR num = 1 TO 100
130 INPUT #6,1tem$
140 PRINT ! item$!
150 END FOR num
160 CLOSE #é6
Suppose that you wish to set up a simple file of names and telephone numbers. SET”NG UP A
RON 678462 DATA FILE
GEOFF 896487
ZOE 249386
BEN 584621
MEG 482349
CATH 438975

WENDY 982387

The followi

100
110
120
130
140
150
160

12/84

ng program will do it

REMark Phone numbers

OPEN_NEW #6,mdv1_phone

FOR record =1 707
INPUT name$,num$
PRINT #6;name$;nums

END FOR record

CLOSE #&

95

COPY A FILE

READ A FILE

AN INSERTION
SORT

EXAMPLE
Method

Some Techniques

Type RUN and anter a name followed by the ENTER key and a number followed by
the ENTER key. Repeat this seven times.

Notice that the data is ‘puffered. It is stored internaily until the system Is ready to transfer
a batch 1o the Micradrive. The Microdrive is only accessed once, as you can tell from
looking and listening.

Once a file is established, it should be copied immediately as a back-up. To do this type:

COPY mdv1_phone TO mdvZ_phone

You need to be certain that the file exists in a correct form so you should read it back
from a Microdrive and display it on the screen. You can do this easily using:

COPY mdv2_phone TO scr

The cutput to the screen will not provide spaces automatically between the name and
the number but it will provide a newling’ at the end of each record. The output will be:

RONG78462

GEOFF896487

ZOE249386 '
BEN584621

MEG482348

CATH438975

WENDY982387

You can get a more controlled presentation of the data with the following program.

100 REMark Read Phone NUmbers
110 OPEN_IN #5,mdv1_phone
120 FOR record =1 T0 7

130 INPUT #5,rec$

140 PRINT,rec$

150 END FOR record

160 CLOSE #5

The data is printed, as before, but this time each pair of fields is held in the variable
rec$ before being printed on the screen. You have the oppartunity to manipulate it inte
any desired form.

Note that more than one string variable may be used at the file creation stage with INPUT
and PRINT but the whole record so created may be retrieved from the Microdrive file
with a single string variable (rec$ in the above example).

The following colours are available in the low resolution screen mode (in code number
order, 0-7),

black blue red magenta green cyan yellow white

Write a program to sort the colours into alphabetical order using an insertion sort

We place the eight colours in an array, colour$, which we divide into two parts:

v |

| I
—_—t |
| I

SORTED PART UNSORTED PART

We take the leftmost item of the unsorted part and compare it with each itemn, from right
to left, in the sorted part until we find its right place. As we compare we shuffle the sorted
items to the right so that when we find the right place to insert we can do so immediately,
without further shuffling.

12/84

Suppose we have reached the point where four items are sorted and we now focus
on green, the leftmost item in the unsorted part.

1 2 3 4 5 6 7 8
black blue magenta red green cyan yellow white
sorted part unsorted part

1. We place green in the variable, comp$. and set a vanable p, 10 5.

2. The variable, p, will eventually indicate where we think green shouid go. When
we know that green should move left, then we decrease the value of p.

3. We compare green with red. If green is greater than {nearer to Z) or equai to red
we exit and green stays where 1t is.

Otherwise we copy red in to pasition 5 thus and decrease the value of p thus:

1 2 3 4 5 6 7 8
black blue magenta red red cyan vyellow white

4, We now repeat the process but this time we are comparing green with magenta
and we get:

1 2 3 4 5 6 7 8
black blue magenta magenta red cyan yellow white

5 Finally we move left again comparing green with blue, This time there is no need
to move or change anything. We exit from the loop and place green in position
3. We are then ready to focus on the sixth item, cyan.

1 2 3 4 5 G 7 8
biack blue green magenta red cyan yellow white

1. We will first store the colour® in an array colour$(8) and use:

comp$ the current colour being compared

Jo) to point at the position where we think the colour in comp$ might go.
2. A FOR loop will focus attention on positions 2 to 8 in turn (a single itemn is already
sorted).
3. A REPeat locp wil allow comparisons until we find where the comp$ value actually
goes.

REPeat compare
IF comp$ need go no further left EXIT
copy a colour into the position on its right
and decrease p

END REPeat compare

4. After EXIT from the REPeat loop the colour in comp$ is placed in positiors p and
the FOR loop continues.

12184

Some Techriques

PROBLEM ANALYSIS

97

Some Techniques

Program Design

MODIFIED
PROGRAM

COMMENT

1 Declare array colourd
2 Read colours into the array
3 FOR item = 2 TO 8

LET p = item

LET comp$ = colour§({p)

REPEAT compare

IF comp$ > = colour${p-1) : EXIT compare
LET colour${p) = colourd{p—1}

LET p = p-1

END REPeat compare
LET colour$(p) = comp$
END FOR item
4 PRINT sorted array colourd

3 DATA

Further testing reveals a fault. It arises very easly if we have data in which the first item

is not in its correct position at the start. A simple change of initial data to:

red black blue magenta green cyan yellow white

reveals the problem. We compare black with red and decrease p 10 the value, 1. We
come round again and try to compare black with a variable colour§ip-1) which is
colour$(C) which does not exist.

This is a well-known problem in computing and the salution is to "post a sentinel” on
the end of the array. Just before entering the REPeat locp we need:

LET colour$(0) = comp$

Fortunately, SuperBASIC allows zero subscripts, otherwise the problem would have to
be solved at the expense of readability.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

REM Insertion Sort
DIM colour${(8,7)
FOR item=1TO 8 : READ colour$(item)
FOR item=2T0 8§
LET p=item
LET comp$ = colour$(p)
LET colour$(0) = comp$
REPeat compare
IF comp$ »>= colour$(p-1) : EXIT compare
LET colour$(p) = colour$(p-1)
LET p = p-1
END REPeat compare
LET colour$(p) =comp$
END FOR item
PRINT "Sorted..." ! colour$
DATA "black", "blue', "magenta", "red"
DATA "green'", “cyan", "yellow", "white"

It Al

1. The program works well. It has been tested with awkward data:

A
A
B
E

m>Pm X

Hmr
I >3

A
B
A
D

[valn=Jvs]
Omx

GFEDCBA

9 Aninsertion sort is not particutarly fast, but it can be useful for adding a few items
to an already sorted list it is sometimes convenient to allow modest amounts of
time frequently to keep items in order rather than a substantial amount of time
iess frequently to do a complete re-sorting.

You now have enough background knowledge to follow a development of the handling
of the file of seven names and telephone numbers.

12/84

" In order to sort the file ‘phone’ into alphabeticai order of names we must read it into

an internal array, sort it, and then create a new file which will be in alphabetical order
of names.

It is never good practice to delete a file before its replacement is clearly establisned and
proven correct. You should thersfore copy the file first, as security, using a different name.
The required processes are as follows:

Copy the file 'phone’ to ‘phone__temp'
Read the file ‘phone into an array.

Sort the array.

Pause tc check that everything is in order.
Delete file ‘phone!

Create new file ‘phone

This is all the program needs 1o do but the new file should be immediately checked using:
COPY mdv1_phone TO scr
Any further necessary checks shoulg be carried out then:

DELETE mdv2 phone

COPY mdv1_phone TO mdvZ_phone
COPY mdv1_phone TO scr

DELETE mdvi_phone_temp

@A WA=

The above operations complete the process of substituting a sorted file for the original
unsorted one in both master and back-up files.

In the following program we ilustrate the passing of complete arrays between main
program and procedure. The data passes in both directions.

In line 40 the array, row, hoiding the numbers 1,23 is passed to the procedure, addsix.
The parameter, come, receives the incoming data and the procedure adds six to each
element. The array parameter, send, at this point holds the numbers 788,

These numbers are passed back to the main program to become the values of array,
bilack. The values are printed to prove that the data has moved as required.

MAIN Screen

PROGRAM row back — Output
]

PRQCEDUFIE come +6 send

addsix

100 REMark Pass Arrays

110 DIM row(3) ,back (3>

120 FCR k =1 TO 3 : LET row(k) = k

130 addsix row, back

140 FOR kK =1 TO 3 : PRINT ! back(k) !

150 DEFine PROCedure addsix{come,send)

160 FOR k =1 T0 3 : LET send(k)=comelk)+6
170 END DEFine

789

The following procedure receives an array containing data to be sorted. The zero element
will contain the number of iterns, Note that it does not matter whether the array is numeric
or string. The principle of coercion will change string to numeric data if necessary.

12/84

Some Techniques

SORTING A
MICRODRIVE FILE

ARRAY
PARAMETERS

Program

Qutput

Some Techniques

Qutput

A second point of interest is that the array element, come(0), 1s used for two purposes:

it carries the number cf items lo be sorted
it is used to hold the item currently being placed.

100 DEFine PROCedure sort(come,send)
110 LET num = come (0)
120 FOR item = 2 TO num

130 LET p = item

140 LET come (D) = come(p)

158 REPeat compare

160 IF come(0) >= come({p—1) : EXIT compare
170 LET come(p) = come(p-1}

180 LET p = p-1

190 END REPeat compare

200 LET come(p) = come (0

210 END FOR item
220 FOR k=1 TO 7 : send{(k) = come(k}
230 END DEFine

The following additional lines will test the sort procedure. First type AUTO 10 to start
the line numbers from 10 onwards.

10 REMark Test Sort

20 DIM row${(7,3),backs$(?7,3)

20 LET rows$(0) =7

40 FOR k =1 TO 7 : READ row$ (k)

50 sort row$,back$

60 PRINT ! back$ ¢

?O DATA IIEEL”' I!DOG"I. IIANT“' IIGNUII' IICATII'l llBUGl!' IIFOX!'

ANT BUG CAT DOG EEL FOX GNU

COMMENT This program illustrates how easily you can handle arrays in SuperBASIC. All you have

METHOD

1o do is use the array names for passing them as parameters or for printing the whole
array. Once the procedure is saved you can use MERGE mdv1_sort 1o add it to a
program in main memaory.

You now have enough understanding of techniques and syntax to handle a more complex
screen layout. Suppose you wish to represent the hands of four card players. A hand
can be represented by something like:

H:A 37Q
cC.5 9J
D: 6 10 K
S:2 4Q

To help the presentation the Hearts and Diamonds will be printed in red and the Clubs
and Spades in black. A suitable STRIP colour might be white. The general background
couid be green and a table may be a colour obtained by mixing two colours.

Since a substantial amount of character printing is involved it is best to start planning
in terms of the pixel screen. You can see that you need to provide for twelve lines of
characters with some space between lines and a total screen height of 256 pixels.

| ——
C.— 1
[E—
 ——
| —— | E———
| E— | —
—/
—— | ——]
|
 E—
—
—

12/84

"It is useful 1o recall that the possible character heights are 10 pixels or 20 pixels. it is
cbvious that the 10 pixel height must be used to aliow space for a proper layout

The number of character positions across the screen must be estmated. If we adopt
the convention of “T" for ten instead of 110" all card values can be reprasented as a
single character Suppose that we also allow a maximum of eignt cards of the same
suit as a first approach. We can reconsider the problemn agair: if necessary. That would
require a total of 10 characters for each hand. The across requirement is therefore:

west hand + table width + east hand
Allowing a space between characters that would be:
20 + table width + 20

The decision now depends on which screen mode you choose. The 256 mode will cope
with the problem, as you will see later, but first we will work in 512 pixel mode. The smallest
character width is six pixels which would give a totai of 240 pixels + ‘able width. The
diagram will have some balance if we have a table width of about half of 240.

We should therefore experiment with a table width of about 120 pixels which may be
adjusted. A litfle testing produced the layout shown.

H: 59K
C: AQ
D: A4 64
S: AZ23T
H: A H:68TAQ
C: 7J K C: 24568
D: 589K D: 7T @
S: 457 JK S: 6
H: 2347 J
C:397
: 23
S: 89Q
WINDOW 440 x 220 at 3515
Green with black border of 10 units
JABLE 100 x 60 at 15060 FOR SERV'?E\ éﬂ_ﬁNUALS
Cheguerboard stipple of red and green CONHNlCA.L SERVICES
HANDS Room for at least eight card symbois. MAURIT_F‘ON TEC it o.uk
Initial cursor positions are: www.Imauriiron.co.
h 15010 TEL: 01844 - 351694
no ; . .
cast 260,60 £A0C 01844 - 352554
south 150130
west 3060
CHARACTER SIZE Standard for 512 mode

NUMBER OF PIXELS between lines is 12

CHARACTER COLOUR White
CHARACTER STRIP Red for Hearts and Diamonds
Black for Clubs and Spades.

1284

Some Techrigues

Some Techniques

VARIABLES card(52) stores card numbers
sort(13) used to sort each hand
tok${d,2) stores tokens H:, C:. D S
kmcmh working loop variables

ran random position for card exchange
temp used in card exchange
item card to be inserted in sort
dart pointer to find position in sort
comp hold card number in sort
inc pixel increment In card rows
seat current deal’ position
ac,dn, cursor position for characters
row current row for characters
ling builds up row of characters
max highest card number
p points to card position
n current number of card
PROCEDURES shuffle shuffles 52 cards ‘
split spiits cards into four hands and calls sortem to sort each hand
sortemn sorts 13 cards in ascending order
layout provides background colour, border and table

printem prints each line of card symbols
getline gets one row of cards and converts numbers into the symbols
A23458789TJQK

PROGRAM DESIGN
OUTLINE

1 Declare arrays, pick up tokens' and place 52 numbers in array card.
2 Shuffle cards.

3. Split into 4 hands and sort each.

4. OPEN screen window.

5 Fix the screen layout.

6 Print the four hands.

7 CLOSE the screen window.

100 DIM card(52),sort(13),tok$(4,2)
110 FOR k = 1 TO 4 : READ tok$(k?
120 FOR k =1 TO 52 : LET card(k) =k
130 shuffle

140 split

150 OPEN #6,scr_440x220a35x15

160 layout

170 printem

180 CLOSE #6

190 DEFine PROCedure shuffle

200 FOR c = 52 TO 3 STEP -1

210 LET ran = RND(1 TO c-1)
220 LET temp = card(c)

230 LET card{c} = card(ran)
240 LET card{(ran) = temp

250 END FOR ¢

260 END DEFine

270 DEFine PROCedure split
280 FORh=1T0 4

290 FORc=1T7013

300 LET sort{c) = card({h=-1)*13+c¢)
310 END FOR ¢

320 sortem

330 FOR ¢ =170 13

340 LET card((h=-1)Y*13+c) = sort{c}
350 END FOR ¢

360 END FOR h

370 END DEFine

380 DEFine PROCedure sortem
390 FOR item =2 TO 13
400 LET dart = item

102 12/84

410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
380
890
900
910
920

The program works in the 256 mode But the various lines of card symbols may overlgp
the “table" or overflow at the edge of the window. A simple change in procedure getiine

from:

860
{o:

860

will correct this. The spaces between characters disappear but the larger Si;ed characters
enable the rows to be easily readable. The program thus works well in either graphics

mode.

LET comp = sort{dart)
LET sort(0) = comp
REPeat compare

IF comp >= sort(dart-1) : EXIT compare

LET sort{dart) = sort{dart-1)
LET dart = dart -1
END REPeat compare
LET sort{(dart) = comp
END FOR item
END DEFine
DEFine PROCedure layout
PAPER #6,4 : CLS #6
BORDER #6,10,0
BLOCK #6,100,60,150,60,2,4
END DEFine
DEFine PROCedure printem
LET inc =12 : INK #6,7
LET p=20
FOR seat =1 T0 4
READ ac,dn
FOR row =1 70 4
getline
CURSOR #6,ac,dn
PRINT #6,1lin$
LET dn = dn + inc
END FOR row
END FOR seat
END DEFine
DEFine PROCedure getline
IF row MOD 2 = 0 THEN STRIP #6,0
IF row MOD 2 = 1 THEN STRIP #6,2
LET Lin$ = tok${row)
LET max = row*13
REPeat one suit
LETp=p +1
LET n = card(p)

IF n >max THEN p = p~1 : EXIT one_suit

LET n = n MOD 13

IFn=0THEN n = 13
IFn=11:LET ch$ = "A"

IFn>= 2 ANDn <=9 : LET ch$ =n
IFn =10 : LET chs = "T"
IFn=111: LET ch% = "J"
IFn=12 : LET ch% = "Q"

IFn =13 : LET ¢ch$ = K"

LET Lin$ = Lin$ & " ' & ch$
IF p =52 : EXIT one=suit

IF card(p)>card{p+1) : EXIT one_suit

END REPeat one_suit
END DEFine
DATA lfH:lI’IIC:II’HD:II'II'S:II
DATA 150,10,260,60,150,130,30,60

LET tin$ = Ling$ & " " & ch$

LET Lin$ = Lin$ & ch$

Some Techniques

COMMENT

Sorme Techniques

104

CONCLUSION

We have tried to show how you can use SuperBASIC to solve problems. We have shown
how simple tasks can be performed in simple ways. When the task is inherently complex,
iike manipulating arrays or designing screen graphics, SuperBASIC enables it to be
handled efficiently with maximum possible clarity.

It you were a beginner and you have worked through a fair proportion of this guide
you wil have started well on the road 10 gocd programming. f you were already
experienced, we hope that you will appreciate and exploit the extra features offered by
SuperBASIC.

So enormous s the range of tasks which can be done with SuperBASIC that we have
only been able to touch a fraction: of them in this guide. We cannot guess at which of
the thousands of possibilities you will attempt, but we hope that you will find them fruitful,
stmulating and fun.

1284

10.
1.
12.
13.

Use the BREAK seguence to abandon a running program because: ANSWERS TO
a) something is wrong and you do not understand it SELF TEST ON
b)Y it is longer of interest CHAPTER 1

c) any other problem (three points)

The RESET button is on the right hand side of the computer
The eftect of the RESET button is rather like switching the computer off and on

again.

The SHIFT key:

a) s only effective while you hold it down whereas the CAPS LOCK ey stays
effective after you have pressed it (one point)

b) The SHIFT key affects all the letter, digit and symbol keys, but the CAPS
LOCK key affects only letters. (one point)

The CTRL ¢= keys delete the previous character just left of the cursor. |

The i (ENTER}) key causes a message or instruction to be entered for action by
the computer

We use # for the ENTER key.

CLS «: causes part of the screen to be cleared.

RUN #m causes a stored program tc be executed.

LIST e causes a stored program to be dispiayed on the screen.

NEW e clears the main memory ready for a new program.

Keywords of SuperBASIC are recognised in upper or lower case.

The part of a keyword displayed in upper case is the allowed abtreviation.

14 to 16 is very good. Carry on reading. CHECK YOUR

12 or 13 is good, but re-read some parts of chapter one. SCORE
10 or 1 is fair, but re-read some parts of chapter one and do the tfest again.
Under 10. You should work carefully through chapter one again and repeat the test.

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.MAUrtron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

ns

ANSWERS TO
SELF TEST ON
CHAPTER 2

-t

n

10.
1.
12.

13.
14,
15,
16.

17.

An internal number store is like a pigeon hole which you can name and put
numbers into.

A LET statement which uses a particular name for the first time will cause a pigeon
hole to be created and named, for example

LET count = 1 e (1 point)

A READ statement which uses a name for the first time will have the same effect,
for example

READ count #m (1 point}
You can find the value of a pigeon hole with a PRINT statement.

The technical name for a pigeon hole is variabie’ because its values can vary as
a program runs.

A variable gets its first value when it is first used in a LET statement, INPUT staterment
or READ statement.

A change in the value of a variable is usually caused by the execution of aLET
statement.

The = sign in a LET statement represents an operation:

‘Evaluate whatever is on the right hand side and place it in the pigeon hole
named on the left hand side that is ‘Let the left hand side become equal
to the right hand sidel

An un-numbered staternent is executed immediately.

A numbered statement is not executed immediately. It is stored.

The quotes in a PRINT staternent enclose text which is to be printed.
When quotes are not used you are printing out the value of a variable.

An INPUT statement makes the program pause so that you can type data at the
keyboard.

DATA statements are never executed.

They are used to provide values for the variables in READ statements.
The technical word for the name of a pigeon hole is ‘identifier.
Example answers:

i day
i day_ 23
i. day__of__week (3 points)

The space bar is especially important for putting spaces after or before keywords
50 that they cannot be taken as identifiers (names) chosen by the user.

Freely chosen identifiers are important because they help you to make programs
easier to understand. Such programs are less prone to errors and mare adaptable.

CHECK YOUR 18 to 21 is very good. Carry on reading.

SCORE 16 or 17 good but re-read some parts of chapter two.
14 or 15 fair, but re-read some parts of chapter two and do the test again.
Under 14 you should work carefuly through chapter two again and repeat the test.

PTaTe

12184

e R

A pixel is the smallest area of light that can be displayed on the screen.
There are 256 pixel positions across the low resolution mode.
There are 256 pixel positions from top to bottom in the low resolution mode.

An address is determined by:

the up value, 0 to 100
the across value, 0 to a number computed by the system

There are eight colours avaitable in the low resoiution mode including black and
white.

i, LINE draws a ling, eg. LINE ab TO xy

i, INK selects a colour for drawing, eg. INK 5

i. PAPER selects a background colour, eg. PAPER 7
iv. = BORDER draws a border, eg. BORDER 15

REPeat name... END REPeat name.
A REPeat loop terminates when an ‘EXIT name' statement is executed.

Loops in SuperBASIC have names so that it is possible to EXIT from therm in a
straightforward way. It is not necessary to work out line numbers in advance.

11 to 13 is very good. Carry on reading.

8 to 10 is good but re-read some parts of chapter three.

6 or 7 is fair but re-read some parts of chapter three and do the test again,

Under 6. You should work carefully through chapter three again and repeat ihe test

oo W

© o N O

A character slring is a sequence of characiers such as letters, digits or other
symbols.

The term, character string! is often abbreviated to ‘string:
A string variable name always ends with $.
Names such as word$ are sometimes pronounced ‘worddollar,

The keyword LEN will find the Jength or number of characters in a string. For
example, if the variable meat$ has the value steak’ then the statement:

PRINT LEN(meat$)
will output 5.
The symbol for joining two strings is &
The limits of a string may be defined by quotes or apostrophes.
The quotes are nat part of the actual string and are not stored.

The function is CHRS. You must use it with brackets as in CHR$(E6) or with brackets
as in CHR$(RND(65 TC 67)).

You generate random letters with statements like:

lettercode = RND(&5 TO 90)
PRINT CHRS(lettercode)

9 or 10 is very good. Carry on reading.

7 or 8 is good but re-read some parts of chapter four.

5 or 6 is fair but re-read some parts of chapter four and do the test agamn.

Under 5 You shoutd work carefully through chapter four again and repeat the test

12/84

ANSWERS TO
SELF TEST ON
CHAPTER 3

CHECK YOUR
SCORE

ANSWERS TO
SELF TEST ON
CHAPTER 4

CHECK YOUR
SCORE

07

ANSWERS TO
SELF TEST ON
CHAPTER 5

CHECK YOUR
SCORE

1,

2.

3

10.

Lower case letters for variable names or loop names contrast with the keywords
which are at least partly displayed in upper case.

Indenting reveals clearly what is the extent and content of loops (and cther
structures).

Identifiers (names) should normally be chosen so that they mean sormething, for
example, count or word$ rather than C or WE.

You can edit a stored program by:

replacing a line
inserting & line
deleting a line (three points)

The ENTER key must be used to enter a command or program line.

The word NEW will wipe out the previous SuperBASIC program in the QL and
will énsure that a new program which you enter will not be merged with an old cne.

If you wish a line to be stored as part of a program then you must use a line number.
The word RUN followed by # will cause a program to execuie. '

The word REMark enables you to put into a program information which is ignored
at execution time.

The keywerds SAVE and LOAD enable programs to be stored on and retrieved
from cartridges. (twg points}.

12 10 14 is very good. Carry on reading.

10 or 11 is good but re-read some parts of chapter five.

8 or 9 is fair but re-read some parts of chapter five and do the test again.
Under 8 You should re-read chapter five carefully and do the test again.

12/84

10.

It is not easy to think of many different variable names for storing the data. If you
can think of enough names, every one has to be written in a LET stalement or

a READ statement if you do not use arrays.

A number called the subscript, is part of an array variable name. All the variables
in an array share one nrame but each has a different subscript.

You must ‘declare’ an array giving its size (dimension) in a DIM statement usually
placed near the beginning of a program before the declared array is used.

The distinguishing number of an array variable is called the subscript.
Houses in a street share the same street name but each has its own number

Beds in a hospital ward may share the name of the ward but each bed may be
numbered.

Cells in a prison block may have a common block name but a different number.
Holes on a golf course, eg. the fitth hole at Royal Birkdale.

A FOR locp terminates when the process corresponding to the last value of the
loop variable has been completed.

A FOR loop's name is also the name of the variable which controls the Icop.
The two phrases for this variabie are loop variable’ or control variable!

The values of a loop variable may be used as subscripts for array variable names.
Thus, as the loop proceeds, each array variable is visited' once.

Both FOR loops and REPeat loops:
a have an opening keyword:
REPeat , FOR
b. have a closing statement:
END REPeat name, END FOR name
C have a loop name.
Only the FOR loop has
d. a loop variable or control variable. {four points)

This test is more searching than the previous ones.

15 or 16 is excellent. Carry on reading.

13 or 14 is very good bui think a bit more about some of the ideas. Look &t programs
to see how they work.

11 or 12 is good but re-read some parts of chapter six.
8 to 10 is fair but re-read some parts of chapter six and do the test again.

Under 8 You should re-read chapter six carefully and do the test again,

12/84

ANSWERS TO
SELF TEST ON
CHAPTER 6

CHECK YOUR
SCORE

109

ANSWERS TO 1. We normally break down large or compiex jobs into smaller tasks untl they are .

SELF TEST ON small enough to be completed.

CHAPTER 7 2. This principle can be applied in programming by breaking the total job down and
writing a procedure for each task. FOR SERVICE MANUALS

CONTACT:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01&44 - 351694

4. A procedure call ensures that: FAX: 01844 - 352554

the procedure is activated
contral returns to just after the calling point. {two points)

5 Procedure names can be used in a main program before the procedures have
been written. This enables you to think about the whole job and get an overview
without worrying about the, detalil.

3. A simple procedure is:

a separate block of code
property named. (two paoints)

6. !f you write a procedure definition tefore using its name you can test it and then
when it works properly forget the detalls. You need only remember its name and
roughly what it dces.

7. A programmer who can write up to thirty line programs can break down a complex .
task into procedures in such a way that none is more than thirty lines and most
are much less. In this way he neec only worry about one bit of the job at a time.

8. The use of a procedure would save memory space if it is necessary to call it more
than once from different parts of a program. The definition of a procedure only
occurs once but it can be called as often as necessary.

9. Amain program can place information in ‘pigeon-holes’ by means of LET or READ
staterments. These ‘pigeon-hcles’ can be accessed by the procedure. Thus the
procedure uses information originally set up by the main program.

A second method is to use parameters in the procedure call. These values are
passed to variables in the procedure definition which then uses them as necessary.

10. An actual parameter is the actual value passed from a procedure call in a main
program to a procedure,

11. A formal parameter is a variable in a procedure defintion which receives the value
passed to the procedure by the main program.

CHECK YOUR This is a searching test. You may need more experience of using procedures before .
SCORE the ideas can be fully appreciated. But they are very powerful and, when understood,
extremely helpful ideas. They are worth whatever effort is necessary.

12 to 14 excellent. Read on with confidence.
10 or 11 very good. Just check again on certain points.
8 or 9 good but re-read some parts of chapter seven.

6 or 7 fair but re-read some parts of chapter seven. Work carefully through the programs
writing down all changes in variable values. Then do the test again.

Under 6 read chapter seven again. Take it slowly working all the programs. These ideas
may not be easy bul they are worth the effort. When you are ready, take the test again.

10 12/84

sirci=ir-

QL

Keywords

The Keyword Reference Guide lists all SuperBASIC keywords in alphabetical order. A
brief explanation of the keywords function is given followed by loose definition of the
syntax and examples of usage. An explanation of the syntax definition is given in the
Concept Reference Guide under the eniry synfax.

Each keyword entry indicates to which, if any, group of operations it relates, i.e. DRAW
is a graphics operation and further information can be obtained from the graphics section
of the Concept Reference Guide.

Sometimes it is necessary to deal with more than one keyword at a time, ie. IF, ELSE,
THEN, END, IF, these are all listed under IF.

An index is provided which attempts to cover all possible ways you might describe a
SuperBASIC keyword. For example the clear screen command, CLS, is also listed under
Clear screen and screen clear.

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sinclair Research Limited)

ABS

ABS returns the absolute value of the parameter, It will return the value of the parameter mMaths functions
" if the parameter is positive and will return zero minus the value of the parameter if the
parameter is negative.

syntax: ABS({numeric__expression)

example: i. PRINT ABS(0.5)
i. PRINT ABS(a-b)

ACOS, ASIN
ACOT, ATAN

ACOS and ASIN will compute the arc cosine and the arc sine respectively. ACCT wii maths functions
calcuiate the arc cotangent and ATAN will calculate the arc tangent. There is ne effective
limit to the size of the parameter.

syntax: angle:= numeric_expression {in radians]

ACOS(angle) ASIN(angle)
ACQOT(angle) ATAN(angle)

example: i. PRINT ATAN(angle)
ii. PRINT ASIN(1)
ii. PRINT ACOT{(3.6574)
iv. PRINT ATANCa-b)

12/84

ADATE

clock ADATE allows the clock to be adjusted.

syniax: seconds:= numeric__expression
ADATE seconds
example: i, ADATE 3600 jwill advance the clock 1 hour]

i, ADATE -60 {wil move the clock back 1 minute]

ARC
ARC_R

graphics ARC will draw an arc of a circle between two specified points in the window attached
to the default or specified channel. The end points of the arc are specified using the
graphics co-ordinate system.

Multiple arcs can be drawn with a single ARC command.

The end poinis of the arc can be specified in absolute coordinates (relative to the graphics
origin or in relative coordinates (relative to the graphics cursor). If the first point is omitted
then the arc is drawn from the graphics cursor to the specified point through the specified
angle.

ARC will always draw with absclute coordinates, while ARC__R will always draw relative
to the graphics cursor,

syntax: Xo= numeric__expression
= numeric__expression
angle:= numeric__expression {in radians|
point= Xy

parameter__2-=| TO pomt, angle
| \point TO point,angle

parameter__1.=| point TO point.angie
| TO pointangle

ARC [channel,| parameter__1 x|parameter__2| %
ARC__R [channel,) parameler__1 * |parameter__2| *

where 1 will draw from the specified paint to the next specified
point turning through the specified angle

2 wil draw from the the last point plotted to the specified
point turning through the specified angle

exampte: .. ARC 15,10 To 40,40, PI/2
[draw an arc from 15,10 to 40,40 turning through 7/2 radians}

i, ARC TO 50,50,FI/2
idraw an arc from the last point plotted to 5050 turning through
7/2 radians}

i. ARC_R 10,10 T0 55,45,0.5
{draw an arc, starting 10,10 from the last point plotted to 55,45
from the start of the arc, turning through 05 radians

N = o=

12/84

AT allows the print position to be modified on an imaginary rowicolumn grid based on
the current character size. AT uses a modified form of the pixef coordinate systern where
(row G, column 0) is in the top left hand corner of the window. AT affects the print position
in the window attached to the specified or default channel.

syntax: ling: = numeric__expression
column:= numeric__expression

AT [channel] line , column
example: AT 10,20 : PRINT "This is at Line 10 column 20"

AUTO allows line numbers to be generated automatically when entering programs directly
into the computer. AUTO will generate the next number in seguence and will then enter
the SuperBASIC line editor while the line is typed in. If the line already exists then a
copy of the line s presented along with the line number. Pressing ENTER at any point
in the line will check the syntax of the whole line and will enter it into the program.

AUTO is terminated by pressing

[CTRL] | space
syntax: first_line:= line__number
gap: = NUMeric__expression

AUTO (first_line] [.gap|

example: i. AUTO {start at line 100 with intervals of 10}
ii. AUTO 10,5 [start at line 10 with intervals of 5}
i. AUTO ,7 [start at line 100 with intervals of 7}

12/184

AT

windows

AUTO

BAUD

connnunwanons

BEEP

sound

BAUD sets the baud rate for communication via both serial channels. The speed of the
channels cannot be set independently.

syntax: rate.= nNUMeric__expression
BAUD rate

The value of the numeric expression must be one of the supported baud
rates on the QL:

75
300
600
1200
2400
4800
9600
19200 (transmit only)

If the selected baud rate is not supported, then an error will be generated.

example: . BAUD 9400 .
il. BAUD print_speed

BEEP activates the inbuilt sound functions on the GL. BEEP can accept a variabie
number of parameters to give various levels of control over the sound produced. The
minimum specification requires anly a duration and pitch 1o be specified. BEEP used
with no parameters will kill any sound being generated.

syntax: duration:= numeric__expression {range —-32768 .. 32767
pitch:= numeric__expression {range 0 .. 255]
grad__x:= numeric_expression {range —32768 .. 32767}

[
|
grad__y = numeric__expression irange -8 .. 7]
{
{
{

wrapi= numeric__expression frange 0 .. 15§
fuzzy:= numeric__expression {range 0 .. 15}
random:= numeric__expression {range 0 .. 15}

BEEP [duration, pitch

[, pitch__2 , grad__x, grad__y

[wrap

[, fuzz

i, random]]]}]

duration specifies the duration of the sound in units of 72
microseconds. A duration of zero will run the sound unti
terminated by another BEEP ¢command.

pitch specifies the pitch of the sound. A pitch of 1 is high and
255 is low.

pitch__2 specifies an second pitch level between which the sound
will ‘bounce:

grad__x defines the time interval between piich steps.

grad__y defines the size of each step. grad . x and grad__y
control the rate at which the pitch bounces between
levels,

wrap will force the sound to wrap around the specified number

of times. {f wrap is equal to 15 the sound will wrap
around forever

fuzzy defines the amount of fuzziness 1o be added to the
sound.

random defines the amount of randomness to be added to the
sound.

12/84

BEEPING is a function which will return zero {false) if the QL is currently not beeping
and a value of cne (true) if it is beeping.

syntax: BEEPING
example: 100 DEFine PROCedure be_quiet
110 BEEP

120 END DEFine
130 IF BEEPING THEN be___quiet

BLOCK wilt fill a block of the specified size and shape, at the specified position relative
to the origin of the window attached to the specified, or default channel.

BLOCK uses the pixel coordinate system.

syntax: width:= numernc__expression
height:= numeric__expression
X = numeric__expression
yi= numeric__expression
BLOCK [channel,| width, height, x, y , colour
example: i BLOCK 10, 10, 5, 5, 7 {a 10x10 pixe! white block at 55]

i, 100 REMark "bar chart"

110 CSIZE 3,1

120 PRINT "bar chart"”

130 LET bottom = 100 : size = 20 : left =10

140 FOR bar =1 to 10

150 LET colour = RND{(D TO 255)

160 LET height RND(2 TO 200

170 BLOCK size, height, left+bar*size,
bottom-height,0

180 BLOCK size-2, height-2, left+bar*size+1,
bottom-height+1,colour

190 END FOR bar

fuse LET colour = RND(O TO 7) for televisions]

12/84

BEEPING

sound

BLOCK

windows

BORDER

windows

CALL

BORDER will add a border to the window attached to the specified channel, or default
channef.

For all subsequent operations except BORDER the window size is reduced to allow
space for the BORDER. If another BORDER command is used then the full size of
the original window is restored prior to the border being added; thus multiple BORDER
commands have the effect of changing the size and colour of a single border. Multiple
borders are not created unless specific action is taken.

I BORDER is used without specifying a colour then a transparent border of the specified
width is created.

syntax: width:= numeric__expression
BORDER [channel,] size [, colour]
example: i. BORDER 10,0,7 {black and white stipple border}

ii. 100 REMark Lurid 8Borders
110 FOR thickness = 50 to 2 STEP -2
120 BORDER thickness, RND(O TO 255)
130 END FOR thickness
140 BORDER 50 .

iuse AND{0 TO 7) for televisions]

Qdos Machine code can be accessed directly from SuperBASIC by using the CALL command.

warning

CALL can accept up to 13 long word parameters which will be placed into the 68008
data and address registers (D1 1o D7, AQ to A5) in seguence.

No data is returned from CALL.

syrtax: address.= numeric__expression

data:= numeric__expression

CALL address, *[data]* {13 data parameters maximum)
example: i, CALL 262144,0,0,0

i. CALL 262500,12,3,4,1212,6

Address register A6 should not be used in routines cafled using this command. To return
to SuperBASIC use the instructions:

MOVEQ #0,D0
RTS

12/84

CHR$

CHRS$ is a function which will return the character whose value is specified as a parameter BASIC
CHRS is the inverse of CODE.
syntax: CHRS$ (numeric__expression)

example: i, PRINT CHR$(27) {print ASCIl escape character]
i. PRINT CHR$(65) [print A)

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWw.mauritron.co.uk '
TEL: 01844 - 351694
FAX: 01844 - 352554

CIRCLE
CIRCLE_R

CIRCLE will draw a circle (or an ellipse at a specified angle) on the screen at a specified graphics
position and size. The circle will be drawn in the window attached to the specified or
default channel,

CIRCLE uses the graphics coordinate system and can use absolute coordinates (ie.
relative to the graphics origin), and refative coordinates (ie. relative to the graphics cursor).
For relative coordinates use CIRCLE__R.

Multiple circles or ellipses can be plotted with a single call to CIRCLE, Each set of
parameters must be separated from each other with a sem: colon ()

The word ELLIPSE can be substituted for CIRCLE if required.

syntax: X = numeric__expression
Y= nuUMmeric.__expression ,
radius:= NUMeric__expression
eccentricity: = NUMeric__expression
angle:= numeric__expression frange 0..27]
paramelers:= | x, v, 1
| radius, eccentricity, angle 2

where 1 will draw a circle
2 will draw an ellipse of specified eccentricity and angle

CIRCLE [channel,| parameters *[; parameters| *

X horizontal offset from the graphics origin or graphics cursor
v vertical offset from the graphics origin or graphics cursor
radius radius of the circle

eccentricity the ratic between the major and minor axes of an ellipse.
angle the orientation of the major axis of the ellipse relative 1o

the screen vertical. The angle must be specified in radians.

example: i. CIRCLE 50,50,20 la circle at 50,50 radius 20}
i. CIRCLE 50,50,20,0.5,0 {an ellipse at 5050 major axis 20
eccentricity 0.5 and aligned with the
verlical axis}

12/84

CLEAR

comment

CLOSE

devices

CLEAR will clear out the SuperBASIC variable area for the current program and will
release the space for Qdos.

syntax: CLEAR
example: CLEAR

CLEAR can be used to restore to a known state the SuperBASIC system. For example,
if a program is broken into {or stops due to an error) while it is in a procedure then
SuperBASIC is still in the procedure even after the program has stopped. CLEAR will
reset the SuperBASIC. (See CONTINUE, RETRY)

CLOSE will close the specified channel. Any window associated with the channel will
be deactivated.

syntax: channal.= #numeric__axpression
CLOSE channe!
example; . CLOSE #4

i. CLOSE #input_channel

12/84

CLS

Will clear the window attached to the specified or default channel to current PAPER ~ windows
colour, excluding the border if one has been specified. CLS will accept an optional
parameter which specifies if onty a part of the window must be cleared.

syntax: part:= numeric__expression
CLS [channel)] [part]

where: part = 0 - whole screen (default if no parameter)
part = 1 - top excluding the cursor line
part = 2 - bottom excluding the cursor ling
part = 3 - whole of the cursor line
part = 4 - right end of cursor line including the cursor position
example: i. CLS {the whole window]
i, CLS 3 {clear the cursor line}

i. CLS #2,2 Iclear the bottom of the window on channel 2]

CODE is a function which returns the internal code used to represent the specified CODE
character. If a string is specified then CODE will return the internal representation of the
first character of the string.

CODE is the inverse of CHRS.
syntax: CODE (string__expression)

exampie: i, PRINT CODEC"A™) {prints 65]
i. PRINT CODE('SuperBASIC') {prints 83]

12/84

CONTINUE
RETRY

error handling CONTINUE allows a program which has been halted to be continued. RETRY allows
a program statement which has reported an error o de re-executed.

syntax: CONTINUE
RETRY

example: CONTINUE
RETRY

warning A program can only continue if:

1. No new lines have been added to the program
2. No new variables have been added to the program
3. No lines have been changed

The value of variables may be set or changed.

COPY
COPY_N

devices COPY will copy a file from an input device to an output device until an end of file marker
is detected. COPY__N will not copy the header (if it exists) associated with a file and
will allow Microgrive files to be correctly copied f© ancther type of device.

Headers are associated with directory-type devices and should be removed using
COPY__N when copying to non-directory devices, eg. mdv1 is a directory device; ser
is a non-directory device.

syntax: COPY device TG device
COPY__N device TG device

It must be possible to input from the source device and it must be possible
to output to the destination device.

example: i, COPY mdv1 _data_file TO con_ [copy to default window]
i COPY meti_3 TO mdv1_data {copy data from network
station to mdv__data.]
ii. COPY_N mdvi_test_data TO ser1 f{copy mdvi__test__data to
serial port 1 removing
header information;

10 12/84

COS

COS wil compute the cosine of the specified argument. maths functions
syntax; angle:= numeric__expression frange —10000..10000 in radians]

COS (angie)
example: i. PRINT COS(theta)

i PRINT COS(3.141592654/2)

COT

COT will compute the cotangent of the specified argument. maths functions
syntax: angle:= numeric___expression {range -300C0..30000 in radiansi

CQOT (angie)
example: i. PRINT COT(3)

i. PRINT COT(3.141592654/2)

1284 "

CSIZE

windows

CURSOR

windows

Sets a new character size for the window attached to the specified or default channel.
The standard size is 00 in 512 mode and 20 in 256 mode.

Width defines the horizorial size of the character space. Height defines the vertical size
of the character space. The character size is adjusted to fill the space available.

Figure A Character Square

width size height size
0 6 pixels 0] 10 pixels
1 8 pixels 1 20 pixels
2 12 pixels
3 16 pixels
syntax: width:= numeric__expression frange 0..3}
height.= numeric__exprassion frange 0.1}
CSIZE [chanrel,| width, height
example: .. CSI1ZE 3,0
ii. CSIZE 3,1

CURSOR allows the screen cursor 1o be positioned anywhere in the window attached
to the specified or default channel.

CURSOR uses the pixe! coordinate system relative to the window origin and defines
the position for the top left hand corner of the cursor. The size of the cursor is dependent
on the character size in use.

If CURSOR is used with four parameters then the first pair is interpreted as graphics
coordinates (using the graphics coordinate system) and the second pair as the position
of the cursor (in the pixel coordinate system) relative to the first point.

This allows diagrams to be annotated relatively easily.

syntax: X:= NUMeriC__expression
Y= numeric__expression

CURSOR |[channel x, v [x, ¥]

example; i. CURSOR 0,0
ii. CURSOR 20,30
i. CURSOR 50,50,10,10

12/84

DATA
READ
RESTORE

READ, DATA and RESTORE allow embedded data, contained in a SuperBASIC BASIC
program, to be assigned to variables at run time.

DATA is used to mark and define the data, READ accesses the data and assigns it
to variables and RESTORE ailows specific data to be selected.

DATA: allows data to be defined within a program. The data can be read by
a READ statement and the data assigned to variables. A DATA staterment
is ignored by SuperBASIC when it is encountered during normal

processing.

syntax: DATA *|expression,] *

READ: reads data contained in DATA statements and assigns it to a list of variables.
Initially the data pointer is set to the first DATA statement in the program
and is incremented after each READ. Re-running the program will not
reset the data pointer and so in general a pregram should contain an

explicit RESTORE.

An error is reported if a READ is attempted for which there is no DATA.
syntax: READ *|identifier,) *

RESTORE: restores the data pointer, i.e. the position from which subsequent READs
will read their data. If RESTORE is followed by a line number then the
data pointer is set to that line. If no parameter is specified then the data

pointer is reset to the start of the program.

syntax: RESTORE [line__number] CONTACT:
REMark Data statement example pa(RITRON TECHNICAL SERVICES

example; i. 100
110
120
130

140
150
160
i. 100
110
120
130

140
150
160
170
180

DIM weekdays$(7,4) WwWw. mauritron.co.uk

RESTORE
FOR count=1T0 7 : TEL: 01844 - 351694

READ weekdays${count) EAX: 01844 - 352554
PRINT weekday$
DATA *MON',"TUE", "WED", "THUR" , "FRI"
DATA "SAT","'SUN"

DIM month$(12,9)
RESTORE
REMark Data statement example
FOR count= 1 T0 12 :
READ month${count)
PRINT month%
DATA *"January'","February","March"
DATA "April", "May!, "June"
DATA '"July","August" ,"September”
DATA "October' , "November',"December”

An implicit RESTORE is not performed before running a program. This allows a single warning
program to run with different sets of data. Either include a RESTORE in the program
or perform an explicit RESTORE or CLEAR before running the program.

12/84

FOR SERVICE MANUALS

13

14

DATES
DATE

clock DATES is a function which will return the date and time contained in the QLs clock.
The format of the string returned by DATES is:

DAYS

clock

“yyyy romm dd hh.mm:ss”

where

YYyy is the year 1984, 1985, efc
mmm is the month Jan, Feb etc
dd is the day 01 to 28, 29, 30, 31
hh is the hour 00 to 23

mm are the minutes 00 to 59

ss are the seconds 00 to 59

DATE will return the date as a floating point number which can be used 1o store dates
and times in a compact form.

If DATES is used with a numeric parameter then the parameter will be interpreted as
a date in floating point form and will be converted 1o a date string. ’

syntax:

example:

DATES {get the time from the clock]
DATES$ (numeric__expression) {get time from supplied parameter}

i. PRINT DATES {output the date and time]
i, PRINT DATES(234567) [convert 234567 to a date

DAY$ is a function which will return the current day of the week. If a parameter is specified
then DAY$ will interpret the parameter as a date and will return the corresponding day

of the week.
syntax:

example:

DAY$ {get day from clock]
DAYS (numeric__expression) f{get day from supplied parameter]
i. PRINT DAYS$ output the day]

{
i. PRINT DAY$(234567) [output the day represented by 234567
(seconds)}

12/84

DEFine FuNction defines a SuperBASIC function. The sequence of statements between
the DEFine function and the END DEFine constitute the function. The function definition
may also include a list of formaf parameters which will supply data for the function. Both
the formal and actual parameters must be enclosed in brackets. If the function requires
no parameters then there is no need to specify an empty set of brackets.

Formal parameters take their type and characteristics from the corresponding actua/
parameters. The type of data returned by the function is indicated by the type appended
to the function identifier The type of the data returned in the RETURN statement must
match.

An answer is returned from a function by appending an expression to a RETurn statement
The type of the returned data is the same as type of this expression.

A fungtion is activated by inciuding its name in a SuperBASIC expression.

Function calls in SuperBASIC can be recursive; that is, a function may call itself directly
or indirectly via a sequence of other cails.

syntax: formal__parameters.= (expression *[, expression] *)
actual__pararneters:= (expression * [, expression| *)

type= | $

| %

DEF FuNction identifier type [formal _parameters]
[LOCal identifier *[, identifier] *|
slaternenis
RETurn expression

END DEFine

RETurn can be at any position within the procedure body. LOCal
staternents must preceed the first executable statement in the function.

example: 10 DEFine FuNction mean{a, b, c)
20 LOCal answer
30 LET answer = {(a + b + ¢)/3
40 RETurn answer
50 END DEFine
60 PRINT mean(1,2,3)

To improve legibility of programs the name of the function can be appended to the END
DEFine staterment. However, the name wit not be checked by SuperBASIC.

12184

DEFine
FuNction
END DEFine

functions and
procedures

comment

DEFine
PROCedure
END DEFine

functions and
procedures

comment

DEFine PROCedure defines a SuperBASIC procedure. The sequence of stalements
between the DEFine PROCedure statement and the END DEFine statement constitutes
the procedure. The procedure defintion may also include a list of formal pararneters
which will supply data for the procedure. The formal parameters must be enclosed in
brackets for the procedure definition, but the brackets are not necessary when the
procedure is called. If the procedure requires no parameters then there is no need 1o
nclude an empty set of brackets in the procedure definition.

Formal parameters take thelr type and characteristics from the correspending actual
pararmeters.

Variables may be defined to be LOCal to a procedure. Laocal variables have no effect
on similarly named variables outside the procedure. If required, local arrays shouid be
dimensioned within the LOCal statement.

The procedure is called by entering its name as the first item in a SuperBASIC statement
together with a list of actual parameters. Procedure calls in SuperBASIC are recursive;
that is, a procedure may call itself directly or indirectly via a sequence of other calls.

It is possible to regard a procedure cefinition as a command definition in SuperBASIC,
many of the system commands are themselves defined as procedures.

syntax: formal.._parameters: = (expression |, expression) *)
actual__parameters:= expression *|, expression] *

DEFine PROCedure identifier [formal__paramelers]
(LOCal icentifier *|, identifier] * |
statements
[RETurN|

END DEFine

RETURN can appear at any position within the procedure body. if present
the LOCal statement must be before the first executable statement in the
procedure. The END DEFine statement wil act as an autornatic return.

exampie: . 100 DEFine PROCedure start_screen
110 WINDOW 100,100,10,10
120 PAPER 7 : INK O : CLS
130 BORDER 4,255
140 PRINT "Hello Everybody"
150 END DEFine
160 start_screen

i. 100 DEFine PROCedure stow_scroll(scroll_Llimit)
116 LOCal count
120 FOR count =1 TO scroll_Limit
130 SCROLL 2
140 END FOR count
150 END DEFine
160 slow_scroll 20

To improve legibility of programs the name of the procedure can be appended to the
END DEFine statement. However, the narme will not be checked by SuperBASIC.

12/84

DEG

DEG is a function which will convert an angle expressed in radians to an angle expressed maths functions
in degrees.

syntax: DEG (numeric__expression)
example; PRINT DEG{(PI/2) [wil print 90]

DELETE wil! remove a file from the directory of the cartridge in the specified Microdrive. DELETE
syntax: DELETE device Microdrives
The device specification must be a Microdrive device

example: i DELETE mdv1_old_data
i, DELETE mdv1_letter_file

12184

DIM

arra’ ')
¥S Defines an array to SuperBASIC. String, integer and floating point arrays can be defined.
String arrays handle fixed length strings and the final index is taken 1o be the string length.

Array indices run from O up to the maximum index specified in the DIM statement; thus
DIM will generate an array with one more element in each dimension than is actually
specified.

When an array is specified it is initialised to zero for a numeric array and zero length
strings for a string array.

syniax: index:= numeric__expression
array:= indentifier(index *|, index] *)

DIM array *|, array]*

example; I DIM string_array$¢10,10,50)
i DIM matrix{(100,100)

DIMN

arrays DIMN is a function which will return the maximum size of a specified dimension of a
specified array. If a dimension is not specified then the first dimension is assumed. If
the specified dimension does not exist or the identifier is not an array then zere is returned.

syntax: array:= identifier
index:= nurneric__expression {1 for dimension 1, etc]

DiMN(array [,dimension])
example: consider the array defined by: DIM a{2,3,4)

i PRINT DIMNC(A,1) {wil print 2]
i PRINT DIMNCA,2Z) {will print 3j
ii. PRINT DIMNCA,3) {will print 4]
v, PRINT DIMNC(A) {will print 2]
v. PRINT DIMNC(A,4) {will print O]

12184

DiR will obtain and display in the window attached to the specified or default channe!

syntax:

example:

- the directory of the cartridge in the specified Microdrive.

DIR device
The device specification must be a valid Microdrive device

The directory format output by DIR is as follows:

free__sectors = the number of free sectors
available__sectors:= the maximum number of sectors on this cartridge
file___name: = a SuperBASIC file name
screen format: Volume name
free__sectors | available__sectors sectors
file__name
file__name
i. DIR mdv1_
il DIR "mdv2 "

iif, DIR ''mdv™ & microdrive number$ & " '

screen format: BASIC_
183 / 221 sectors
demo_1
demo_1_old
demo_¢

DIV is an operator which will perferm an integer divide.

syntax:
example:

12/84

numeric__expression DIV numeric__expression

i. PRINT 5 DIV 2 jwill cutput 2}
i. PRINT -5 DIV 2 jwil output -3}

DIR

Microdrives

DIV

operator

DLINE

BASIC DLINE wil delete a single fine or a range of lines from a SuperBASIC program.

syntax: range:= | line__.number TO fine__number 1
| line__number TO 2
| TO line__nurnber 3
| tine__number 4

DLINE range * [range] *

where 1 wil delete a range of lines
2 will delete from the specified line to the end
3 will delete from the start to the specified line
4 will delete the specified fine

example: i. DLINE 10 TO 70, 80, 200 70 400
{will defete lines 10 to 70 inclusive, fine 80 and lines 200 to 400
inclusive]
ii. DLINE

fwill delete nothing]

EDIT The EDIT command enters the SuperBASIC line editor.

The EDIT command s closely reiated to the AUTO command, the only difference being
in their defaults, EDIT defaults to a line increment of zero and thus will edit a single
line unless a second parameter is specified to define a line increment.

if the specified line already exists then the line is displayed and editing can be started.
If the line does not exist then the line number is displayed and the line can be entered,

The cursor can be manipulated within the edit line using the standard QL keystrokes.

cursor right

cursor left

cursor up same as ENTER but automatically gives previous
existing ling to edit next

cursor down same as ENTER but automatically gives next
existing line to edit next

delete character right
delete character left

When the line is correct pressing ENTER will enter the line into the program.

if an increment was specified then the next line in the sequence will be edited otherwise
edit will terminate.

syntax: increment:= nuMeric__expression
EDIT fine__number | increment]
example: i. EDIT 10 [edit ling 10 onlyj

ii. EDIT 20,10 [edit lines 20, 30 etc]

12/84

EQF

EOF is a function which will determine if an end of file condition has been reached ~ devices
on a specified chanrel. If EOF is used without a channel specification then EOF will
determine if the end of a program’s embedded data statements has been reached.

syntax: EOF [{channeh)

example: i IF EOF(#4) THEN STOP
i, IF ECF THEN PRINT "Out of data"

EXEC

EXEC_W

EXEC and EXEC__W will load a sequence of programs and execute them in parallel. ~ Qdos

EXEC wil return to the command processor after all processes have started execution,
EXEC_W will wait until all the processes have terminated before returning.

syntax: program:=device {used to specify a Microdrive file containing the
- program]
EXEC program

example: i EXEC mdv1_communcations
i. - EXEC_W mdvl printer process

12/84

21

22

EXIT

repetition EXIT will continue processing after the END of the named FOR or REPeat structure
syntax: EXIT identifier

example: i 100 REM start looping

110 LET count =0

120 REPeat loop

130 LET count = count + 1

140 PRINT count

150 IF count = 20 THEN EXIT loop

160 END REPeat loop
[the lcop will te exited when count becomes
equal to 20§

il 100 FOR n =1 TO 1000
110 REM program statements
120 REM program statements
130 IF RND >.5 THEN EXIT n
140 END FOR n

{the loop will be exited when a random
number greater than 0.5 is generated]

EXP

maths functions EXP will return the value of ¢ raised to the power of the specified parameter.
syntax: EXP (numeric__expression} {range -500..500}

example: i PRINT EXP(3}
i PRINT EXP{(3.141592654)

12/84

FILL

FILL will turn graphics il on or off. FILL will fil any non-re-entrant shape drawn with graphics
‘the graphics or turlie graphics procedures as the shape is being drawn. Re-entrant shapes
must be spiit intc smaller non-re-entrant shapes.

When you have finished filing, FILL O should be callec.
syntax: switch:= numeric__expression [range 0. i
FILL {channel,| switch

example: i FILL 1:LINE 10,10 T0 50,50 70 30,90 T010,10:FILLD
{will draw a filed triangle}

il. FILL 1:CIRCLE 50,50Q,20:FILL O
{will draw a filed circle}

FILLS

FILLS is a function which will return a string of a specified length filed with a repetition string arrays
of one ar two characters.

syntax: FILLS (string__expression,numeric__expression)

The string expression supplied to FILL$ must be either one or two
characters long.

example: i. PRINT FILL$("a",5) fwill print aaaaal
il PRINT FILL$("00",7) {will print 0Qo0o00]
if. LET a$ = a$ & FILLS(" ™, 1)

12/84

23

FLASH

windows

warning

FOR
END FOR

repetition

short

long

warning

24

FLASH turns the flash state on and off. FLASH is only effective in low resolution mode.
FLASH will be effective in the window attached to the specified or default channel.
syntax: switch:= numeric__expression {range 0..1]

FLASH [channel,] switch

where: switch = ¢ will turn the flash off
switch = 1 will turn the flash on

example: 100 PRINT "A '';
110 FLASH 1
120 PRINT "'flashing ";
130 FLASH O

140 PRINT "word"

Writing over part of a flashing character can produce spurious results and should be
avoided.

The FOR statement allows a group of SuperBASIC statements to be repeated a controlled
rnumber of times. The FOR statement can be used in both a long and a short form.

NEXT and END FOR can be used together within the same FOR loop to provide a
loop epiiogue, ie. a group of SuperBASIC statements which will not be executed if a
loop is exited via an EXIT statement but which will be executed if the FOR loop terminated
normally.

define: for__item:= | numeric__expression
| numeric__exp TO nurmeric__exp
| numeric__exp TO numeric__exp STEP numeric__exp

for__list= for_item *|[, for_itern] *

The FOR statement is followed on the same logical fine by a sequence of SuperBASIC
staternents. The sequence of statements is then repeatedly executed under the control
of the FOR statement, When the FOR statement is exhausted, processing continues
on the next line. The FOR statement does not require its terminating NEXT or END
FOR. Single line FOR loops must not be nested.

syntax: FOR variable = for.__fist : statement *[: staternent] *

exarmple: i FORi=1,2,3, 4 TO7 STEP 2 = PRINT i
ii. FOR element = first TO Last : LET buffer{element) =0

The FOR statement is the last statement on the line. Subsequent lines contain a series
of SuperBASIC statements terminated by an END FOR statement. The statements
enclosed between the FOR statement and the END FOR are processed under the control
of the FOR statement.

syntax: FOR variable = for__list
statements
END FOR variable
example: 100 INPUT "'data please" *+ x

110 LET factorial =1
120 FOR value = x TO 1 STEP -1
130 LET factorial = factorial » value

140 PRINT x 111l factorial

150 If factorial>1E20 THEN

160 PRINT "Very large number"
170 EXIT value

180 END IF

190 END FOR value
A floating point variable must be used to control a FOR Ioop.

12/84

FORMAT

FORMAT will format and make ready for use the cartridge contained in the specified Microdrives
- Microdrive,

syntax: FORMAT [channel,] device

Device specifies the Microdrive to be used for formatting and the identfier part of the
specification is used as the medium or volume name for that cartridge. FORMAT will
write the number of good sectors and the total number of sectors available on the cartridge
on the default or on the specified channel.

Itis helpful to format a new cartridge several times before use. This conditions the surface
of the tape and gives greater capacity.

example: i FORMAT mdv1_data cartridge
i FORMAT mdv2 wp letters

FORMAT can be used to reintialise a used cartridge. However, ail data contained on warning
that cartridge will be lost.

FOR SERVICE MANUALS
CONTACT:

MAURITRON TECHNICAL SERVICES
WWW.mauritron.co.uk
TEL: 01844 - 351894
FAX: 01844 - 352554

For compatibility with other BASICs, SuperBASIC supports the GOSUB statement. GOSUB
GOSUB transfers processing to the specified line number; a RETurn statement will transfer
processing back tc the statement following GOSUB.

The line number specification can be an exprassion.
syntax: GOSUB /ine__number

exampie i GOsSUB 100
I GOSUB 4*select_variable

The control structures available in SuperBASIC make the GOSUB statement redundant. ~ comment

12/84

25

26

GOTO

comment

IF
THEN
ELSE

END IF

short

long 1

iong 2

For compatibility with other BASICs, SuperBASIC supports the GOTO statement. GOTO
will unconditionally transfer processing to the statement number specified. The staternent
number specification can be an expression.

syntax: GO0 line__number
exampie: I GOTO program start
i. GOTO 9999

The control structures available in SuperBASIC make the GOTO statement redundant.

The IF staterment allows conditions to be tested and the outcome of that test to control
subsequent program flow.

The IF statement can be used in both a long and a short form:

The THEN keyword is followed on the same logical line by a sequence of SuperBASIC
keyword. This sequence of SuperBASIC statements may contain an ELSE keyword. i
the expression in the {F statement is true {evaluates to be non-zera), then the statements
between the THEN and the ELSE keywords are processed. If the condition is false
(evaluates to be zero) then the statements between the ELSE and the end of the line
are processed.

If the sequence of SuperBASIC statements does not contain an ELSE keyword and if
the expression in the IF statement is true, then the statements between the THEN keyword
and the end of the line are processed. If the expression is false then processing continues
at the next iing.

syntax; Statements;= statement *{: statement] *
IF expression THEN statements [:ELSE statemnents]
example: i IF =32 THEN PRINT ""Limit" : ELSE PRINT "OK"

i, IF test >maximum THEN LET maximum = test
itl, IF "1"+1=2 THEN PRINT "cocercion OK"

The THEN keyword is the last entry on the logical line. A sequence of SuperBASIC
statements is written following the IF statements. The seguence is terminated by the END
IF statement. The sequence of SuperBASIC statements is executed if the expression
contained in the IF statement evaluates to be non zero. The ELSE keyword and second
sequence of SuperBASIC statements are optional.

The THEN keyword is the last entry on the logical line. A sequence of SuperBASIC
statements follows on subsequent lines, terminated by the ELSE keyword. IF the
expression contained in the |F statement evaluates 1o be non zero then this first sequence
of SuperBASIC statements is processed. After the ELSE keyword a second sequence
of SuperBASIC statements is entered, terminated by the END IF keyword, If the expression
evaluated by the IF statement is zero then this second sequence of SuperBASIC
statements is processed.

12/84

syntax: IF expression THEN
staterments
[ELSE
stalernents)
END IF

example: 100 LET Llimit =10
110 INPUT "Type in a number" | number
120 IF number > Limit THEN
130 PRINT '""Range error"
140 ELSE
150 PRINT "Inside limit"
160 END IF

In all three forms of the IF statement the THEN is optional. in the short form it must
be replaced by a colon to distinguish the end of the IF and the start of the next statement.
In the long form it can be removed completely.

IF statements may be nested as deeply as the user requires (subject to available memory).
However, confusion may arise as to which ELSE, END IF etc maiches which IF.
SuperBASIC will match nested ELSE statements etc to the closest IF statement, for
example:

100 IF a = b THEN
110 IF ¢ = d THEN

120 PRINT "error"
130 ELSE

140 PRINT *no error"
150 END IF

160 ELSE

170 PRINT "not checked"
180 END IF

The ELSE at line 130 is matched to the second iF. The ELSE at line 160 is matched
with the first IF (at line 100).

This sets the current ink colour, i.e. the colour in which the output is written. INK will
be effective for the window attached to the specified or default channel.

syntax: INK [channel,] colour
example: i. INK 5
i INK 6,2

il INK #2,255

12/84

comment

nesting

INK

windows

28

INKEY$

INPUT

INKEYS is a function which returns a single character input from either the specified
or defauit channel.

An optional timeout can be specified which can wait for a specified time before returning,
can return immediately or can wait for ever If no parameter is specified then INKEY$
will return immediately.

syntax: INKEYS$ {l{channel)
l{channel, time)
{tme)]
where: time = 1. 32767 {wait for specified number of frames]
ime = -1 fwalt forever]
time = 0 {return immediately}
example: i. PRINT INKEY$ finput from the default channel]
. PRINT INKEYS(#4) finput from channel 4]
i PRINT INKEY$(50) fwait for 50 frames then return anyway|
v, PRINT INKEY$ (D) {return immediatly (polt the keyboard)
v, PRINT INKEYS (#3,100) jwait for 100 frames for an input from

channel 3 then return anyway)

1

INPUT allows data to be entered into a SuperBASIC program directly from the QL
keyboard by the user. SuperBASIC halts the program untit the specified amount of data
has been input; the program will then continue. Each item of data must be termirated

by the ENTER key.

INPUT will input data from either the specified or the default channel.

It input is required from a particuiar console channel the cursor for the window connected
to that channel will appear and start to flasn.

!

\
| TO

prompt.= |channel,] expression separator

INPUT lprompt] [channel] variable *|variable] *

syntax: separator: =

|
|
|

example: i. INPUT ("Last guess "& guess & '"New guess?'') 1
guess

ii. INPUT "What is your guess?'; guess

ili. 100 INPUT "array size?" t limit
110 DIM array(limit-1)
120 FOR element = 0 to Limit-1
130 INPUT ("'data for element'" & element) !
array(element)
140 END FOR element
150 PRINT array

12184

15 not found then INSTR returns zero.

Zero can be interpreted as false, ie. the substring was not contained in the given string.
A non zero value, the substrings position, can be intepreted as true, i.e. the substring

was contained in the specified string.

syntax:

example:

string_expression INSTR string exprassion

i,
il

PRINT “a' INSTR '"'cat"
PRINT "'CAT'" INSTR "concatenate"
PRINT "x" INSTR "eggs"

. INSTR is an operator which will determine if a given substring is contained within a
specified string. If the string is found then the substring's position is returned. If the string

fwill print 2]
twill print 4}
{will print 0}

INT will return the integer part of the specified floating point expression.

syntax:
example:

1284

INT {nurneric__expression)

PRINT INT (XD
PRINT INT(3.141592654/2)

INSTR

operator

INT

maths functions

29

KEYROW

KEYBOARD MATRIX

30

KEYROW is a function which looks at the instantaneous state of a row of keys (the tabie
below shows how the keys are mapped onto a matrix of 8 rows by 8 columns). KEYROW
takes one parameter, which must be an integer in the range 0 to 7: this number selects
which row is to be looked at. The value returned by KEYROW is an integer between
0 and 255 which gives a binary representation indicating which keys have been
depressed in the selected row.

Since KEYROW is used as an alternative to the normal keyboard input mechanism using
INKEY$ or INPUT, any character in the keyboard type-ahead buffer are cleared by
KEYROW: thus key depressions which have been made before a call to KEYROW
will not be read by a subsequent INKEYS or INPUT.

Note that multiple key depressions can cause surprising results. In particuiar, if three
keys at the comer of a reciangle in the matrix are depressed simultaneously, it wil appear
as if the key at the fourth corner has also been depressed. The three special keys CTRL,
SHIFT and ALT are an exception to this ruie, and do not interact with other keys in this way.

syntax: row.= numeric__expression frange 0..7]
KEYROW (row)
example: 100 REMark run this program and press a few keys

110 REPeat loop

120 CURSOR 0,0

130 FOR row =0 to 7

140 PRINT row !!! KEYROW(row) ; ™ "
150 END FOR row

160 END REPeat loop

COLUMN
ROW 1 2 4 8 16 32 64 128
7 | SHIFT | CTRL ALT X v / N
B 8 2 5] Q. E 0 T U
5 9 W TAR R - Y
4] L 3 H 1 A P D J
3 Sk s F - G
2 i z C B £ M -
1 |ENTER| « up ESC — \ SPACE | down
0 F4 F1 5 F2 F3 F5 4 7

12/84

LBYTES will load a data file into memory at the specified start address.

syntax: start__address:= numeric__expression
LBYTES device ,start__address
example: i. LBYTES mdv1_screen, 131072

{load a screen imagei

ii. LBYTES mdvi1_program, start_address
fload a program at a specified address]

LEN is a function which will return the length of the specified string expression.

syntax: LEN (string_expression)
example: i PRINT LENC "LEN wilt find the Length of this
string")

i PRINT LEN{output_string$)

12/84

LBYTES

devices
Microdrives

LEN

string arrays

k)l

32

LET

LINE
LINE_R

graphics

LET starts a2 SuperBASIC assignment statement. The use of the LET keyword is optional.
The assignment may be used for both string and numeric assignments. SuperBASIC
will automatically convert unsuitable data types to a suitable form wherever possibie.

syniax: [LET] variable = expression
example: L LET a=1+2
. LET a% = ""12345"
ii. LET a3 = 6789
. b$ = test_data

LINE allows a straight line to be drawn between two points in the window attached to
the defautt or specified channel. The ends of the line are specified using the graphics
coordinate system.

Multiple fines can be drawn with a single LINE command.

The narmal specification requires specifying the two end points for a line. These end
points can be specified either in absolute coardinates (relative to the graphics origin)
or in refative coordinates (relative to the graphics cursor). If the first point is omitted then
a line is drawn from the graphics cursor to the specified point. If the second point is
omitted then the graphics cursor is moved but no line is drawn.

LINE will always draw with absolute coordinates, ie. relative to the graphics origin, while
LINE__R will aiways draw relative to the graphics cursor,

syrtax: X= nUMErc__expression
yi= numeric__expression
point= x , y
parameter_2:= | TO point 1
| ,point TO point 2
parameter_1:= | TO paint. angle 1
| TO point 2
| point 3

LINE [channel,] parameter_1 *|, parameter 2| *
LINE__R [channel,| parameter_1 * | ,parameter_2] *

where 1 will draw from the specified paint to the next specified point
2 will draw from the the last point plotted 1o the specified point
3 will move to the specified point - no line will be drawn

example: i. LINE 0,0 TO O, 50 TO 50,0 70 50,0 TO 0,0 |a square}

i LINE TO 0.75, 0.5 [aling}
fi. LINE 25,25 {move the graphics cursori

12/84

LIST allows a SuperBASIC line or group of lines to be listed on a specific or default

channel.
LIST is terminated by [CTRL]|[space |
syntax; fine:= | fine__number TO line._number 1
| fine__number TO 2
| TO line.__.number 3
| lne__number 4
I 5
LIST [channel,] line *|,line} =
where 1 will list from the specified line to the specified line
2 will fist from the specified line to the end
3 wil list from the start to the specified line
4 wil list the specified line
5 will list the whole program
example: i. LIST [list all lines)
i, LIST 10 to 300 [list lines 10 to 300j
il LIST 12,20,50 [list lines 12,20 and 50 only]

If LIST output is directed to a channe! opened as & printer channel then LIST will provide

hard copy.

LOAD will load a SuperBASIC program from any QL device. LOAD automatically performs
a NEW before loading ancther program, and so any previcusly loaded program will
be cleared by LOAD.

If a line input during a load has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line. Upon execution, & line of
this sort will generate an error

syntax: LOAD device

example: i.
i,
i,

iv.

12/84

LOAD "mdv1_test program"
LOAD mdv1_games

LOAD neti_3

LOAD serl_e

LIST

comment

LOAD

devices
Microdrives

34

LN
~ LOG10

maths functions

LOCal

functions and
procedures

comment

LN will return the natural logarithm of the specified argument. LOG10 will return the
common logarithm. There is no upper limit on the parameter other than the maximum
number the computer can store.

syntax: LOGH0 (numeric__expression) {range greater than zeroj
LN (numeric__expression) {range greater than zero]
example: i. PRINT LOG10(20)

ii. PRINT LN(3.141592654)

FOR SERVICE MANUALS
CONTACT:

MAURITRON TECHNICAL SERVICES
Www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

LOCal allows identifiers to be defined to be LOCal to a function or procedure. Local
identifiers only exist within the function or procedure in which they are defined, or in
procedures and functions called from the function or procedure in which they are defined.
They are lost when the function or procedure terminates. Local identifiers are independent
of similarly named identifiers outside the defining function or procedure. Arrays can be
defined to be local by dimensioning them within the LOCal staterment,

The LOCal statement must precede the first executable statement in the function or
procedure in which i is used.

syntax: LOCal identifier *|, identifier] *

example: i. LoCal a, b, c{10,10)
ii. LOCal temp_data

Defining variables to be LOCal allows variable names to be used within functions and
procedures without corrupting meaningful variables of the same name outside the function
or procedure,

12184

LRUN will load and run a SuperBASIC program from a specified device. LRUN wili
perform NEW before loading ancther program and so any previously stored SuperBASIC
program will be cleared by LRUN.

if a line input during a loading has incarrect SuperBASIC syntax, the word ‘MISTAI_(E
is inserted between the line number and the body of the line. Upon execution, a line
of this sort will generate an error.

syntax: LRUN device

example: . LRUN mdvZ TEST
i. LRUN mdv1 game

MERGE will load a file from the specified device and interpret it as a SuperBASIC
program. If the new file contains a line number which doesnt appear in the program
already in the QL then the line will be added. If the new file contains a replacement
line for one that afready exists then the line will be replaced. All other old program lines
are left undisturbed.

If a line input during 2 MERGE has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line. Upon execution, a line
of this sort will generate an error

syntax: MERGE device

example: i. MERGE mdv1 overlay program
i. MERGE mdvl1 new_data

12/84

LRUN

devices
Microdrives

MERGE

devices
Microdrives

35

36

MOD

operators

MODE

screen

MOQD is an operator which gives the moduius, or remainder, when one integer is divided
by another

syntax: numetic__expression MOD numeric__expression
example: i. PRINT 5 MOD 2 [will print 1}
i, PRINT 5 MOD 3 fwill print 2]

MODE sets the resolution of the screen and the number of solid colours which it can
display. MODE will clear all windows currently on the screen, but will preserve their
position and shape. Changing to low resolution mode (8 colour) will set the minimum
character size to 20.

syntax: MODE numeric__expression

where: 8 or 256 will select low resolution mode
4 or 512 will select high resolution mode

example: i. MODE 256
i. MODE 4

12/84

MOVE will move the graphics turtle in the window attached to the default or specified
channel a specified distance in the current direction. The direction can be specified using
the TURN and TURNTO commands. The graphics scale factor is used in determining
how far the turtle actually moves. Specifying a negative distance will move the turtle
backwards.

The turtle is moved in the window attached to the specified or default charinel.

syntax: distance.= numeric__exprassion
MOVE [channel,] distance ‘
example: I. MOVE #2,20 imove the turtle in channel 2 20 units
forwardsj
ii. MOVE -5C imove the turtle in the default channel 50

units backwardsi

MRUN will interpret a file as a SuperBASIC program and merge it with the currently
ioaded program.

If used as direct command MRUN wili run the new program from the start. If used as
a program staternent MRUN wiil continue processing on the line following MRUN.

If & line input during a merge has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line. Upon execution, a line
of this sort will generate an error,

syntax; MRUN device

example: i. MRUN mdv1 chain_program
i. MRUN mdvl _new_data

12/84

MOVE

turtle graphics

MRUN

devices
Microdrives

a7

NET

network NET allows the network station number to be set. !f a station number is not explicitly
set then the QL assumes station number 1. .
syntax; station:= numeric__expression {range 1..127}
NET station
example: .. NET 63
ii. NET1

comment Confusion may arise if more than one station on the network has the same station number.

NEW NEW wili clear out the old program, variables and channelfs cother than Q1 and 2.
syntax; NEW
exarnpie: NEW

12/84

NEXT is used to terminate, or create a loop epilfogue in, REPeat and FOR loops. repetition
syntax: NEXT identifier
The identifier must match that of the loop which the NEXT is to contrel

example: i. 10 REMark this loop must repeat forever
11 REPeat infinite_loop
12 PRINT "still looping"
13 NEXT infinite loop

ii. 10 REMark this Loop will repeat 20 times
11 LET Limit = 20
12 FOR index=1 TO Limit
13 PRINT index
14 NEXT index

il. 10 REMark this loopwill tell you when a 30 is found
11 REPeat loop
12 LET number = RND¢1 TO 100)
13 IF number <> 30 THEN NEXT Locp
14 PRINT number; ' is 30"
15 EXIT LOOP
16 END REPeat loop

If NEXT is used inside a REPeat - END REPeat construct it will force precessing o in REPeat
continue at the statement following the matching REPeat statement.

The NEXT statement can be used to repeat the FOR loop with the control variable set in FOR
at its next value. if the FOR loop is exhausted then processing will continue at the

statemnent following the NEXT,; otherwise processing will continue at the statement after

the FOR.

ON...GOTO

To provide compatibility with other BASICs, SuperBASIC supports the ON GOTO and ON- v -GOSUB
ON GOSUB statements. These statements allow a variable to select from a list of possible

line numbers a line to process in a GOTO or GOSUB statement. If too few line numbers

are specified in the list then an error is generated.

syntax; ON variable GOTO expression *{, expression] *
ON variable GOSUB expression *[, expression] *
example: i. ON x GOTO 10, 20, 30, 40
i. ON select_variable GOSUB 1000, 2000, 3000, 4000
SELect can be used to replace these two BASIC commands. comment

12/84

a8

OF=N
OPEN__IN
OPEN_NEW

C=msices
Micrc——1ves

OI’EN allows the user to link a logical channel to a physical QL device for /0 purposes.

It 1he channel is to a Microdrive then the Microdrive file can be an existing file or a new
il In which case OPEN__IN will open an already existing Microdrive file for input and
OPEN__NEW will create a new Microdrive file for output.

htax: channel= # numeric__expression
QOPEN channei, device

Onample: i
i,

it

OPEN #5, f_name$

COPEN_1IN #9, "mdv1_file_name"
fopen file mdvi__file__name]
OPEN_NEW #7, mdv1_data_ file
[open file mdvi__data__file]

OPEN #6, con_10x20a20x20_32
{Open channel 6 to the console device creating a window size
10x20 pixels at position 20,20 with a 32 byte keyboard type ahead
buffer}

OPEN H#8, mdvl_read_write_ file.

OVER selects the type of over printing required in the window attached to the specified
Of Jdefault channel. The selected type remains in effect until the next use of QVER.

Sytax: switch:= numeric__expression {range —1..1}
OVER (channel,] swilch
where switch = 0 — print ink on strip

exXample: i.

swilch = 1 — print in ink on transparent strip
switch =-1 — XORs the data on the screen

OVER 1 [set ‘overprinting”}

10 REMark Shadow Writing

11 PAPER 7 > INK O : OVER 1 : CLS
12 CSIZE 3,1

13 FOR i =0 T0 10

T4 CURSOR 1,1

15 IF i=10 THEN INK 2

16 PRINT "Shadow"

17 END FOR i

12/84

PAN the entire current window the specified number of pixels to the left or the right
PAPER is scrolled in to fill the clear area.

An opticnal second parameter can be specified which will allow only part of the screen
to be panned.

syntax: distance:= numeric__expression
part= numeric__expression

PAN [channel,] distance |, part|

where part = 0 — whole screen {or no pararneter)
part = 3 — whale of the cursor line
part = 4 — right end of cursor ling including the cursor
position
If the expression evaluates to a positive value then the contents of the
screen will be shifted to the right,

I

example: i, PAN #2,50 [pan left 50 pixels|
i. PAN -100 ipan right 100 pixels}
ii. PAN 50,3 [pan the whoie of the current cursor line 50 pixels
to the right]

If stipples are being used or the screen is in low resolution mode then, t©© mairtain the
stipple pattern, the screen must be panned in muitiples of two pixels.

PAPER sets a new paper colour (ie. the colour which wilt be used by CLS, PAN,
SCROLL, etc). The selected paper colour remains in effect until the next use of PAPER.
PAPER will also set the STRIP colour

PAPER will change the paper colour in the window a&ached to the specified or default
channel

syntax: PAPER [channel,] colour

example: . PAPER #3,7 [White paper on channel 3]
ii. PAPER 7,2 {White and red stippie]
ii. PAPER 255 {Black and white stipple}

iv. 10 REMark Show colours and stipples
11 FOR colour =0 TO 7
12 FOR contrast =0 TO 7

13 FOR stipple =0 70 3

14 PAPER colour, contrast, stipple
15 SCROLL 6

16 END FOR stipple

17 END FOR contrast

18 END FOR colour
[not suitable for televisions]

12/84

PAN

windows

'

warning

PAPER

windows

41

42

PAUSE

PEEK
PEEK_W
PEEK_ L

BASIC

warning

PAUSE witt cause a program to wait a specified period of time. Delays are specified
in units of 20ms in the UK only, otherwise 1667ms. If no delay is specified then the
program will pause indefinitely. Keyboard input will terminate the PAUSE and restart
program execution.

syntax:

example:

delay.= numeric__expression
PAUSE [delay]

i. PAUSE 50 {wait 1 second]
i. PAUSE 500 {wait 10 seconds}

PEEK is a function which returns the contents of the specified memory location.
PEEK has three forms which will access a byte (8 bits), a word (16 bits), or a long word

(32 bits).
syntax:

example:

address:= numeric__expression

PEEK(address) {byte access}
PEEK__W(address) {word access
PEEK__L(address) {long word access]

. PRINT PEEK(12245) {byte contents of location 12245]
i. PRINT PEEK_W(12) fword contents of locations 12 and 13}
ii. PRINT PEEK_L¢1000) {long word contents of location 1000]

For word and long word access the specified address must be an even address.

12/84

PENUP

Operates the ‘pen’ in turtle graphics. If the pen is up then nothing will be drawn. If the PEN DOWN
pen is down then lines will be drawn as the turtle moves across the screen. turtle graphics

The line will be drawn in the window attached to the specified or default channel. The
fine will be drawn in the current ink colour for the chanrel to which the outplit is directed.

syntax: PENUP {[channel]

PENDOWN [channel]
example: i. PENUP {will raise the pen in the default channel}

ii. PENDOWN #2 {will lower the pen in the window attached to

channel 2]

Pl is a function which returns the value of . maths functions
syntax; P
example: PRINT PI

12/84

43

POINT
POINT_R

graphics

POKE
POKE_W
POKE_ L

BASIC

warning

POINT plots a point at the specified position in the window attached to the specified
or default channel. The peint is plotted using the graphics coordinates systern relative
to the graphics origin. If POINT__R is used then all points are specified relative to the
graphics cursor and are piotted relative to each other

Multiple points can be pictted with a single call to POINT.

syntax: X.= numeric__expression
Y= NUMeric__expression

parametersi= X , y
POINT [channel| parameters *|,parameters| *

example: . POINT 256,128 Iplot a point at (256,128)]
ii. POINT x, x*x {plot a point at {x.x *x)}
ii. 10 REPeat example
20 INK RND(255)
30 POINT RND(100},RND(100)
400 END REPeat example

POKE allows a memcry location to be changed. For word and 'ong word accesses
the specified address must be an even address.

POKE has three forms which will access a byte (8 bits), a word (16 bits), a long word
(32 bits).

syntax: address:= numernc__expression
data:= numeric._expression
POKE address, data {byte access]

POKE__W address, data |word access]
POKE_L address, data |long word access]

exampie: i. POKE 12235,0 {set byte at 12235 10 O}
i POKE_L 131072, 12345 [set long word at 131072 to
12345}

Poking data into areas of memory used by Qdos can cause the system to crash and
data to be lost Poking into such areas is'not recommended.

12/84

Allows output to be sent to the specified or default channel. Tne normal use of PRINT PRINT
is to send dala tc the QL screen.

syntax: Separator.=

!
|,
I
| _ A
| TO numeric__expression

iter:= | expression

| channel

| separalor

PRINT *[item] *

Multiple print separators are allowed. At least one separator must
separate channel specifications and expressions.

example: i, PRINT "Hello World"

!

[will cutput Hello World on the default output device (channel 1)}
i. PRINT #5, ""data"™, 1,2,3,4
{will output the supplied data to channel 5 (which must have been
previously opened)]
. PRINT TO 20 ; "This is in column 20"

Normal action is to insert a space between items output on the screen. if the item
will not fit on the current line a line feed will be generated. If the current print position
is at the start of a ling then a space will not be output. ! affects the next item to
be printed and therefore must be placed in front of the print itgm being printed.
Also a ; or a! must be placed at the end of a print list if the spacing is to be continued
over a series of PRINT statements.

Neormal separator, SuperBASIC wili tabulate output every 8 columns,
Will force a new line.

Will leave the print position immediately after the last item to be printed. Output will
be printed in one continuous stream.

Will perform a tabbing operation. TO followed by a numeric__expression will advance
the print position to the column specified by the numeric__expression. If the
requested column is meaningless or the current print position is beyond the specified
position then no action will be taken.

RAD is a function which will corvert an angle specified in degrees to an angle speciiied

in radians.
syntax: RAD (rnumeric__expression)
example: PRINT RAD(180} {wil print 3141593]

12/84

devices
Microdrives

separators

RAD

maths functions

45

RANDOMISE

maths functions

RECOL

windows

46

RANDOMISE aiiows the random number generator to be reseeded. If a parameter is
specified the parameter is taken to be the new seed. If no parameter is specified then
the generator is reseeded from internal information.

syntax: RANDOMISE [numeric__expression]
example: i. RANDOMISE [set seed to internal data]
ii. RANDOMISE 3.2235 [set seed to 32235

RECOL will recolour individual pixels in the window attached to the specified or default
channef according to some preset pattern. Each parameter is assumed to specify, in
order, the colour in which each pixel is recoloured, ie. the first parameter specifies the
colour with which to recolour all black pixels, the second parameter blue pixels, etc.

The colour specification must be a solid colour, ie. it must be in the range 0 to 7.

syntax: ¢0:= new colour for black
cl:= new colour for blue
¢2:= new colour for red
c3:= new colour for magenta
c4:= new colour for green
¢5:= new colour for cyan
c6:= new colour for yellow
¢7= new colour for white

RECOL [channel | c0, ¢f, c2, &3, ¢4, ¢85, ¢6, ¢7

exampie: RECOL 2,3,4,5,6,7,1,0 {recolour blue to magenta, red to
green, magenta to cyan etc]

12/84

REMark allows explanatory text to be inserted into a program. The remainder of the REMark
line is ignored by SuperBASIC.

syntax: REMark text
example: REMark This is a comment in a program
REMark is used to add comments to a program to aid clarity. comment

RENUM allows a group or a series of groups of SuperBASIC line numbers to be RENUM
changed. If no parameters are specified then RENUM will renumber the entire program.
The new listing will begin at line 100 and proceed in steps of 10.

if a start line s specified then line numbers prior to the start line will be unchanged.
i an end line is specified then line numbers following the end line will be unchanged.

It a start number and stop are specified then the lines to be renumbered will be numbered
from the start number and proceed in steps of the specified size.

If a GOTO or GOSUB staternent contains an expression starting with a number then
this number is treated as a line number and is renumbered.

syntax: start__fine:= numeric__expression [start renumber}
end__line:= numeric__expression {stop renumber}
start__number.= numeric__expression [base line number}
step;= numeric__expression {step]
RENUM [start__line [TO end__line;] [start_number| |,step]
example: i. RENUM {renumber whole program from 100 by 10}

i. RENUM 100 TO 200 {renumber from 100 to 200 by 10}

No attempt must be made to use RENUM to renumber program lines out of sequence, warning
ie to mave lines about the program. RENUM should not be used in a program.

12/84

a7

48

REPeat
END REPeat

repetition

short

tong

comment

RESPR

Qdos

REPeat allows general repeat loops to be constructed. REPeat stiould be used with
EXIT for maximum effect REPeat can be used in both long and short forms:

The REPEAT keyword and loop identifer are followed on the same logical line by a colon
and a sequence of SuperBASIC statements. EXIT will resume normal processing at the
next logical line.

syntax: REPeat ideniifier : slaterments
example: REPeat wait : IF INKEY$ <> """ THEN EXIT wait

The REPEAT keyword and the loop identifier are the only statements on the logical line.
Subsequent lines contain a series of SuperBASIC staternents terminated by an END
REPeat statement.

The statements between the REPeat and the END REPeat are repeatedly processed
by SuperBASIC.

syntax: REPeat identifier
staterments
END REPeat identifier '
example: 10 LET number = RND(1 TO 50

11 REPeat guess
12 INPUT "What is your guess?", guess
13 IF guess = number THEN

14 PRINT *You have guessed correctly"
15 EXIT guess

16 ELSE

17 PRINT "You have guessed incorrectly"
18 END IF

19 END REPeat guess
Normally at least one statement in a REPeat loop will be an EXIT statement

RESPR is a function which will reserve some of the resident procedure space. (For
example to expand the SuperBASIC procedure list)

syntax: space;= numeric__expression
RESPR (space)
example: PRINT RESPR(1024)

{will print the base address of a 1024 byte block}

FOR SERVICE MANUALS
CONTALCT:
MAURITRON TECHNICAL SERVICES
WWww.mauritron.co.uk
TEL. 01844 - 351 694
FAX: 01844 - 352554

12/84

RETurn is used to force a function or procedure to terminate and resume processing RETU m
at the statement after the procedure or function call. When used within a function definition functions and

theRETuUrn statement is used to return the function's value. procedures
syntax: RETurn [expression]
example: i, 100 PRINT ack (3,3)

110 DEFine FuNction ack{(m,n)

120 1IF m=0 THEN RETurn n+1

130 IF n=0 THEN RETurn ack (m-1,1)
140 RETurn ack(m-1,ack(m,n-1))
150 END DEFine

i, 10 LET warning_flag =1
11 LET error_number = RND(Q TO 10)
12 warning error_number
13 DEFine PROCedure warning{(n)
14 IF warning_flag THEN

15 PRINT "WARNING:";

16 SElLect ON n

17 ONn =1

18 PRINT "Microdrive fuil"
19 ONn=2

20 PRINT ""Data space full"
21 ON n = REMAINDER

22 PRINT "Program error"
23 END SElLect

24 ELSE

25 RETurn

26 END IF

27 END DEFine

It is not compulsory to have a RETurn in a procedure. If processing reaches the END comment
DEFine of a procedure then the procedure will return automatically.

RETurn by itself is used to return from a GOSUB.

RND

RND generates a random number. Up to two parameters may be specified for RND. maths functions
If no parameters are specified then RND returns a pseudo random foating point number
in the exclusive range 0 to 1. If a single parameter is specified then RND returns an
integer in the inclusive range 0 to the specified parameter. If two parameters are specified
then BND returns an integer in the inciusive range specified by the two parameters.

syntax: RBND ([numeric__expression] [TQ numeric__expression|)
example: i. PRINT RND {floating pcint number between
0 and 1}
i. PRINT RND(10 TO 200 {integer between 10 and 20}

ii. PRINT RND(1 TO 6) {integer between 1 and 6}
iv. PRINT RNDC1DD {integer between 0 and 10]

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.mauritron,co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/84

49

50

RUN

program

comment

SAVE

~ devices
Microdrives SAVE will save a SuperBASIC program onto any QL device.

RUN allows a SuperBASIC program to be started. If a line number is specified in the
RUN command then the program will be started at that point, otherwise the program
witl start at the lowest line number.

syntax: RUN [numeric__expression|
example; . RUN {run from start]
i, RUN 10 frun from line 10}

. RUN 2+20 frun from line 40j

Aithough RUN can be used within a program its normal use is to start program execution
by typing it in as a direct command.

syntax: fine:= | numeric_expression TO numeric__expression
| numeric__expression TO
| TO numeric__expression
| numeric.__expression

W

SAVE device *|jine]*

where 1 will save from the specified line to the specified line
2 will save from the specified line to the end
3 will save from the start to the specified line
4 will save the specified line
5 will save the whole program

example: i. SAVE mdv1_program, 20 TO 70
[save lines 20 to 70 on mdvi__program}

i, SAVE mdv2_test_program, 10,20,40
[save lines 10,2040 on mdvi__test_ program)]

i. SAVE net3
{[save the entire program on the network]

v, SAVE serl
[save the entire program on serial channel 1]

12/84

SBYTES

devices
SBYTES allows areas of the QL memory to be saved on a QL device. Microdrives
syntax: start__address:= numeric__expression
fength: = NUMeric__expression
SBYTES device, start__address, length
example: i. SBYTES mdvi screen data, 131072,32768

{[save memory 50000 length 10000 bytes on mdvi__test__programj
i. SBYTES mdvl1_test program, 50000, 10000

fsave memory 50000 length 1000 tytes on mdv1__test__program|
iil, SBYTES neto 3, 32768,32678

[save memory 32768 length 32768 bytes on the network]

iv. SBYTES ser1, 0,32768
{save memory O length 32768 bytes on serial channel 1}

SCALE

SCALE allows the scale factor used by the graphics procedures to be altered. A scale graphics
of 'x" implies that a vertical line of length %’ will fill the vertical axis of the window in which

the figure is drawn. A scale of 100 is the default, SCALE also allows the origin of the

coordinate system to be specified. This effectively allows the window being used for the

graphics to be moved around a much larger graphics space.

syntax: X:= numeric__expression
Yi= NUMEric.__expression

ongin= X,y
scale:= nurneric__expression

SCALE [channel) scale, origin

example: i. SCALE 0.5,0.1,0.1 ({setscaleto 05 with the origin at 0.1,0.1}
i. SCALE 10,0,0 {set scale to 10 with the origin at 00]
ii. CALE 100,50,50 {set scale to 100 with the crigin at 5050}

12/84 51

52

SCROLL

windows SCROLL scrolls the window attached to the specified or default channel up or down
by the given number of pixels. Paper is scrolled in at the top or the bottom to fill the

clear space.
An optional third parameter can be specified to obtain a part screen scroll.

syntax: part.= numeric__expression
distance:= nNUMeric__exprassion

where part = O - whole screen {(default is no parameter)
part = 1 - top excluding the cursor line
part = 2 - bottom excluding the cursor line

SCROLL [channel,| distance |, part]

If the distance is positive then the contents of the screen will be shifted

down.

example: i. SCROLL 10 [scroll down 10 pixels)
i. SCRoLL -70 {scroll up 70 pixels]
ii. SCROLL =10, 2 {
pixels)

SDATE

clock The SDATE command allows the QLS clock to be reset.

syntax: year.= rumeric__expression
month:= numeric__expression
day.= numeric__expression
hours:= numeric__expression

minutes:= numeric__expression
seconds: = numeric__exprassion

SDATE year, month, day, hours, minutes, seconas

example: i. SDATE 1984,4,2,0,0,0
i. SDATE 1984,1,12,9,30,0
ii. SDATE 1984,3,21,0,0,0

scroll the lower part of the window up 10

12/84

SELect allows various courses of action to be taken depending on the vaiue of a variatle,
define: sefect__variable:= numeric__variable

select __iterm: = | expression
| expression TQ expression

select__fist:= | select__itern *], select__itern) *

Aliows multiple actions 1o be selected depending on the value of a select__variable.
The select variable is the last item on the iogical line. A series of SuperBASIC staterments
follows, which is terminated by the next ON statement or by the END SELect statement.
if the select item is an expression then a check is made within approximately 1 part
in 107, ctherwise for expression TC expression the range is tested exactly and is
inclusive. The ON REMAINDER statement allows a, "catch-all” which will respend if no
other select conditions are satisfied.

syniax; SELect ON select__variable
*[[ON select__variabie] = select_list
statements] *
[ON sefect__variable] = REMAINDER
staternents
END SELect

example: 100 LET error_number = RND(1 7O 1)
110 SELect ON error_number
120 ON error_number =1

130 PRINT '"Divide by zerao'

140 LET error_number =0

150 ON error_number = 2

160 PRINT "File not found"

170 LET error_number = 0

180 ON error_number =3 TQ 5

190 PRINT '"Microdrive file not found"
200 LET error_number = 0

210 ON error_number = REMAINDER

220 PRINT "Unknown error"

230 END SElLect

If the select variable is used in the body of the SELect statement then
it must match the select variable given in the select header

The short form of the SELect statement allows simple single line selections to be made.
A sequence of SuperBASIC statements follows on the same logical line as the SELect
statemnent If the conditicn defined in the select staterment is satisfied then the sequence
of SuperBASIC statements is processed.

syntax: SElLect ON select__variable = select__iist : staternent *|[: staterment] *

example: i. SELect ON test data =170 10 :
PRINT "Answer within range"
i. SELect ON answer = 0.00001 TO 0.00005 :
PRINT 'Accuracy OK"
i, SELect ON a=1TO 10 : PRINT a ! "in range"

The short form of the SELect statement aliows ranges o be tested more easily than
with an IF statement Compare example ii. above with the corresponding IF statement.

12/84

SELect
END SELect

conditions

long

short

comment

53

54

SEXEC

Qdos Wil save an area of memory in a form which is suitable for loading and executing with
the EXEC command.

The data saved should constitute 2 machine code program.

syntax: start_address:= numeric__expression fstart of area)
length:= numeric__expression {fength of areaj
data__space:= numeric__expression {length of data area which will
be required by the program;

SEXEC device, start__address, length, dala__space
example: SEXEC mdv1_program, 262144,3000,500
comment The Qdos systern documentation should be read before attempting to use this command.

SIN

maths functions SIN will compute the sine of the specified parameter.

syntax: angle:= numeric___expression {range —-10000 .. 10000 in radians]
SiN(angle)
example: i. PRINT SINC3)

ii. PRINT SIN(3.141592654/2)

12/84

SQRT

will compute the square root of the specified argument. The argument must be greater maths functions
- than or equal to zero.

syntax: SQRT (numeric_..expression) {range >= 0
example: . PRINT SGQRT(3) {orint square root of 3]
ii. LET € = SQRT(a"2 + b™2) {let ¢ become equal to the

square root of 872 + ©'2]

STOP

STOP will terminate execution of a program and will return SuperBASIC to the command BASIC
interpreter,

syntax: STOP

exampie: i. STGOP
i. IF n =100 THEN STOP

You may CONTINUE after STOP.
The last executable line of a program will act as an automatic stop. comment

12/84

55

STRIP

windows STRIP will set the current strip colour in the window attached to the specified or default

comment

TAN

maths functions

channel. The strip colour is the background colour which is used when OVER 1 is
selected. Setting PAPER will automatically set the strig colour to the new PAPER colour.

syntax: STRIP [channel,] colour

example: i. STRIP7Y [set a white strip] '
i. STRIPO,4,2 {set a black and green stipple strip}

The effect of STRIP is rather like using a highlighting pen.

TAN will compute the tangent of the specified argument. The argument must be in the
range —-30000 to 30000 and must be specified in radians.

syntax: TAN (numeric__expression) frange —30000..30000}

example: i. TAN(3) {prirt tan 3]

i TANC3.141592454/2) {print tan 7/2}

12/84

TURN
® TURNTO

TURN allows the heading of the turlle’ to be turned through a specified angle whie ~ turtle graphics
TURNTO allows the turtle to be turned to a specific heading.

The turlle is turned in the window attached to the specified or default channer.

The angle is specified in degrees. A positive number of degrees will turn the turtle anti-
clockwise and a negative number wil turn it clockwise

iniially the turtle is point at 0° that is to the right hand side of the window.
syntax: angle:= numeric__expression langle in degrees]

TURN [channel,| angle
TURNTO [channel,] angle

example: i. TURN 90 {turn through 90°
i. TURNTO 0 {turn to heading 0°]

FOR SERVICE MANUALS
. CONTACT;
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

Turns underline either on or off for subsequent output lines. Undertining is in the current windows
INK colour in the window attached to the specified or defauit channel.

syntax: switch:= numeric__expression {range 0.1}
UNDER [channel,] switch

example: i. UNDER 1 [underlining on
i. UNDER § [underlining off]

12/84 57

58

WIDTH

devices WIDTH allows the default width for non-console based devices to be specified, for
example printers.

syntax:

example:

WINDOW

fine__width:= numeric__expression
WIDOTH [channel,] line__wicith
i. WIDTH 80 {set the device width to 80]

ii. WIDTH #6, 72 [set the width of the device attached to
channel 6 to 72}

windows Allows the user to change the position and size of the window attached to the specified
or default channel. Any borders are removed when the window is redefined.

Coordinates are specified using the pixef systern relative to the screen origin.

syntax:

example:

width:= numeric__expression
depth:= numeric__expression
Xi= UMeric__expression
Y= MUMEric__expression

WINDOW |[channel,| width, depth, x, y
WINDOW 30, 40, 10, 10 {window 30x40 pixels at 10,10}

12/84

A
AB S 1
Absolute values 1
AT 1
ADATE 2
ARC

COMANGENT ..o 2

TANGENE..... 2
AR R 2
ATCIANGENT o 2
ArQUMENTS oo 14, 15
Arrays

UM e e 17

DIMN e 17
ASSIGNMEMT ..o 32
A e 3
ATAN 1
AUTO e 3
B
BAUD L 4
Baudrates ..o 4
BEE P . 4
BEEPING. ... 5
BLOCK e 5
BORDER ... 6
C
CALL oo e 3]
Channel

CLOSE e 8
Character

CODE 9

FEPELHON ... 28

B2 e 12
CHRE e 7
CIRCLE e e 7
CIRCLE R 7
CLEAR o 8

BASIC 8

SOTCEI e g

WINCOW ..o oottt e e e g
Clock

ADATE 2

DATE oo 14

DATES i 14

DAY e 14

SDATE 52
L i 8
Closing

ChANDIS. ... e 8
O]
CODE ... Q
Colour

INK e 27

MODE e 36

PAPE R 41

RECOL .o e e 46

FECOIOUT ..ot e e caeee 46
COMMENTS. ... e 47
Communications

baud rates......oooooeee 4

NEIWOTKS ..o i e 38

12/84

Keywords Index

Conditions
IF o e 26
SELBCt . e 53
CONTINUE L. i 10
Y e e 10
COPY N e 10
GG 11
COSINE eoeeeeeee e eee 11
T e e e 11
COtANGENT. ... 1
Oz 12
CURSOR 12
D
DA A 13
SETUCIUIES et e et 18
DA E o 14
DATES ..o e e 14
BRI o e e 15, 16
Y D o e e e 14
DEFine
FUNGHON « et et et 15
PROCEAUIE . oo 16
DB GG et e e e 17
DEOIEES 1o e 17
DAY ..ot et 42
DELETE oo 17
S e e 17
IS et e e 20
Devices
CLOSE e e 8
AIFCIOMY ..o 19
LY TES e 31
LD e 33
J0ad and TUN ..o e 35
LRUN 35
MERGE .. oo 35
MErge and FUN......cocoeiiiiii e 37
MBRUN e e 37
N E T e e e 38
NEMWOTK SEHOM. ..ovvs e e 38
OPEN .. s 40
OPEN N e 40
OpPEN fOr INPUL ... e 40
OPEN__NEW . e 40
OPEIN MW ...t cae e 40
BUN 50
SAVE 50
OBy TS e e ettt e e 51
DM e e 18
DIMENSION BITAYS o cveeeeeeiieeeeere s iinr e e 18
DIMN e e e 18
DR e 20
DIFBCIONY ..o 18
Display directony.........ccoocociinii e 19
Y oo e e 19
DEINE oo e e 20
DoCUMENEAIION «.ovvt v ve e e e e e e nans 47
DO e e 44
BT e e e 20
ELLIPSE et 7
ELLIPOE B it e 7

Keywords Index

END
DEFINE e 15, 16
FOR e 24
L 26
REPeat ... 48
SELBC. oo 53
EOF L 21
BQuals ..o, 32
Errors
CONTINUE e 10
RETRY Lo 10
EXE 21
EXEC W 21
X 22
with FOR ... 24
with REPeat.. ... 48
EX P 22
Exponentiation ... 22
F
Files
COPY 10
COPY N it 1¢
DELETE 17
R o, 19
CHIECIONY e e e 19
LBYTES ..o 31
LOAD e 33
load and rMun ... 33
LRUN e 35
MERGE ... 35
merge and TUN ... 37
MBRUN e e e 37
OPEN e e 40
gpen for iNpuUt ... 40
OPEN_IN. e 40
OPEN NEW ..ot re e 40
OPEN_NEW .. e 40
PRINT Lo e 45
BUN e 50
SAVE 50
FILL oo 23
FILLE o e 23
FLASH e 24
N e e e e e 15
FOR o 24
with EXIT . 24
with NEXT .. 24
FUNGCHON . e 15
DEFING. e e 15
RETU N e, 49
G
GOSUB .. 25
GOTO o 26
Graphics
AR 2
ARC R 2
CIRCLE ... 7
CIRCLE _R . 7
ELLIPSE oo 7
ELLIPSE R ..o e 7
FILL e 23

keyboardl Inpm

renumbering

Local variables

in procedures

LOQanithm.. ... 34
CLOGID 34
LOOP ePHOQUE....eve e 24
Loop repetition
XA 22
FOR 24
NEXT L 39
REPEAL ..o 48
M
Maching code ... 6
CALL. oo e e 6
SEXEC ..o 54
SAVING oot e 54
EXEC, o 21
EXEC W o 21
[0AAING ©\ v 21
(=1 o U TP PP PTTTUR TR 48
Maths functions
ABS . 1
apsolute value ... 1
ACOT oo 1
arc COANGENT 1.vivie e 1
ATAN L 1
arc angent ... 3
common logarnithm ..., 34
O 11
COSIIE Lot 11
COT 11
P 22
expanentiation ..., 22
INT e e 29
INtEQAT PaM....coiiii i 29
LOG L e 34
LN 34
natural 1ogarthm ... 34
RAD L 45
radians CONVETSION........ccovieiisiie e 45
SIN 54
SIIE et 54
SAR 55
SQUATE MO0t 55
TAN o 56
BANGENT ..o 56
Merge and run ... 37
Microdrives
COPY i 10
COBYING ... vttt er et 10
DELETE . i e 17
deleting fles.......c.occ i 17
FORMAT .. e 25
formatting cantridges........coooov e 25
LOAD 33
loading SuperBASIC programs.........ooceveees 33
SAVE 50
saving SuperBASIC programs ..., 50
MOD e 36
MODE ... oo 36
MOTUIUS. .. 36
MOVE . e 37
MBUN 37
Multitasking
PAUSE 42
SEXEC . 54

Keywords Index

N
N T e 38
NEWOIKS . ..o e 38
INE Y e 38
NEXT 39
with FOR . 24
with REPeat..........ooo 48
Restarting SuperBASIC ... 38
O
ON GOSUB ... 39
ON GOTO . e 39
OPEN Lo 40
CHANNEL ..o e 40
serial POt 40
WINEOW oo e 40
OPEN_IN oo 40
open existing file....................... RS OPROPY 40
OPEN__NEW ... 40
open new fle ... 40
Operators
IN ST R e e 29
MOD e e o 36
OVER . e 40
OVEMGHIENG e e 40
P
PAN e e 40
PAPER . 40
Parameters. ... 15, 16
PAUSE e 42
PEEK oo 42
PEEK L oo 42
PEEK W e 42
PENDOWN ... 43
PEN P 43
Pl 43
Plotting BGINtS ... oo 44
POINT L e 44
POINT R e 44
POKE 44
POKE L. 44
POKE W e 44
PRINT oo e 45
OVER .. 40
UNDER e 57
PHAOUL ..o 45
Procedures
DEFING .o 15, 16
LOCAl i e 34
BETUIN .o e e e 49
Programs
CONTINUE ... i 10
RETRY o e 10
BUN 50
SAVE o 50
R
BAD oo 45
Random RUMDErS ... 49
RANDOMISE .. e 46
READ . o 13
RECOL et 47

Keywords tndex

REM o 47
REMarK . 47
RENUM L e 47
Renumber iNeS.. ... 47
REPeat. ..., 48
EXIT 22
NEXT 39
Repetition
FOR e 24
NEXT e 39
Reset Clock. ..., 2, 52
Resolution ... 36
BESPR ..o e e e 48
RESTORE ..o 13
BE T RY e e 10
BETUMN 49
with FUNCHON ... 15
with PROCedUres ..o 16
BN 49
Routines ... 16
RS-232-C 4
RUN L 50
LRUN 35
foad and tun .. 35
S
SAVE e e e 50
maching COA.o..oooviviivi e 51
PFOGIAIMIS . vt 50
SBY TS . i e 51
SCALE o 51
Screen
BLOCK oo, 5
BORDER ... 6
Character SiZ&.........coiiviiie e 12
ClBaL e 9
FLASH e e 24
I e 27
MODE o 36
QUIPUE ..o 45
OVER . e 40
OVEIPIINENG . ot 40
PAN .. e Fi|
PAPERo 41
PRINT e 45
RECOL i i 46
FECOIOUNIIG et eee e e e 46
SCROLL ..ol 52
STRIP e 56
UNDER e, 57
UNAEIINING oeoveiie e 57
WINDOW L 58
SCROLL e e e e e s 52
SDATE oo e e e e s 52
S Bt e 53
Setting CloCk ..o 52
Setting station number ... 38
Shapes
AR e 2
CIRCLE ..., 7
ELLIPSE e e 7
FILL oo 23
LINE 34
SN L e 54
B e 54

Size of Characters. ... 12
Sound
BEEP oo e 4
BEEPING oo e 5
SR T e e 55
SQUATE TOO. . oot 55
Starting ProOgrams ..o e 35, 50
StAtioN NUMDET .. 38
TP e e e 55
Strings
CHB S oo e 7
FILLB . e 23
INST R e 29
LEN e 31
[BNGHN e 31
ST R e e 56
SUDTOUTINES oot e 15, 16
T]
TAN 56
TANGET oot 56
THEN oo 26
Time
clock adjiust........ooooii 2
ClOCK FESBE.. . e e 52
Al e 14
PAUSE ..o 42
TURN e 57
TURNTO e 57
Turtle graphics
P ettt e et e 23
MOWVE e 37
PENUP e 43
PENDOWN. ... 43
TURN e 57
TURNTO . e 57
U
Unconditional Jump ... 26
UNDER oo 57
Underlinitlg .. oovve e 57
\'
Value absoiutes ... 1
W
Windows
AT e e 3
BLOCK .ot 5
BORDER . oot 6
CSIZE vt 12
CHArACer SIZE reeeeeeeii e e 12
AL e e 9
GUISOr CONTOL. ... irras v s meee e eeeimieeees 3 12
FILL oo e et 23
FLASH .ot 24
INB e 27
MODE ..o 36
OVER oottt et s s e 40
OVEIPMNING ... e 40
PAN e M4
PAPER ... e a1

DN QOSIION Lo 3
SCROLL oo 52
STRIP 56
UNDER ... 57
underlining «....ooooe 57
WINDOW e, 58

12/84

Keywords Index

=sirnci=sir

QL

Concepts

The Concept Reference Guide describes concepts relating to SuperBASIC and the QL
hardware. It is best to think of the Concept Guide as a source of information. If there
are any questions about SuperBASIC or the QL itself which arise out of using the
computer or other sections of the manual then the Cancept Guide may have the answer.
Concepts are listed in alphabetical order using the most likely term for that concept.
If the subject cannct be found then consult the index which shouid be abie to tell you
which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can
be entered and run. Examples listed withcut numbers are usually simple commands
and it may not always be sensible to enter them into the computer in isolation. Examples
which demonstrate stippies will not work properly on a television set.

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sinclair Research Limited)

arrays

~ Arrays must be DIMensioned before they are used. When an array is dimensicned the
value of each of its elements s set to zero or a zero length string if it is a siring array.
An array dimension runs from zero up to the specified value. There is no limit on the
number of dimensions which ¢an be defined other than the total memory capacity of
the computer. An array of data is stored such that the last index defined cycles round
most rapidly:

the array defined by example
DIM array(2,4)
will be stored as

00 low address

24 high adcress

The element referred to by array(a,b,c) is equivalent 1o the element referred to by
array(a)(b)(c).

Command Function
DM dimension an array
DIMN find out about the dimensions of
an array

12/84

BASIC

comment

SuperBASIC includes most of the functions, procedures and constructs found in other
dialects of BASIC. Many of these functions are superflucus in SuperBASIC but are
included for compatibility reasons:

GQaTO use IF, REPeat, etc
GOSsuUB use DEFine PROCedure
ON GQOTO use SElLect

ON GOSUB use SElLect

Some commands appear not to be present. They can always be obtained by using
a more general function. For example, there are no LPRINT or LLIST statements in
SuperBASIC but output can be directed to & printer by opening the relevant channel
and using PRINT or LIST.

LPRINT use PRINT#

LLIST use LIST#

VAL not required in SuperBASIC

STR$ not required in SuperBASIC .
IN not applicable to 68008

ouT not applicable to 68008

Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be
able to convert the internal codified form of the'value of a string expression to or from
the internal codified form of the value of a numeric expression.

These functions are redundant in SuperBASIC because of the provision of a unique
facility referred to as "coercion” The VAL and STR$ functions are therefore not provided.

12184

If at any time the computer fails to respond or you wish to stop a SuperBASIC program break

or command then
. ' hold down

CTRL
and then press

[SPACE]
A program broken into in this way can be restarted by using the CONTINUE command.

12/84

channels

A channel is a means by which data can be output to or input from a QL device. Before
a channel can be used it must first be activated (or opened) with the OPEN command.
Certain channels shouid always be kept open: these are the default channels and allow
simple communication with the QL via the keyboard and screen. When a channel is
no longer in use it can be deactivated (closed) with the CLOSE command.

A channel is identified by a channel number. A channel number is a NUMErC eXpression
preceded by a # . When the channel is opened a device s linked 10 a channei number
and the channel is initialised. Thereafter the channel is identified only by its channel
number For example:

OPEN #5,SER1

Will link serial port 1 to the channel number 5. When a channel is closed only the channel
number need be specified. For exarmple:

CLOSE #5

Opening a channel requires that the device driver for that channel be activated. Usually
there is more than one way in which the device driver can be activacted, for example
the network requires a station number. This extra information is appended to the device
name and passed to the OPEN command as a parameter, see concept device and
peripheral expansion. .

Data can be output to a charnel by PRINTIng to that channel. this is the same
mechanism by which output appears on the QL screen. PRINT without a parameter
outputs to the default channel # 1. For example

10 OPEN #5, mdv1_test_file
20 PRINT #5, *this text is in file test_ file"
30 CLOSE #5

will output the text this text is in file test_file' to the file test_file. it is important 1o close
the file after all the accesses have been compieted to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input
from a channel a character at a time using INKEYS$.

A channet can be opened as a conscle channel; output is directed to a specified window
an the QL screen and input is taken from the QL keyboard. When a console channet
is opened the size and shape of the initial window is specified. If more than one console
channel is active then it is possible for more than one chanrel to be requesting input
at the same time. In this case, the required channel can be selected by pressing CTRL
C to cycle round the waiting channeis. The cursor in the window of the selected channel
will flash.

The QL has three default channels which are opened autormatically. Each of these
channels is linked to a window on the QL screen:

channel 0 — command and error channel
channel 1 — output and graphics channe!
channe! 2 — program listing channel

Monitor Television
Command Function

OPEN open a channel for /O

CLOSE close a previously opened channel
PRINT output 1o a channel

INPUT input from a channel

INKEY$ input a character from a channel

12/84

character set

The eursor controls are not built in to the operating system: however, if these functions and keyS
are o be provided by applications software, they should use the keys specified; also
the specified keys should not normally be used for any other purpose.

12/84

Decimal Hex Keying Display/Function
0 00 CIRL £ NULL
1 ot CTRL A
2 02 CTRL B
3 03 CTAL C change input channel (see nole)
4 04 CTRL D
5 05 CIRL E
8 06 CTRL F
7 07 CTRL G
8 08 CTRL H
9 09 TAB (CTRL 1) Next field
10 0A ENTER (CTRL J) New line/fCommand entry
" 0B CTRL K
12 oC CTRL L
13 oo CTRL M Enter
14 OF CTRL N
15 OF CTAL O
16 10 CTRL P
17 il CTRL Q
18 12 CTRL R
19 13 CTRL S
20 14 CTRL T
21 15 CTRL U
22 16 CTRL V
23 17 CTRL W
24 18 CTRL X
25 19 CTRL Y
26 1A CTRL Z
27 1B ESC (CTRL SHIFT |) Abort current level of command
28 1C CTRL SHIFT §
29 10 CTRL SHIFT |
30 1E CTRL SHIFT £
31 1F CTRL SHIFT £8C
32 20 Space Space
33 21 SHIFT 1 !
34 22 SHIFT * "
35 23 SHIFT 3 #
36 24 SHIFT 4 $
37 25 SHIFT 5 %
38 26 SHEFT 7 &
39 27 ' '
40 28 SHIFT 9 {
41 29 SHIFT ©)
42 2A SHIFT 8 *
43 2B SHIFT = +
44 2C
45 2D
46 2E . ‘
47 2F / /

Decimal Hex Keying Display/Function
48 30 0 0
49 31 1 1
50) 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 5 53
55 37 7 7
56 38 8 8
57 39 9 9
58 3A SHIFT ; :
59 38 . :
60 3C SHIFT | <
61 3D = =
82 3E SHIFT . >
63 3F SHIFT / K
64 40 SHIFT 2 @
65 4 SHIFT A A
66 42 SHIFT B B
&7 43 SHIFT C C
68 44 SHIFT D C
69 45 SHIFT E E
70 46 SHIFT F F
71 47 SHIFT G G
72 48 SHIFT H H
73 49 SHIFT | |
74 aA SHIFT J J
75 48 SHIFT K K
76 4C SHIFT L L
77 4D SHIFT M M
78 4E SHIFT N N
79 4F SHIFT O 0
80 50 SHIFT P P
81 51 SHIFT Q]
82 52 SHIFT R R
83 53 SHIFT S S
84 54 SHIFT T T
85 55 SHIFT U U
86 56 SHIFT V 3
87 57 SHIFT W W
88 58 SHIFT X X
89 59 SHIFT Y Y
a0 5A SHIFT Z z
91 58| l
g2 5C § I
93 50 | |
94 Sk SHIFT 6 ~
95 5F SHIFT - —
96 80 £ £
97 61 A a
98 82 B b
99 63 C c
100 64 D d
101 65 E e
102 66 F f
103 87 G g
104 58 H h
105 69 | i
106 BA J j
107 &8 K k
108 8C L |
106 60 M m
110 8E N n
1 6F Q [s]

12/84

Decimal Hex Keying Display/Function
112 70 P P
13 71 Q Qq
114 72 R r
115 73] s
116 74 T t
17 75 8] u
118 76 v v
19 77 w w
120 78 X x
121 79 Y y
122 7A Z z
123 7B SHIFT | i
124 7c SHIFT 3 |
125 7D SHIFT | !
126 7E SHIFT £ -
127 7F SHIFT ESC @
128 80 CTRL ESC a
129 81 CTRL SHIFT 1 a
130 82 CTRL SHIFT &
131 83 CTRL SHIFT 3 &
132 84 CTRL SHIFT 4 &
133 85 CTRL SHIFT 5 !
134 86 CTRL SHIFT 7 I
135 87 CTRL * U
136 88 CTRL SHIFT @ 3
137 89 CTRL SHIFT 0 f
138 8A CTRL SHIFT 8 e
139 88 CTAL SHIFT = ‘
140 8C CTRL , a
141 BD CTRL - a
142 BE CTRL . a
143 8F CTRL / &
144 90 CTRL 0 &
145 91 CTRL 1 é
146 92 CTRL 2 i
147 a3 CTRL 3 i
148 94 CTRL 4 i
149 a5 CTRL 5 i
150 96 CTRL 6 4
151 97 CTRL 7)
152 98 CTRL 8)
153 99 CTRL 9 d
154 94 CTAL SHIFT ; a
155 9B CTAL | O
156 ac CTRL SHIFT , f
157 gD CTRL = ¢
158 9E CTRL SHIFT . ¥
159 9F CTRL SHIFT / '
160 AQ CTRL SHIFT 2 A
161 Al CTAL SHIFT A A
162 A2 CTRL SHIFT B A
163 A3 CTRL SHIFT C E
164 Ad CTRL SHIFT G o]
165 A5 CTRL SHIFT E 0
166 A8 CTRL SHIFT F C
167 A7 CTRL SHIFT G V]
168 A8 CTAL SHIFT H A
169 A9 CTRL SHIFT I N
170 AR CTRL SHIFT J E
174 AB CTRL SHIFT K i
172 AC CTRL SHIFT L alpha
173 AD CTRL SHIFT M dela
174 AE CTRL SHIFT N theta
175 AF CTRL SHIFT C lambda

Decimal Hex Keying Display/Function
176 80 CTRL SHIFT £ mu
177 Bl CTRL SHIFT Q pi
178 82 CTAL SHIFT R phu
179 53 CTRL SHIFT S i
180 B4 CTRLSHIFT T i
181 B85 CTRL SHIFT U
182 86 CTRL SHIFT ¥V §
183 37 CTRL SHIFT W o
184 88 CTRL SHIFT X <<
185 B9 CTRL SHIFT Y >
186 BA CTRL SHIFT Z e
187 BB CTAL | -
188 BC CTAL } .-
189 BO CTARL | -
180 BE CTRL SHIFT 8 T
191 BF CTRL SHIFT - .
192 Co Left Cursor left one character
193 C1 ALT Left Cursor to start of line
194 c2 CTRL Left Delele left one character
195 C3 CTRL ALT Left Delete line
196 C4a SHIFT Left Cursor left one word
197 Cc5 SHIFT ALT Left Pan left
198 C6 SHIFT CTRL Left Delete left one word
199 c7 SHIFT CTRL ALT Left
200 c8 Rignht Cursor right one character
201 Cc9 ALT Right Cursor to end of line
202 CA CTRL Right Delete character under cursor
203 cB8 CTRL ALT Right Delete to end of line
204 CcC SHIFT Right Cursor right one word
205 cD SHIFT ALT Right Pan right
206 CE SHIFT CTRL Right Delete word under & night of cursor
207 CF SHIFT CTRL ALT Right
208 Do Up Cursor up
209 o} ALT Up Scroht up
210 D2 CTRL Up Search backwards
21 03 ALT CTRL UP
212 D4 SHIFT Up Top of screen
213 b5 SHIFT ALT Up
214 D6 SHIFT CTRL Up
215 07 SHIFT CTAL ALT Up
216 08 Down Cursor down
217 09 ALT Down Scroll down
218 DA CTRL Down Search forwards
219 0B ALT CTRL Down
220 DC SHIFT Down Bottom of screen
22t oD SHIFT ALT Down
222 OE SHIFT CTRL Down
223 DF SHIFT CTRL ALT Down
224 EQ CAPSLOCK Toggle CAPSLOCK function
225 E1 ALT CAPSLOCK
226 g2 CTRL CAPSLOCK
227 E3 ALT CTRL CAPSLOCK
228 Ed SHIFT CAPSLOCK
229 ES SHIFT ALT CAPSLOCK
230 E6 SHIFT CTRL CAPSLOCK
231 E7 SHIFT CTRL ALT CAPSLOCK
232 E3 F1
233 E2 CTARL £t
234 EA SHIFT F1
235 £EB CTRL SHIFT F1
236 EC F2
237 ED CTRL F2
238 EE SHIFT F2
239 EF CTRL SHIFT F2

12/84

Decimal Hex Keying Display /Function

240 FO F3

241 1 CTRL F3

242 F2 SHIFT F3

243 F3 CTRL SHIFT F3

244 Fa F4

245 F5 CTRL F4

246 F6 SHIFT F4

247 F7 CTRL SHIFT F4

248 F8 F5

249 Fa CTRL F5

250 FA SHIFT F5

251 FB CTRL SHIFT F5

252 FC SHIFT space “Special” space

253 FD SHIFT TAB Back tab (CTRL ignored)
254 FE SHIFT ENTER “Special” newline (CTRL ignored)
255 FF See below

Codes up to 20 hex are either control characters or non-printing characters. Alternative
keyings are shown in brackets after the main keying.

Note that CTRL:C is trapped by Qdos and cannct be detected without changes to the
systemn variables.

Note that codes CC-DF are cursor control commands.

The ALT key depressed with any key combination other than cursor keys or CAPSLOCK
generates the code FF, followed by a byte indicating what the keycode would have been
if ALT had not been depressed.

Note that CAPSLOCK and CTRLFS5 are trapped by Qdos and cannot be detected without
special software.

12/84

clock

comment

The QL contains a real time clock which runs when the computer is switched on.
The format used for the date and time is standard 1SO format
1983 JAN 01 12:09:10

Individuai year, month, day, and time can all be obtained by assigning the string returned
by DATE 10 a string variable and slicing it. The clock will run from 1961 JAN 01 00:00:00.

For a description of the format see 855249: PART 1. 1976 and as modified in Appendix
D21 Table 5 Serial 5 and Appendix £.2 Table 6 Serials 1 and 2.

Command Function

SDATE set the clock

ADATE adjust the clock

DATE return the date as a number

DATES return the date as a string

DAYS$ return day of the week ‘

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12184

If necessary SuperBASIC will convert the type of unsuitable data to a type which will
allow the specified operation to proceed.

The operators used determine the conversicn required, For example, if an operation
requires a siring parameter and a numeric parameter is supplied then SuperBASIC will
first convert the parameter to type string. It is not always possible to convert data to the
required form and if the data cannot be converted an error is reported.

The type of a function or procedure parameter can also be converted to the correct
type. For example, the SuperBASIC LOAD command requires a parameter of type narme
but can accept a parameter of type string and which will be converted to the correct
type by the procedure itself. Coercion of this form is always dependent on the way the
function or procedure was implemented.

There is a a natural ordering of data types on the QL, see figure. Siring is the most
general type since it can represent names, floating point and integer numbers. Floating
point is not as gereral as string but it is more general than integer since floating point
data can represent integer data (almost exactly). The figure below shows the ordering
diagramatically. Data can always be converted maving up the diagram but it is not always
possible moving down.

string A
not always
possible
name
floating point
always possible
integer
y

a=b+c (no conversion is necessary before performing the
additcon. Conversion is not necessary before assigning
the result 1o a.)

a% =b+c (no conversion is necessary before performing the
addition but the result is converted to integer before
assigning)

at = bs + ¢3 (b% and ¢$ are corverted to floating point, if possible,

before being added together The result is converted to
string before assigning)

LOAD "mdv1_data" (the string “mdvi._data” is converted to type name by
the lcad procedure before it 1s used.)

Staterments can be written in SuperBASIC which would generate errors in most other
computer languages. In general it is possible to mix data types in a very flexible manner:

i, PRINT 11 + 2 + n3n
i LET a$ =1+ 2 +a$ + "4

12/84

coercion

example

comment

12

colour

Colours on the QL can be either a solid colour or a stipple — a mixture of two colours
to some predefined pattern. Colour specification on the QL can be up to three items;
a colour, a contrast colour and a stipple pattern.

single colour:= composite__colour

The single argument specifies the three parts of the colour specification. The main colour
is contained in the bottorn three bits of the colour byte. The next three bits contain the
exclusive or (XOR) of the main colour and the contrast colour. The top two bits indicate
the stipple pattern.

stipple

contrast XOR main (mix)

’ r— Colour

bit 7 6 5 4 3 2 1 0

By specifying only the bottom three bits (ie. the required colour) no stipple will be
requested and a single solid colour will be used for display. '

double colour.= background, contrast

The calour is a stipple of the two specified colours. The default checkerbeard stipple
is assumed (stipple 3).

triple colour= background, contrast, stipple
Background and contrast colours and stipple are each defined separately.

colours The codes for colour selection depend on the screen mode in use:

code bit pattern compasition colour

8 colour 4 colour

0 000 black black
1 001 blue blue black
2 010 red red red
3 011 red + blue magenta red
4 100 green green green
5 101 green + blue cyan green
6 110 green + red vellow white
7 111 green + red + blue white white
Colour Composition and Codes

stipples Stipples mix a backgound and a contrast colour in a fine stipple pattern. Stipples can
be used on the QL in the same manner as ordinary solid colours aithough stipples may
nat be reproduced correctly on an ardinary domestic tetevision. There are four stipple

T B

Stipple 0 Stipple 1 Stipple 2 Stipple 3

Stipple 3 is the default.

example i, PAPER 255 : CLS
i. PAPER 2,4 : CLS
i, PAPER 0,2,0 : CLS

warning Stipples may not reproduce correctly on a domestic television set which is fed via the
UHF socket.

12/84

communications

The QL has two serial ports {called SER1 and SER2) for connecting it o equipment
which uses serial communications obeying EIA standard RS-232-C or a compatible RS"'232'C
standard.

The RS-232-C ‘standard’ was criginally designed to enable computers to send and receive
data via telephone lines using a modem. However, it is now frequently used to connect
computers directly with each other and to various items of peripheral equipment, €g.
printers, plotters, etc.

As the RS-232-C ‘standard' manifests itself in many different forms on different pieces
of equipment, it can be an extremely difficult job, even for an expert, to connect logether
for the first time two pieces of supposedly standard RS-232-C equipment. This section
will attempt to cover most of the basic problems that you may encounter

The RS-232-C ‘standard’ refers to two types of equipment:

1 Data Terminal Equipment (OTE)
2 Data Communication Equipment (DCE)

The standard envisaged that the terminal (usually the OTE) and the modem (usually
the DCE) would both have the same type of connector.

2 | SN TxD (output) d 2

3 | U RO (input) EMSERENEGENENEES | 3

7 h GND (ground) ﬁ 7

DTE DCE

The diagram above illustrates how the OTE transmits data on pin 2 whilst the DCE must
receive data on its pin 2 (which is still called transmit datal). Likewise, the DTE receives
data on pin 3 whilst the DCE must transmit data ¢n its pin 3 (which is still called receive
datal). Although this is confusing in itself, it can lead to far greater problems when there
is disagreement as 1o whether a certain device should be configured as DCE or DTE.

Unfortunately, some people decide that their computers should be configured as DCE
devices whilst cthers configure equivalent computers as DTE devices. This ohviously
leads to difficulties in the configuration of the serial ports on each piece of equipment.

SERt1 on the QL is configured as DCE, while SER2 is configured as DTE. Therefore
it should be possible to connect at least one of the serial ports to a given device simply
by using whichever port is wired the ‘correct’ way. The pin-out for the serial ports is given
below. A cable for connecting the QL 10 a standard 25-way ‘D’ type connector is available
from Sinclair Research Limited.

SER1 SER2
pin name function pin name function
1 GND signal ground 1 GND signai ground
2 ™D input 2 D output
3 RAxD output 3 RxD input
4 DTR ready input 4 DOTR ready output
5 CTS ready output 5 CTS ready input
6 . +12V 6 - +12V
TxD Transmit Data DTR Data Terminal Ready
RxD Receive Data CTS Clear To Send

12/84 13

Once the equipment has been connected to the correct’ port. the baud rate, (the speed
of fransmission of data) must be set so that the baud rates for both the QL and the
connected equipment are the same. The QL can be set ¢ cperate at:

75
300
600
1200
2400
4800
9800
19200 (transmit only) baud.

The QL baud rafe is set by the BAUD command and is set for both channels. The baud
rates cannot be set incependently.

The parity 'o be used by the QL must also be set to match thallexpected by the peripheral
equipment. Parity is usually used to detect simple transmissicn errcrs and may be set
10 be even, odd, mark, space or no pariy, ie. all 8 bits of the byte are used for data.

Stop bits mark the end of transmission of a byte or character. The QL will receive data
with one, one and a half, or two stop bits, and will always transmit data with at least
two stop bits. Note that if the QL is set up to 9600 baud it will not receive data with
only one stop bit: at least 12 stop bits are reguired.

It may be necessary to connect the handshake lines between the QL and a piece of
equipment connected to it. This allows the QL and its peripheral to monitor and control
their rate of communication. They may need to do this if one of them cannot cope with
the speed at which data is being transmited. The QL uses two handshaking lines:

CTS Clear to Send
DTR Data Terminal Ready.

If the OTE cannot cope with the rate of transmission of data then it can negate the OTR
line which telis the DCE to stop sending data, Chviously when the DTE has caught up
it tells the DCE, via the OTR line, to start transmitting again. In the same way, the DCE
can stop the DTE sending data by negating the CTS line. f additional control signals
are required they can be wired up using the 12V supply available on both serial ports.

Although transmission frem the QL is often possible without any handshaking at all,
the QL will not receive correctly under any circumstances without the use of CTS
on SER1 and DTR on SER2.

Communications on the QL are full duplex; that is both receive and transmit can operate
concurrently.

The parity and handshaking are selected when the serial channel is opened.

command function

BAUD set transmission speed
OPEN open serial channels ~
CLOSE close serial channels

* see concept device for a full specification

12/84

Integers are whole numbers in the range —32768 to +32767. Variables are assumed
to be integer if the variable identifier is suffixed with a percent %. There are no integer
constants in SuperBASIC, so all constants are stored as floating point numbers.

syntax: identifier%
example: i. counter’
i. size limitX
ii. this_is_an_integer_variableX
Floating point numbers are in the range + (105 to 10+%%), with 8 significant digits.

Floating point is the default data type in SuperBASIC. All constants are held in fioating
point form and can be entered using exponent notation.

syntax: identifier | constant

example: I current_accumulation
IN 76.2356
ii. 354E25

A string is a sequence of characters up to 32766 characters long. Vanables are assumed
to be type string if the variable name is suffixed by a $. String data is represented by
enclosing the required characters in either single or deuble quotation marks.

syntax: identifier$ | "text

example: i string_variables$
it. “"this is string data"
il "this is another string"

Type name has the same form as a standard SuperBASIC identifier and is used by the
system to name Microdrive files efc.

syntax: identifier
example: i mdvl_data_file
i, serie

12/84

data types
variables

integer

floating point

string

name

15

16

devices

define

example

A device is a piece of equipment on the QL to which data can be sent (input} and from
which data can be cutput.

Since the systemn makes no assumptions about the ultimate O {input /output) device
which will be used, the 10 device can be easily changed and the data diverted between
devices. For example, a pragram may have to cutput to a printer at some point during
its run. if the printer is not available then the output can be diverted to a Microdrive
file and stored. The file can then be printed at a later date. /O on the QL can be thought
of as being written to and read from a logical file which is in a standard device
independent form.

All device specific operations are performed by individual device drivers specially writen
for each device on the QL. The system can automatically find and include drivers for
peripheral devices which are fitted. These should be written in the standard QL device
driver format; see the concept peripheral expansion

When a device is activated a channel is opened and linked to the device. To correctly
open a channel device basic information must sometimes be supplied. This extra
information is appended to the device name.

The file name should conform to the rules for a SuperBASIC type name though it is
also possible to build up the file name (device name) as a SuperBASIC string exp(ession.

In summary the general form of a file name is:
identifier [information)

where the complete file name (including the extra information) corforms o the rules for
a SuperBASIC identifier.

Each Iogical device on the system requires its own particular extra information’ although
default parameters will be assumed in each case where possible:

device:= name

where the form of the device name is outlined below.

for console device

Select Conscle Device
Underscore

Window Width
Separator

Height :
Separator - read as AT
Window X coordinate
Separator

Window Y coordinate
Separator

length of keyboard type
ahead buffer

con....wXhaxXy__k

CON_wXhaxXy__k Consale I/O

| wXh] - window wigth, height

[AxXy] - window XY coordinate of upper lefthand corner
[k] - keyboard type ahead buffer length (oytes)
default: con__448x180a32x16__128

example: OPEN #4,con_20x50a0x0_32

OPEN #8,con_20x50
OPEN #7,con___20x50310x10

12/84

Screen Qutput SCR._wXhaxXy

[wXh] - window width, height
[AxXy] - window XY coordinate
default: scr___448x180a32x18
example: OPEN #4, scr_10x10a20x50
OPEN #5, scr_10x10
Serial (RS-232-C) SERnphz
n port number (1 or 2)
[P] parity [A] handshaking [z} protocal
e — even i — ignore r — raw data no EOF
0 - odd h - handshake z — control Z is EOF
m — mark € —as z but converts
S — space ASCIl 10 (Qdos
newline character)
0 ASCII 13
<CR>)
default: serirh (8 bit no parity with handshake) .
example: OPEN #3, serle
OPEN #4, serc
COPY mdv1_test_file TO serflc
Serial Network 110 NETd s
[d] indicates direction s station number
i - input 0 - for broadcast
O - output own station - for general listen
(input only)
default: no defauit
exampie: OPEN #7, neti 32
OPEN #4, neto O
CCOPY ser1 TC neto_21
Microdrive File Access MDVn__name

n Microdrive number
name Microdrive file name

default: no default

example: OPEN #9, mdv1 data file
OPEN #9, mdv1_test program
COPY mdvi_test_file TO scr_

Keyword Function

OPEN initialise a device and activate it for
use

CLOSE deactivate a device

COPY copy data between devices

COPY_N copy data between devices, but do
not copy a file's header information

EQF test for end of file

WIDTH set width

12/84

direct
command

SuperBASIC makes a distinction between a statement typed in preceded by aline number
and a statement typed in without a line number. Without a line number the statement
is a direct command and is processed immediately by the SuperBASIC command
interpreter. For example, RUN is typed in on the command line and is processed, the
effect being that the program starts to run. If a statement is typed in with a line number
then the syntax of the line is checked and any detectable syniax errors reported. A correct
fine is entered into the SuperBASIC program and stored. These statements constitute
a SuperBASIC program and will only be executed when the program is started with
the RUN or GOTO command.

Not all SuperBASIC statements make sense when entered as a direct command, for
example, END FOR, END DEFine, elc.

error
handling

" Errors are reported by SuperBASIC in a standard form:
At line line__number error__text

Where the line number is the number of the line where the error was detected and the
error text is listed below.

(1) Not complete
An operation has been prematurely terminated (or break has been pressed).

(2) Invalid job _
An error return from Qdos relating to system calls controiling multitasking or 10,

(3) Out of memory
Qdos and/or SuperBASIC has insufficient free memaory.

{4) Out cf range
Usually results from attempts o write outside a window or an incorrect array
index.
{5) Buffer ful
An 1/Q operation to fetch a buffer full of characters filled the butfer before a record ;
terminator was found.

(6) Channe! not open
Attemnpt to read, write or close a channel which has not been cpened.

Can also occur if an attempt to open a channel fails.

{7} Not found
File systemn, device, medium or file cannot be found.

SuperBASIC cannot find an identifier. This can result from incorrectly nested
structures.

(8) Already exists
The file systern has found an already existing file with the same name as a new
file to be opened for writing.

(9 Inuse
The file system has found that a file or device is already exclusively used.

(10) End of file
End of file detected during input.

{11} Drive full
A device has been filled (usually Microdrive).

(12) Bad name
The file system has recognised the name but there is a syntax or parameter value
error,

In SuperBASIC it means a name has been used out of context. For example, a
variable has been used as a procedure.

(13) Xmit error
RS-232-C parity error.

(14) Format failed
Atternpted format operation has failed, the medium is possibly faulty (usually a
Microdrive cartridge).

(15) Bad parameter
There is an error in the parameler list of a system or SuperBASIC procedure or
function call.

An attempt was made to read data from a write only device.

(16) Bad or changed medium
The medium (usually a Microdrive cartridge) is possibly faulty.

(17) Error in expression
An error was detected while evaluating an expression.

(18) Overflow
Arithmetic overflow, division by zero, square root of a negative number, efc.

(19) Not Implemented

12/84

20

error recovery

(20) Read only
There has been an attempt o write data to a shared file.

(21) Bad line
A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared
This is a message which is for information only and is nct reporting an error. It
is reporting that the program has been stopped and subseguently changed forcing
SuperBASIC to reset its internal state to the outer program level and so losing any
procedure environment which may have been in effect.

After an error has accurred the program can be restarted at the next statement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program
can be restarted at the statement which triggered the error. Type

RETRY

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/84

' SuperBASIC expressions can be string, numeric, logical or a mixture; unsutable data
types are automatically converted to a suitable form by the system wherever this is
possible.

monop:.= |+
INOT
expression:= | [monop) expression operator expression
| (expression)
| atom
atom;= | variable
constant

|
| function { { expression * [, expression] *) |
| array__element

vartable: = | identifier
identifier %
identifier $

function:= | identifier
identifier %
identifier $

constant.= | digit*[digit] *

*[digi] * . *[digit] *

* [digit] * [.] *[digit] x E *[digit] *

The final value returned by the evaluation of the expression can be integer giving an
integer__expression, string giving a string__expression or floating point giving a
floating__expression. Often floating point and integer expressions are equivalent and
the term numeric__expression is then used.

Logical operators can be included in an expression. If the specified operation is true
then a one is returned as the value of the operation. If the operation is false then a zero
is returned. Though logical operators can be used in any expression they are usually
used in the expression part of an IF statement.

example: i. test _data + 23.3 + 5
ii. "abcdefghijkimnopqrstuvwxyz' (2 TO 4)
iii. 32.1 * (colour=1)
L count = ~limit

12/84

expressions

define

21

2z

file types
files

data

exec

code

All /0 on the QL. is to or from a fogical file. Various fie types exist:

SuperBASIC programs, text files. Created using PRINT, SAVE, accessed using INPUT,
INKEYS$, LOAD etc.

An executable transient program. Saved using SEXEC, lcaded using EXEC, EXEC_W
efc.

Raw memory data, screen images, etc. Saved using SBYTES, loaded using LBYTES.

12/84

SuperBASIC functions and procedures are defined with the DEFine FuNction and funCtlons and
DEFine PROCedure statements. A function is activated (cr called) by typing its name procedures

at the appropriate point in a SuperBASIC expression. The function must be included

in an expression because it is returning a value and the value must be used. A procedure

is activated {or called) by typing its name as the first item in a SuperBASIC statement.

Data can be passed into a function or procedure by appending a list of actual parameters
after the function or procedure name. This list is compared to a similar list appended
after the name of the function or procedure when it was defined. This second list is
callec the formal parameters of the function or procedure. The tormal pararmeters must
be SuperBASIC variables. The actual parameters must be an array; an array slice or
a SuperBASIC expression of which a single variable or constant is the simplest form.

Since the actual pararmeters are actual expressions, they must have an aciual type
assoctated with them. The formal parameters are merely used to indicate how the actual
parameters must be processed and so have rio type associated with them. The items
in each iist of parameters are paired off in order when the function or procedure is called
and the formal parameters become equivalent to the actual parameters. There are three
distingt ways of using parameters.

if the actual parameter is a single variabie and if data is assigned to the formal parameter
in the function or procedure then the data is disc assigned 1o the corresponding actual
parameter’

If the actual parameter is an expression then assigning data to the corresponding formal
parameter will have no effect outside the procedure. Note that a variable can be turned
into an expression by enclosing it within brackets.

If the actual parameter is a variable but has not previously been set then assigning data
to the corresponding formal parameter will set the variable specified as the actual
parameter, o

Variables can be defined 1o be local to a function or procedure with the LOCal statement
Local variables have no effect on similarly named variables outside the function or
procedure in which they are defined and so allow greater freedom in choosing sensible
variable names without the risk of corrupting external variables. A local variable is available
to any inside function or procedure called from the procedure function in which it is
declared to be local unless the function or procedure called contains a further local
declaration of the same variable name.

Functions and procedures in SuperBASIC can be used recursively. That is a function
or procedure can call itself either directly or indirectly.

Command Function
DEFine FuNction define a function
DEFine PROCedure define a procedure

leave a function or procedure
(return data from a function)
define local data in a function or
procedure

RETuUrn

LOCal

12/84 23

24

graphics

graphics fill

It is important to realise that the QL screen has non square pixeis and that changing
mode will change the shape of the pixels. Thus if the graphics procedures were simply
pixel based they would draw different shapes in the two modes. For exampie, in one
rmode we would have a circle while the same figure in the other mode would be an ellipse:

The graghics procedures ensure that whatever screen mode is in use, consistent fgures
are produced. It is not possible to use a simple pixel count to indicate sizes of figures,
s0 instead the graphics procedures use an arbitrary scale and coordinate system 1o
specify sizes and positions of figures.

The graphics procedures use the graphics co-ordinate system, i.e. draw relative to the
graphics origin which is in the bottom left hand corner of the specified or default window.
Note that this is not the same as the pixel origin used to define the position of windows
and blocks, etc. The graphics origin allows a standard Cartesian coordinate system 1o
be used. A graphics cursor is updated after each graphics operation; subsequent
operations can either be relative 1o this cursor or can be absolute, ie. relative to the
graphics origin.

100

(00) x

The Graphics Coordinate System

The scaling factor is such that the full distance in the vertical direction in the specified
or default window has length 100 by dsfault and can be changed with the SCALE
command. The scale in the x direction is equal to the scale in the y direction. However,
the length of line which can be drawn in the x direction is dependent on the shape
of the window. Increasing the scale factor increases the maximum size of the figure which
can be drawn before the window size is exceeded. If the graphics output is switched
to a different size of window then the subsequent size of the output is adjusted to fit
the new window. If a figure exceeds its output window then the figure is clipped.

It is useful to consider the window to be a window onto a targer graphics space in which
the figures are drawn. The SCALE command allows the graphics origin 1o be set so
allowing the window to be moved around the graphics space.

The graphics procedures are output to the window attached to the specified or default
channel and the output is drawn in the INK colour for that channel.

Command Function
CIRCLE draw an ellipse or a circle
LINE draw a line bsoiUt
ARC draw an arc cof a circle absclute
POINT plot a point
CIRCLE__R draw an ellipse or a circle
LINE_R draw a line relati
ARC_R draw an arc of a circle clative
POINT_R plot a point

- SCALE set scale and move origin
FILL fill in a shape
CURSOR position text

Figures drawn with the graphics and turtle graphics procedures can be optionafty filed’
with a specified stipple or colour. If FILL is selected then the figure is filed as it is drawn.

The FILL algorithm stores a list of points to plot rather than actually plotting them. When
the figure closes there are two points on the same horizontal line. These two points are

12/84

. connected by a line in the current ink colour and the process repeats. Fill must always

~ be reselected before drawing a new figure to ensure that the buffer used to store the
list of points is reset.

The following diagram illustrates FiLL:

e

(10.20) FILL1:LINE 10,20 TO 75,50 T0 50,80 l

. There is an implementation restriction on FILL. FILL must not be used for re-entrant ~ warning
shapes (i.e. a shape which is concave). Re-entrant shapes must be split into smaller
shapes which are not re-entrant and each sub-shape filled independently.

12/84

26

identifer

warning

A SuperBASIC identifier is a sequence of letters, numbers and underscores.

define: letter= | a.Z
| A.Z
number=1112|3|4|5]|6]7/8|9]0]
identifier:= letter *|| letter | number | __ | | *
example: i a
i Limit_1
i, current_guess
v, counter

An identifier must begin with a letter followed by a sequence of letters, numbers and
underscores and can be up to 255 characters long. Upper and lower case characters
are equivalent.

Identifiers are used in the SuperBASIC system to identify vanabies, procedures, functions,
repetition loops, elc.

NO meaning can be attributed to an identifier other than its ability to ‘identify’ constructs
to SuperBASIC. SuperBASIC cannot infer the intended use of an identifier from the
identifier's namel '

12/84

The joystick ports, marked CTL1 and CTL2, allow two joysticks to be attached to the QL.

* The joysticks are arranged o generate specific key depressions when moved in a specific
way and any program which uses a joystick must be able to adapt to these keys. The
QL keyboard can be read directly using the KEYROW function.

CTl crL2
mode key key
up CUrsor up Fa
down cursor down F2
left cursor left F1
right cursor right F3
fire space F5

The joystick ports can be used for adding other more general purpose control devices
to the QL.

Joysticks for other computers using a 9-way ‘D’ connector require an adaptor to be used
with the QL. Such an adaptor is available from Sinclair Research.

12/84

joystick

comment

27

28

keyword

warning

SuperBASIC keywords are ident
Reference Guide. Keywords haw

fiers which are defined in the SuperBASIC Keyword
€ the same form as a SuperBASIC standard identifier

The case of the keyword is not significant. Keywords are echoed as a mixture of upper
and lower case letters and are always reproduced in full. The upper case portion indicates
the minimum required tc be typed in for SuperBASIC to recognise the keyword.

The set of SuperBASIC keywords may be extended by adding procedures to the QL.
It is a good idea to define these with their names in upper case, procedure names defined
this way will always be reproduced by SuperBASIC in upper case, and this will indicate
their special function in the SuperBASIC system. Conversaly, ordinary procedures should

be defined with their names in lower case.

Existing keywords cannat be used as ordinar

SuperBASIC keywords are:

y identifiers within a SuperBASIC program.

List of Keywords

ABS

ACOS, ASIN
ACOT, ATAN
ADATE

ARC, ARC__R
AT

AUTO

BAUD

BEEP
BEEPING
BLOCK
BORDER
CALL

CHR3S
CIRCLE
CIRCLE_R
CLEAR
CLCSE

CLS

CCDE
CONTINUE
RETRY
COPY, COPY__N
CO0s

COT

CSIZE
CURSOR
DATA, READ,
RESTORE
DATES, DATE
DAYS
DEFine FuNction,
END DEFine

DEFine PROCedure

END DEFine
DEG
DELETE
DIM

DIMN

DIR

DIV

DLINE

EDIT
ELLIPSE,
ELLIPSE__R
EOF

EXEC, EXEC__W
EXIT

EXP

FILL

FILL$
FLASH

FOR

END FOR
FORMAT
GO SuB
GO 1O

IF, THEN, ELSE
END IF

INK

INKEY$
iINPUT
INSTR

INT
KEYROW
LBYTES

LEN

LET

LIST

LOAD

LOCal

LN, LOG10
LRUN

MERGE

MOD

MODE

MOVE

MRUN

NET

NEW

NEXT

ON GO TO

ON GO suB
OPEN, OPEN__IN
OPEN_NEW
OVER

PAN

PAPER

PAUSE

PEEK, PEEK_W
PEEK__L
PENUP
PENDOWN

PI

POINT, POINT_R
PCKE, POKE._ W
POKE. L

PRINT

RAD

RANDOMISE
RND
RECOL ,
REMark
RENUM
REPeat,
END REPeat
RESPR
RETurn
RETRY
RUN

SAVE

SIN

SCALE
SCROLL
SDATE
SElect

END SElect
SEXEC
SQRT
STOP
STRIP

TAN

TO

TURN
TURN TO
UNDER
VERS
WIDTH
WINDOW

12/84

SuperBASIC has the standard trigonometrical and mathematical functions

Function

Name
COs cosine
SIN sin
TAN tangent
ATAN arctangent
ACOT arcotangent
ACQOS arcosine
ASIN arcsine
car cotangent
EXP exponential
LN natural logarithm
LOG10 common logarithm
INT integer
ABS absolute value
RAD convert to radians
DEG convert to degrees
Pl return the value of 7
RND generate a random number
RANDOMISE reseed the random number. generator

12/84

maths
functions

memory map

30

warning

The QL contains a Motorola 68008 microprocessor, which can address 1 Megabyie
of memory, ie. from 00C00 to FFFFF Hex. The use of addresses within this range are
defined by Sinclair Research to be as follows:

FFFFF
RESERVED expansion /O
C0000
RESERVED add on RAM
40000
RAM
main RAM
K
28000 96 Kbytes
RAM
32 Kiytes screen RAM
20000
le; QL IO
18000
ROM
plugin ROM
1
00000 6 Kbytes
ROM
systern ROM
00000 48 Kbytes

Physical Memory Map

The screen RAM is organised as a series of sixteen bit words starting at address Hex
20000 and progressing in the order of the raster scan, 1.e from left to right with each
display line and then from the top to the bottom of the picture. The bits within each
word are organised 50 that a pixel to the left is always more significant than a pixel to
the right {ie. the pixel pattern on the screen locks the same as the binary pattern). However,
the organisation of the colour information in the two screen modes is different:

high byte low byte mode
AO=0 AO=1
GGGGGGGG| RRRRRRRRE | 512 mode (high res)
GFGFGFGF | RBRBRBRB | 256 mode (low res)
G—green B—blue R-—red F—flash

Setting the Flash bit toggles the flash state and freezes the backgound colour for the
flash to the value given by R, G, and B for that pixel. Flashing is always reset at the
beginning of each display line.

In high resolution mode, red and green specified together is interpreted by the hardware
as white.

Use of reserved areas in the memory map may cause incompatibility with future Sinclair
products. Spurious output to addresses defined to be peripheral IO addresses can cause
unpredictable behaviour. It is recommended that these areas are NOT written to and
not used for any other purpose. Poking areas in use as Microdrive buffers can corrupt
Microdrive data and can result in a loss of information. Poking areas in use such as
system tables can cause the system to crash and can result in the loss of data and
programs.

All 1O should be performed using either the relevant SuperBASIC commands or the
Qdos operating system traps.

12/84

Microdrives provide the main permanent storage on the QL. Each Microdrive cartridge
- has a capacity of at least 100 Kbytes. Available free memory space is allocated by Qdos
as Microdrive buffers when necessary to improve performance.

Each blank cartridge must be formatted befare use and can hold up to 255 sectors
of 512 bytes per sector. Qdos keeps a directory of files stored on the cartridge. Each
Microdrive file is identified using a standard SuperBASIC file or device name.

A cartridge can be write-protected by removing the smail lug on the right hand side.
On receiving new blank QL Microdrive cartridges, format them a few times to conditicn
the tape.

Physically sach Microdrive cartridge contains a 200 inch loop of high quality video tape
which is moved at 28 inches per second. The tape completes one circuit every 72

seconds.
NEVER touch the tape with your fingers or insert anything into the cartridge
NEVER turn the computer on or off with carridges in place
ALWAYS store cartridges in their sleeves when not in use.
ALWAYS insert or remove cartridges from the Microdrive slowly and carefully.
ALWAYS ensure the cartridge is firmly installed before starting the Microdrive.
NEVER move the QL with cartridges installed - even if not in operation.
NEVER touch the cartridge while the Microdrive is in operation.
DO NOT repeatedly insert and remove the cartridge without running the Microdrive.
If a tape loop appears at either of the two places shown in figure 1 then gently ease

it back into the cartridge. Use a non-fibrous instrument for this, eg. the side of a pen
or pencil. NEVER touch the tape with your fingers for this or any cther reason.

———— tape loop

write protect lug

tape loop

label

® a Microdrive cartridge

CONTINUED....

FOR SERVICE MANUALS
CONTACT:

Microdrives

general care

tape loops

MAURITRON TECHNICAL SERVICES

WWW.Mauritron.co.uk
TEL. 01844 - 351684
FAX: 01844 - 352554

12/84

32

warning

Command Functicon

FORMAT prepare a new carlridge for use
DELETE delete a file from a cariridge
DIR lists the files on a cartridge

SAVE
SBYTES saves data from a cartridge
SEXEC

LOAD
LBYTES
EXEC
MERGE

OPEN__IN

OPEN__NEW opens and closes files
OPEN

CLOSE

PRINT
INPUT SuperBASIC file O
INKEYS

loads data from a cartridge

if you attempt to write to a cartridge which is write protected then the QL will repeatedly
atempt to write the data but will eventually give up and give a "bad medium” error.

12/184

- A monitor may be connected tc the QL via the RGB sccket on the back of the computer,
Connection is via an 8-way DIN plug pius cable for colour moniters, or a 3-way DIN
plug plus cable for monochrome. The RGB socket connections are as in the following
table, and the column indicating wire colour refers to the colour coding used on the
8-way cable and connector available from Sinclarr Research Limited. Fin designation
is as shown in the diagram below.

sleeve colour

pin function signal on QL RGB
colour lead

1 PAL composite PAL (4) crange

2 GND ground green

3 VIDEO composite monocrhome video (3) brown

4 CSYNC composite sync (2) yeliow

5 VSYNC vertical sync N blue

6 GREEN green 1 red

7 RED red (1) white

8 BLUE biue (1) purple

A moncchrome monitor can be connected using a screened lead with a 3-way or as
8-way DIN plug at the QL end. Only pins 2 (ground} and 3 {composite video) need
to be connected via the cable to the monitor The connection at the monitor end will
vary according to the maonitor but is usually a phono plug. The monitor must have a
75 ohm 1V pk-pk composite video non-inverting input {(which is the industry standard).
Both 3-way DIN piugs and phono plugs are commonly available from audio shops.

5 [T e RGB.

6 (green)
-1 {composite PAL)
-4 (composite synch)

syneh)

"o (gn

Oiagram of Moniter Connector as Viewed from rear of QL. Showing pin numbers and functions.

An RGB (colour) monitor can be connected using a lead with an 8-way CIN Plug at
the QL end. The connection at the monitor end will vary according to the monitar (there
1s no industry standard) and will often be supplied with it. A suitable cable with an 8-way
DIN plug at cne end and bare wires at the other end is available from Sinclair Research
Limited.

A composite PAL monitor, or the composite video input on some VCR's, may work with
the QL. Only pins 2 {ground) and 1 {composite PAL) need to be connected via a cable,
to the monitor or VCR.

12:84

monitor

33

34

network

comment

The QL can be connected with up to 63 other QLs. If there are more than two compulers
on the network then each computer (or station) must be assigned a unique station number.
On the QL this can be done using the NET command.

Information is transmitted over the network in blocks. For normal communication between
two stations the receiving station must acknowledge correct reception of the block. If
a biock is corrupted then the receiving station wili request retransmission.

Using a network station number of zero has a special meaning. Sending to netc._ 0
is called broadcasting: any message sent in this way can be read by any station which
is listening to neti__0. Note that the normal verification that a message has been received
is disabled for broadcasts, so that broadcasting messages of length more than one block
(255 bytes) is unreliable.

A network station which listens to its own station number (eg. NET3:LOAD neti__3) can
receive data from any station sending to it

Command Function

NET assign a network station number '

CPEN open a network channel
CLOSE close a network channel

PRINT
INPUT network /O
INKEY$

LOAD

SAVE

LBYTES

SBYTES

EXEC ijoad and save via network
SEXEC

LRUN

MAUN

MERGE

If you are planning to connect several QLs on the network, or use a long piece of cable,
then you should wire it up with low-capacitance twin core cable, such as 3 amp light-flex
or bell-wire, Take care 1o connect the centres of each jack to each other, and the outsides
to each other. You will find that although the software can handle 83 stations, the hardware
will not drive more than about 100m of cable, depending on what type it is.

If you are only connecting a few machines with the leads supplied, you need not worry.

12/84

operators

" Operator Type Function
= floating string logical type 2 comparison
== numeric string almost egual™ (type 3 comparison)
+ numeric addition
- numeric subtraction
/ rumeric division
* numeric muitiplication
< numeric string less than (type 2 comparison)
> numeric string greater than (type 2 comparison)
<= numeric string less than or equal to (type 2 comparison)
>= numeric string greater than or equal {lype 2 compariscn)
<> numeric string not equal tc {type 3 comparison)
& string cencatenation
&& hitwise AND
) bitwise OR
AN bitwise XOR FOR SERVICE MANUALS
on oiwise ot CONTACT:
ogical
AND >ogical AND MAURITRON TECHNICAL SERVICES
XOR logical XOR WWW.mauritron.co.uk
NOT logical NOT TEL: 01844 - 351694
MOD integer modulus FAX: 01844 - 352554
DIV integer divide
INSTR string type 1 string comparison
A floating raise to the power
- floating unary minus
+ floating unary plus

*almost equal — equal to 1 part in 107

If the specified logical operation is true then a value not equal to zero will be returned.
If the operation i1s false then a value of zero will be returned.

The precedence of SuperBASIC operators is defined in the table above, If the order precedence
of evaluation in an expression cannat be deduced from this table then the refevant

operations are performed from left to right. The inbuilt precedence of SuperBASIC

operators can be overriden by enclosing the refevant sections of the expression in

parentheses.

highest unary plus and minus
string concatenation
INSTR
exponentiation
muitiply, divide, modulus and integer divide
add and subtract
{ogical comparison
NOT (bitwise or logical)
AND (bitwise or logical)
lowest OR and XOR (bitwise or logical)

1284

35

peripheral

eXPanSIOn The expansion connector allows extra peripherals to be plugged into the QL. The
connections available at the connector are:

. 1
GND a 1 b GND
D3 a 2 b D2
D4 a 3 b D1
D5 a 4 b DO
D& a 5 b ASL
D7 a 6 b DSL
A19 a 7 b RDWL
A18 a 8 b OTACKL
A7 a 9 b BGL
A16 a 10 b BRL
CLKCPU a 1t b A15
RED a 12 b RESETCPUL
Al4 a 13 b CSYNCL
A13 a 14 b E
A2 a 15 b VSYNCH
AN a 186 b VPAL
A0 a 17 b GREEN '
A9 a 18 b BLUE
AB a 19 b FC2
A7 a 20 b FC1
AB a 21 b FCO
AS a 22 b AD
Ad a 23 b ROMOEH
A3 a 24 b Al
DBGL a 256 b A2
SP2 a 26 b 5P3
DSMCL a 27 b IPLOL
SM a 28 b BERRL
SPO a 20 b IPLIL
VP12 a 30 b EXTINTL
VM12 a 31 b VIN
VIN a 32 b VIN
L =

The connector on the QL is a B4-way (male) DIN-41612 indirect edge connector

An 'L appdended to a signal name indicates that the signal is active low.

Signal Function

AQ.A19 68008 address lines
RDWL Read / Write

ASL Address Strobe

DsL Data Strobe

BGL Bus Grant

DSMCL Data Strobe - Master Chip
CLKCPU CPU Clock

E 6800 peripherals clock
RED Red

BLUE Blue

GREEN Green

CSYNCL Composite Sync
VSYNCH Vertical Sync
ROMOEH ROM Output Enable
FCO Processor Status

FC1 Processor Status

FC2 Processor Status

RESETCPUL Reset CPU

QL Peripheral Output Signals

12/84

Signal Function

DTACKL Data acknowledge

BRL Bus request

VPAL Valid Peripheral Address
IPLOL tnterrupt Priority Level 5
IPLIL Interrupt Pricrity Level 2
BERRL Bus Error

EXTINTL External Interrupt
DBGL Data bus grab

QL Peripheral Input Signals

Signal Function

Do. D7 Data Lines

QL Peripheral Bi-directional Signals

Signal Function

SPQ.SP3 Select peripheral 0 to 3

VIN 9V DC (nominal) - 500mA
maximum

YM12 —12v

VP12 +12v

GND ground

Miscellanecus

It is not intended that the following description of the QL peripheral expansion mechanism
be sufficient to implement an actual expansion device, but rather be read to gain a basic
understanding of the expansion mechanism.

Single or multiple peripherals may be added to the QL up to @ maximum of 16 devices.
A single peripheral can be piugged directly into the QL Expansion Slct while multiple
peripherals must be plugged into the QL. Expansion Medule, which in turn is plugged
into the QL Expansion Slot via a buffer card,

In this context the term device aiso includes expansicn memary. Although the areas
of the QL memory map allccated to expansion mernary are different from those allocated
to expansion devices, the basic mechanism is the same. Only one expansion memaory
peripheral can be plugged into the QL at any one time. The address space allocated
for peripheral expansion in the QL Physical memory map allows 16 Kbytes per peripheral.
This area must contain the memary mapped /O required for the driver and the code
for the driver itself.

Qdos includes facilities for queue management and simple serial 'O which may te of
use when writing device drivers.

The position of each peripheral device in the overall memory map of the QL is determined
by the select peripheral lines: SPQ, SP1, SP2 and SP3. These select lines generate a
signal corresponding to the slot position in the QL expansion module, thus for a device
10 be selected the address input from address lines: Ald, A15, A16 and A17 must be
the same as the signals from SPO, SP1, SP2 and SP3 respectively.

12184

37

38

pixel

coordinate
system

The pixel coordinate system is used 1o define the positions and sizes of windows, blocks
and cursor positions on the QL screen. The coordinate system has its origin in the top
left hand corner of the default window (or screen) and always assumes that positions
are specified as though the screen were in 512 mode thigh resolution mode). The system
will use the nearest pixel available for the particular mode set making the coordinate
system independent of the screen mode in use.

Some commands are always relative to the default window origin, eg. WINDOW, while
some are always relative 1o the current window origin, eg. BLOCK.

»

0o X {©512)

v (2560)

The Pixel Coordinate System

12/84

A SuperBASIC program consists of a sequence of SuperBASIC slaternents, where each
staterment is preceded by a fine number. Line numbers are in the range of 1 to 32767,

Command Function
RUN start a loaded program
LRUN load a program from a device and
start it
SPACE| force a program o stop
syntax: fine__number:= *|digit| * {range 1.32767|
*|line__number siaternent |:stalernent] = | *
example: I 100 PRINT "This is a valid line number'
RUN

i, 100 REM a small program
110 FOR foreground = 0 TO 7
120 FOR contrast =0 TO 7

130 FOR stipple =0 TO 3

140 PAPER foreground, contrast, stipple
150 CURSOR 0,70

160 FORN =0T0 2

170 SCROLL 2,1

180 SCROLL -2, 2

190 END FOR n

200 END FOR stipple

210 END FOR contrast
220 END FOR foreground
RUN

12:84

program

39

40

Qdos

memory map

Qdos is the QL Operating System and supervises:

Task Scheduling and resaurce allocation
Screen /O (including windowing)
Microdrive 11O

Network and serial channel communication
Keyboard input

Memory management

A full description of Qdos is beyond the scope of this guide but a brief description is
included.

The system RAM has an organisation imposed by the Qdos operating system and is
defined as follows:

SV_RAMT-1

Resident
procedures

SV__RESPR Lfibs

Transient
programs

SV__TRNSP + fills

SuperBasic command
interpreter data
and
SuperBasic programs fils
SV__BASIC h

Fiing subsystem
slave block

SV__FREE

Channels and other
heap tems

SV__HEAP fls

System tables
and
System Variables

28000 Hex

Display Memory

QDOS Mermory Map

The terms SV__RAMT, SV__RESPR, SV__TRNSP, SV__BASIC, SV.._FREE, SV_HEAP
are used to represent addresses inside the QL. These terms are not recognised by
SuperBASIC or the Qdos operating system. Furthermore the addresses represented are
liable to change as the system is running.

sv__ramt RAM Top
This will vary according to the memory expansion boards attached to
the system.

SV__respr Resident Procedures
Resident procedures are loaded into the top of RAM. Space can be
allocated in the resident procedure area using the RESPR function,
but this space cannot be released except by resetting the QL. Resident
procedures written in machine code can be added to the SuperBASIC
name list and so become extensions to the SuperBASIC system.

12/84

sv__trnsp Transient Programs
Transient programs are loaded immediately below the resident
procedures. Each program must be self contained, ie. it must contain
space for its own data and its own stack. It must be position
independent or must be icaded by a specially written linking loader.
A transient program is executed from BASIC by using the EXEC
command or from Qdos by actvating it as a job.

The transient program area may be used for storing data only but this
data will still be treated by Qdos as a job and therefore must not be
activated.

sv__basic SuperBASIC Area
This area contains all loaded SuperBASIC programs and related data.
This area expands and contracts using up the free space as reguired.

sv__free Free Space
Free space is used by the Qdos file subsystem to create Microdrive
Slave Blocks, ie. copies of Microdrive blocks which can be held in RAM.

sv__heap System Heap
This is used by the systern o store data channel definitions etc. and
also provides working storage for the /O subsystem. Transient programs
may allocate working space for themselves on the heap via Qdos
systemn calls.

System Tables/ System Variables
This area is directly above the screen memoary. The System Tables and
supervisor stack are resident above the system variables.

Systemn calls are processed by Qdos in supervisor mode. When in supervisor mode
Qdos will not allow any other job to take over the processor System calls processed
in this way are said to be atomic, i.e the system call will process to completion before
relinguishing the processor. Some system calls are only partially atomic, ie. once they
have completed their primary function they will relinquish the processor if necessary.
Unless specifically requested all the 1/O system calls are partially atomic.

The standard mechanism for making a system call is by making a trap to one of the
Qdos system vectors with appropriate parameters in the processor registers, The action
taken by Qdos following a systemn call is dependent on the particular call and the overall
state of the system at the time the call was made.

Qdos supports a multitasking environment and therefore a file can be accessed by more
than one process at 2 time. The Qdos filing sub-system can handle files which have
been opened as exclusive fies or as shared files. A shared file can not be written to.
QL devices are processed by the serial /0 sub-system. The filing sub-system and the
serial /O subr-systemn together make up the redirectable I/O system. As its name suggests
any data output via this system can be redirected to any other device also supporied
by the redirectable 1O system.

The device names required by Qdos are the same as the device names required by
SuperBASIC and are discussed in the concept section devices. The callection of standard
devices supplied with the QL can be expanded.

The standard devices inciuded in the systern are discussed in this guide in the section
devices. Further devices may be added to the system, given a name (eg. SER1, NET)
and then accessed in the same way as any other QL device.

Jobs will be allowed a share of the CPU in line with their priority and competition with
other jobs in the system. Jobs running under the control of Qdos can be in one of three
states:

active: Capable of running and sharing system resources. A job in this state may
not be running continuously but will obtain a share of the CPU in line
with its priority.

suspended: The job is capable of running but is waiting for another job or /O, A job
may be suspended indefinitely or for a specific period of time.

inactive: The job is incapable of running, its priority is O and so it can never obtain
a share of the CPU.

1284

system calls

input/output

devices

multitasking

41

42

Qdos will reschedule the system automatically at a rate refated to the 50 Hz frame rate.
The system will also be rescheduled after certain system calls,

example: This program generates an on-screen readout of the real-time clock,
running as an independent job.

First RUN this program with a formatied cariridge in microcrive 2. This
generates a machine code title called “clock” Wait for the Micredrive to
stop. Next, set the clock using the SDATE command.

Then type:
EXEC

mdvZ_clock

and a continuous time display will appear at the top right of the cormmand

window,

100
110
120
130
140
1000
1010
1020
1030
1040
1050
1060

¢=RESPR(100)
FOR i=0 TO 68 STEP 2

READ x:POKE_W i+c,X
END FOR 1
SEXEC mdv2 clock,¢,100,256 .
DATA 29439,29697,28683,20033,17402
DATA 48,13944,200,20115,12040
DATA 28691,20033,17402,74,-27698
DATA 13944 ,236,20115,8279,-11314
DATA 13944,208,20115,16961,16962
DATA 30463,28688,20035,24794
DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window — the data tems

are, in order:

border colourfwidth, paperink colour, window width, height, x-origin, y-origin
These are pairs of byles, entered by POKE__W as words.

The x-origin and the y-origin (the last data iter) should be 272 and 202 in monitor mode,
or 240 and 216 in TV mode.

Generate the paper and ink word, for exampie, as 256 * paper + ink. Thus white paper,

red ink is 256 * 7 + 2

= 1794.

12/84

Repetition in SuperBASIC is controlled by two basic program constructs. Each construct
rmust be identified to SuperBASIC:

REPEAT identifier FOR identifier = range
staternenis staternents
END REPEAT idfentifier END FOR identifier
These two constructs are used in conjunction with two other SuperBASIC statements:
NEXT rdentifier EXIT identifier

Processing a NEXT statement will either pass control to the staternent following the
appropriate FOR or REPeat statement, or if a FOR range has been exhausted, to the
staterment following the NEXT.

Processing an EXIT will pass contral o the statement after the END FOR or END REPeat
selected by the EXIT statement. EXIT can be used to exit through many levels of nested
repeat structures. EXIT should aiways be used in REPeat loops to terminate the loop
on some condition.

A combination of NEXT, EXIT and END statements allows FOR and REPeat loops t©
have a loop epilogue added. A loop epilogue is a series of SuperBASIC statements
which are executed on some special condition arising within the loop:

FOR identifier = for__list
staternents exit

NEXT identifier. next
epilogue

END FOR identifier

The loop epilogue is only processed if the FOR locp terminates normally. If the loop
terminates via an EXIT statement then processing will continue at the END FOR and
the epilogue will not be processed.

It is possibie 10 have a similar construction in a REPeat loop:

REPeat identifier
staternents
IF condition THEN NEXT identifier

epilogue
END REPeat identifier

This time entry into the foop epilogue is controlled by the IF staterment. The epiiogue
will or will not be processed depending on the condition in the IF staternent. A SELect
statement can alsc be used to control entry into the epilogue.

12/84

repetition

43

ROM

cartrldge Slot Allows software to be used in the QL system from a Sinclair GL ROM cartridge. The
ROM cartridge can contain software to directly change the behaviour of the SuperBASIC

system. The cartridge can contain:
. Software to be used instead of or with the SuperBASIC system. For example:

assemblers
compilers
debuggers
application software
etc.

ii. Software to expand the SuperBASIC systemn. For example:

special procedures
etc.

It is not possible to use ZX ROM cartridges on the QL.

pin out

— a 1 b |vbD .
Al2 a 2 b | A4
A7 la 3 b|aA3
AB a 4 b A8
A5 a 5 b | A8

sLoT E]a 6 b[sLoT
Al a 7 b | AN
A3 |a 8 b | ROMOEH
A2 a 9 b A0
Al a 10 b|As
AD a 1 b | D7
po |a 12 b |Dé
Dt |a 13 blD5
D2 a 14 b | D4

GND |a 15 b|D3

Side b is the upper side of the connector; side a is the lower

Signal Function

AD. A5 Address lines
DO..D8 ‘Data lines
ROMOEH ROM Qutput Enabie
VDD 5V

GND Ground

warning Never plug or unplug a ROM cartridge while the QL power is on.

The screen is 512 pixels across and 256 pixels deep. Only the solid colours:

black
red
green
white
can be displayed in this made.

Low resolution mode also has a hardware flash.

The screen is 256 pixels across and 256 pixels deep. The full set of solid colours is
available in this mode:

blue

red
magenta
green
cyan
yellow
white

A domestic television is not capable of displaying the complete QL screen. Portions of
the screen at the top and the sides will not be reproduced. The default initial window
will take account of this and will reduce the effective picture size. The full size can be
restored with the WINDOW command.

Command Function

MODE set screen mode

12/84

screen

512 mode

256 mode

warning

45

46

slicing

warning

Under certain circumstances it is possible to refer to more than one element in an array
ie. slice the array. The array slice can be thought of as defining a subarray or a series
of subarrays to SuperBASIC. Each slice can define a continuous sequence of elements
belonging to a particular dimension of the criginal array. The lerm array in this context
can include a numeric array, a string array or a simple string.

it is not necessary o spacify an index for the full number of dimensions of an array.
If a dimension is omitied then sfices are added which will select the full range of elements
for that particular dimension, ie the slice (0 TO). SuperBASIC can only add slices to
the end of a list of array indices.

gyntax: index:= | numeric__exp [single element]
| numeric__exp TQ numernc__exp irange of elements]
| numeric__exp TO frange to end|
| TO numeric__expression frange from beginning
array__reference: = | variable

| variable (|index *{ndex] x|)

An array slice can be used to specify a source or a destination subarray for an assignment
statement. :

example: I PRINT data_array
il PRINT letters$(1 TO 15}
iit. PRINT two_d_array (32 T0 &)

String slicing 1s performed in the same way as slicing numeric or string arrays.

Thus

as(n) will select the nth character

as(n TO m) will select all characters from the nth to the mth,
inclusively.

a$(n TO) will select from a character n to the end, inclusively.

as(i TO m) will select from the beginning to the nth character,
inclusively.

a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFTS, MID$, RIGHTS. These are not
necessary in SuperBASIC. Their eguvalents are specified below:

SuperBASIC Other BASIC

a$(n) MID$ (as.n,1)

a$(n TO m) MID$ (a$,n,m+1-n)

a$(1 TO n) LEFTS (a$.n)

a%(n TO) RIGHTS (a$,LEN(a$)+1-n)

Assigning data 1o a sliced string array or string variable may not have the desired effect.
Assignments made in this way will not update the length of the string. The length of
a string array or string variable is only updated when an assigrment is made to the
whole string.

12/64

Immediately after switch on {or reset) the QL will perform a RAM test which will give
a spurious pattern on the display. If the RAM test is passed then the screen will be cleared

and

Alfter start-up, the QL displays the copyright message and asks whether it is being used
on a television or a monttor. The QL will set different initial screen modes and window

size

Press F1 if you are using a monitor and F2 if you are using a television set.

The QL has the ability to boot’ itself up from programs cortained in either the ROM
cartridge slot or in Micradrive 2. If the ROM cartridge slot contains a self starting program
then start up will continue under the contral of the program in the ROM cartridge. If
nothing suitable is found then the QL will check Microdrive 1 for a cartridge. If a cartridge
is found and if it contains a file called BOOT it is loaded and run.

The QL has three default channels which are iinked to three default windows.

Channel 0 is used for listing commands and error messages, channel 1 for program
and graphics cutput and channe! 2 for program listings. The default channel can de
modified using the optional channel specifier in the relevant command.

It is impartant NCT to switch on the QL with a Microdrive cartridge in position. If booting
from a Microdrive carfridge is required then the cartridge must be inserted between
switching on and pressing either F1 or F2.

12/84

the copyright screen displayed.

F1 ... monitor
| F2 ... TV

©19851’c lair Research Ltd.

s depending on the answer.

Monitor

Television

start up

default screen

warning

47

48

sound

Sound on the QL is generated by the QLs second processor (an 8049) and is controlled
by specifying:
up to two pitches
the rate at which the sound must move between the pitches, the ramp
how the sound is to behave after it has reached one of the specified pitches, the wrap
if any randomness should be buit into the sound, ie. deviations from the ramp
if any fuzziness should be buit into the sound. ie. deviations on every cycle of the sound

Fuzziness tends o result in buzzy sounds white randomness, depending on the other
parameters, will result in ‘melodic’ sounds or noise.

The complexity of the scund can be buitt up stage by stage gradually buitding more
complex sounds. This is, in fact, the best way to master sound on the QL.

Specify a duration and a single pitch. The specified pitch will be beeped for the speciied

time.
LEVEL 1
pitch
time
This is the simplest sound command, other than the command to stop the sound, on
the QL.
LEVEL 2 A second pitch and a gradient can be added to the command. The sound will then
‘hounce between the two pitches at the rate specified by the gradient
The sounds produced at this ievel can vary between: semi musical beeps, growls, zaps
and moeans. It is best to experiment.
pitch2
pitch
pitch 1
time
LEVEL 3 A parameter can be added which controls how the sound behaves when it becomes
equal to one of the specified pitches. The sound can be made to ‘bounce’ ar ‘wrap!
The number of wraps can be specified, including wrap forever. it is even more important
o experiment.
pitch ’_H—‘—'_l—,_‘—l_l_l—‘\‘_‘__‘ ’_r'—r‘JJJ—\—LL‘_LLLY
pitch 1
tirne
pitch2
pitch
pitch 1
time

12/84

pitch

Randomness can be added to the sound. This is a deviation from the specified step

. or gradient.

Depending on the amount of randomness added in relation to the pitches and the
gradient, it will generate a very wide and unexpected range of socunds.

— pitch2

F‘I

— pitch 1

time

More variation can be added by specifying fuzziness, Fuzziness adds a random facter
10 the pitch continuously. Fuzziness tends to make the sound buzz,

Combining all of the above effects can make a very wide range of sounds, many of
them unexpected. QL sound is best explored through experiment. By specifying a tme
interval of zero the sound can be made to repeat forever and so a sequence of BEEP
commands can be used until the sound generated is the sound which is required. A
word of warning: slight changes in the value of a single parameter can have alarming
results on the sound generated.

12/84

LEVEL 4

LEVEL 5

50

statement

A SuperBASIC statement is an instruction to the QL to perform a specific operation, for
exampie:

LET a =2
will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individua!
statements from each other by a colon (@), for example:

LET a = a+ 2 : PRINT a

wil add 2 to the value identified by the variable a and will store the result back in a.
The answer will then be printed out.

If a line is not preceded by a fine number then the line is a direct command and
SuperBASIC processes the statemnent immediately. If the statement is preceded by a
ine number then the staiement becomes part of a SuperBASIC program and is added
into the SuperBASIC program area for later execution.

Certain SuperBASIC statements can have an effect on the other statemnents over the rest
of the logical line in which they appear ie. IF, FOR, REPeat, REM, eic. It is meaningless
to use certain SuperBASIC statements as direct commands. !

12/84

String arrays and numeric arrays are essentially the same, however there are slight
differences in treatment by SuperBASIC. The last dimension of a string array defines
the maximum length of the strings within the array. String variables can be any length
up to 32766, Both string arrays and siring variables can be sficed.

String lengths on either side of a string assignment need not be equal. If the sizes are
not the same then either the right hand string is truncated to fit or the length of the left
hand string is reduced to match. If an assignment is made 1o a sliced string then if
necessary the ‘hole’ defined by the slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the
dimension selects the whoie string while specifying a single element will pick out a single
character and specifying a slice will define a sub string.

Unlike many BASICs SuperBASIC does not treat string arrays as fixed length strings.
If the data stored in a string array is less than the maximum size cf the string array then
the length of the string 1s reduced.

Assigning data to a sliced string array or string variable may not have the desired effect.
Assignments made in this way will not update the length of the string and so it is possible
that the system wili not recognise the assignment. The length of a string array or a string
variable is only updated when an assignment is made to the whole string.

Command Function
FILL$ generate a string
LENS find the length of a string

string arrays
string variables

comment

warning

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/24

51

string
comparison

order

types of comparison

52

usage

. {decimal point/full stop)

digits or numbers in numerical order
AaBchDdEeFngHhIiJjKkLleNnOoPquRrSsTtUquHwaYyZz

space ! "AS AR ' ()x+ , - ./ ;<=>2@ 1N _/[]]7®
other non printing characters

The relationship of one string to another may be:

equal: All characters or numbers are the same or equivalent

lesser: The first part of the string, which is different from the corresponding
character in the second string, is before it in the defined order.

greater: The first part of the first string which is different from the corresponding

character in the second string, is after it in the defined order
Note that a *." may be treated as a decimal point in the case of string comparison which
sorts numbers (such as SuperBASIC comparisons). Note also that comparison of strings
containing non-printable characters may give unexpected results.
type O case dependent - character by character comparison
type 1 case independent - characler by character
type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type O not normally used by the SuperBASIC system.

type 1 File and variable comparison
type 2 SuperBASIC <,< =,=,> =,> INSTR and <>
type 3 SuperBASIC == (equivalence)

12/24

~ SuperBASIC syntax is defined using a non-rigorcus ‘meta language’ type netation. Four
types of construction are used:

|| Select one of
[] Enclosed item(s) are optional
** Enclosed ttems are repeated

.. Range
{] Comment

eg |AIB]| AorB
fA] A is optional
* A * A is repeated
ALZ A B C etc

Consider a SuperBASIC identifier:

A sequence of numbers, digits, underscores, starting with a letter and finishing with an
optional % or §

ietier.= | A.Z
la z

{a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ]
or abcdefghikimnopgrstuvwxyz

digt=4:0}1]2|3|4|5|6|7|8]|9]
[adgtisQorior2or3ordor5or6or7or8org
underscore.= __

fan underscore is _}j

identifier = letter * [letter | digit | underscore |* | % | § |
must start
with a ietter

a sequence of letters

digits and underscores

i.e. repeat something
which is optional

i2/84

syntax
definitions

34

windows

parts

Windows are areas of the screen which behave, in most respects, as though each
individual window was a screen in its own right, ie. the window wil scroll when it has
become file by text. it can be cleared with the CLS command, efc.

Windows can be specified and linked to a channel when the channel is opened. The
current window shape can be changed with the WINDOW command and a border
added to a window with the BORDER command. Output can be directed to a window
by printing to the relevant channel. Input can be directed to have come from a particular
window by inputting from the relevant channel. If more than one channel is ready for
input then input can be switched between the ready channels by pressing

[CTRL]C

The cursor wilt flash in the selected window.

Windows can be used for graphics and norn-graphic output at the same time. The non
graphic cutput is relative to the current cursor position which can be positioned anywhere
within the specified window with the CURSOR command and at any line-column
poundary with the AT command. The graphics output is relative to a graphics cursor
which can be positicned and manipulated with the graphics procedures.

Certain commands (CLS, PAN etc) will accept an optional parameter [0 define part of
the current window for their operation. This parameter is as defined below:

part description

0 whole screen

1 above and excluding cursor tine

2 bottomn of screen excluding cursor line
3 whole of cursor line

4 line right of and including cursor

Cormmand Function

WINDOW re-define a window

BORDER take a border from a window
PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents
SCROLL scroll a window’s contents

AT position the print position

CLS clear a window

CSIZE set character size

FLASH character flash

RECOL recolour a window

12/84

5arBASIC has a set of turtle graphics commands:

. smmand Function
ZNUP stop drawing
- =NDOWN start drawing
TVE move the turtie
-AN turn the turtle
ZRNTO turn to a specific heading

- set of commands is the minimum and normally would be used within ancther
zedure to expand on the commands. For example:

100 DEFine PROCedure forward(distance)
110 MOVE distance

120 END DEFine

130 DEFine PROCedure backwards(distance)
140 MOVE -distance

150 END DEFine

160 DEFine PROCedure Leftlangle)

170 TURN angle

180 END DEFine

190 DEFine PROCedure right(anglel

200 TURN -angle

210 END DEFine

=se will define some of the mare famous turtle graphic commands.

.aily the turtle’s pen is up and the turtle is pointing at 0% which is to the right-hand
.= of the window.

= FILL command will also work with figures drawn with turtle graphics. Also ordinary
-ohics and turtle graphics can be mixed, although the direction of the turtle is not
_dified by the erdinary graphics commands.

turtle
graphics

85

Concepts Index

A

ATTEYS - PO P U PO POP RIS 1
SCING o L B 46
SUINGS oo 52
storage o - PP PPTRP R o1

B

BASIC ... 2

Baud rales .. 13

BEEP 48

Monochrome monitor.. 33

Booting ... SR - 50

Break . . oo 3

C

Cartridges

RO o 44

Microdnve TR UR R 31
Channels R e 4
Character Set ... 5
CICIES. 24
CHOCK . oo 10
COBICION .. e TR 11
Close channels.............o U o4
Commands

KEYWOIS .\ oo .. 28

AIBCt 18

turtle graphiCs ..o 55

IR OWS o e e e 56

SCreen ..., TR TP 45
Codes

CRATACIEIS . 5

COIOUT L 12
ComMmMUNICALIONS ... e 13

Channels. . 4

TEVIGES oo e 16

NEIWOIKING oo 34
COMPANISONS. ... 53
Console device.......................... TR 16
Control characters........... RO RP R 5
Conversion........ TP R TR R 1
Coordinates

graphiCs ... 24

PIXEL Lo 36
TS o o 13
U0 e 24
D
Data

SIUCIUNES e e 1

BV . et 15
Data storage

Microdrives ... RTOTOTO 31

arrays 1
A 10
D .13
DEFine FUNCHON. . oo 23
Defaults
DEFine PROCedUre.......ocovv v 23
Devices

CONSOIE (COM) .o iv i TR .18

I1Q
Microdrives (Mav) .o 16,31
network {net)...........coooi 1634
PENPErAlS . 36
SCIEEM (SCIY .ot e 16
serial (SEr) ... 1316
CHANMEIS. .. 4
file types.............. PRSP 22
DIMEBNSION ..ottt e 1
Direct command........... 18
T oo 13
E
Elements.................... U U RUUTORUPIoY 1
Error handling ..o 19
X 43
Expansion
ROM Cantridge ... 44
PEMONEIAIS ... oo 36
EXPIESSIONS ... vvecceieieec e 21
F
Pl e e 2z
Flename ... 16,26
FIling ShapES.....ccooiiii 24
Floating point ... 15
FOR....... RO OO P VP PRURRPPPPORPPPR 43
FUNCHONS ... e e 23
G
GraPRiCS ... 24
BUTHIE e e e 55
H
Handshaking NPT PU PP PPPY 13
HEX COTBS ..o 5
High resolution montor ... 33
I
IEMtfIErS .. 26
ItalSation .. 50
Input
CRANNEIS. .. 4
ABVICES oo EUUTRRRTRTUROROROP 16
WINGOWS oo PP PR 56
IMEEOEIS .. oot 15
11O
TEVICES e e 16
T T O e et e 33
PEAPNENAIS ..o 36
QOS e 40
WANOWS e 56
J
JOYSHCK .. 27
K
Keyboard conventions..................... STUOURUSUR 5
KEYWOTAS ..o 28

12/84

LINES ... e e e PR 24
Line numbering ... 3951

direct commands 18
Lacal variables ... 23
LOOPS oo 43
M
Maths funclions.... ... TTTUTIOT 29
Memory

MDD o 30

EXPANSION ... e 36
MICIOOIIVES .. 31
Modes TP PP PR PP 45
M ONI O L 33
MUIEESKING ..o |
N
NI e 26
NE T e 34
NEWOrK 34
N E X T e e e 43
O
OPEN L 4
OPErators. ... o e 35
Operaling SyStem ... 40
Qutput

IVONIEOT e e e 33

channeis............... ST 4
Ordering

COBICION . 1

PrECEAENCE ... 35
P
ParamMEIBIS . 23
Peripheral expansion ... 36
PICUIES o 24
Pixel coordinates, 38
P OIS 24
POWET UD .o 50
Precedence 35
ProcedUre oo 23
PrOQrAMS .o e 39
Q
QUOS o 40
R
R A 30
Repetition.... ... 43
RGB 33
ROM e 30
RS-232-C 13
RS e 13
R 13

12/84

Concepts Index

S

SCAING . oot 24

Seheduler .o 39

SCIBEM 45
O e e e 16
BT e 16
WINOWS oo 56
COlOUIS e e e 12
MNOAES oo 45

Serial COMMUMHCAIONS .o.veevreeee e oo 13

SIgNAlS .o 13

SICING . et 46

SOUNT e o 48

SEAM UD oo 50

SEALEITIENIS. .o 51

SHPDIBS Lt e 12

Strings
VANBDIES . 52
SHCING v 46
AITAYS oot 52
COMDANSOMS 1o s e 53

SWISHING OM oo 50

Syntax definitions ... 54

T

a1 e 10

TG FUNCHONS .o 29

Turtle graphics s 55

XD e 13

TYPE COMVEISION ..ot 11

\

Variables . e 15
OCAD oo 23
SAINIGL e 15

W

WIROWS e 56

Ssircli=sir

QL Quill

©1984 PSION LIMITED
by Dick de Grandis-Harrison (Psion Limited)

CHAPTER 1
ABOUT

svcated wordprocessor. it has been designed to give you the maximum QL QU"-L

= iity, yet is still easy to learn and to use. As you wil! see later, you wil
‘zrmed as to what you can do next and how to do it

_raprocessor in any circumstance where you would otherwise use a
- machines are very similar in function, although the wordprocessor
zzas that are not matched by a conventional typewriter. Perhaps the
=rznce is the ease with which mistakes can be corrected. Since the

~mediately as you type it in, you can make as many corrections as
-z only print the text when you are sure that it is exactly what you want
: De assured of perfect results every tme.

~orking through this manual, there are a number of other advantages.
-~ using a typewriter, it is necessary to press the carriage return key
sme. In Quill, this function is performed autornatically. Whenever the
zs the end of a ling, a new line is started; you press ENTER when
: new paragraph. Whenever a new line is started you will notice that
- =xt in the last line wili be adjusted so that the left and right margins
~znout the text. This process, which is known as justification, gives a
= zppearance to the final result, without any effort on your part. Like
.25 of Quill, the form of justification that you use can be modified,
_ 27 requirements.

.. are not sure what to do, remember that you can ask for Help by
. ~amember that you can cancel any partially completed operation (e.g.
< oy pressing ESC.

CHAPTER 2
GETTING
STARTED

LOADING QL QUILL

Load QL Quill as described in the QL Program introduction. When Ioaded the following
message will be displayed:

LOADING QL QUILL
version x.xx
Copyright © 1984 PSION SYSTEMS

wordprocessar

where x.xx is the version number, eg. 2.00.

Quill wilt only need to access the cartridge in Microdrive 1 whenever you print a document
or ask for Help.

When a document is being entered Quill wit! only require a cartridge in Microdrive
2 when the text is longer than about three pages. Quill will ask for a cartridge when
necessary. Once the cartridge is inserted it should not be remaved until the document
is saved or abandoned.

HELP CURSOR TEXT Insert Type at [] || TYPEFACE COMMANDS
press F1 move New para Press ENTER press F3
PROMPTS with? | Delete CTRL & < T.— || Press F4 ESCAPE
oress F2 keys — Change mode SHIFT & f4 press £9¢
S Y Y SO S
FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554
MODE: INSERT WORDS: O LINE: 1 PAGE: 1
TYPEFACE: NORMAL DOCUMENT: no name

Figure 21 The main display with a manitor (80 characters)

GENERAL
APPEARANCE

Initially the Quill display should look like that shown in Figure 2.1 or Figure 2.2. This
is known as the main display.

Quill can show 80, 64 or 40 characters per line of the screen. If you are using a domestic
television the dispiay may not be clear enough for you to see 80 characters per line.
If this is the case you will need 1o use 64 or 40 characters. The 64 character screen
is very similar to that for 80 characters. The 40 character screen is arranged differently
and the main display will look like Figure 2.2,

12184

CURSOR TEXT Insert Type at|| TYPEFACE
move New para Press ENTER
witht | Delete CTRL & < Tl— Press Fb
keys — Change mode SHIFT & F4
| HELPF1 || proMeT F2 [COMMANDS F3 I ESCAPE ESC |
Sl o2 : .3
MOOE: INSERT WORDS: 0 L1 P: 1
TYPE: no name

Figure 2.2 The main display with 40 characters

Quill initially selects either an 80 or a 64 character display ~ depending on whether
you pressed F1 or F2 when you switched on the computer. You can change from one
form of display to ancther at any time with the Design command which is described later,

Apart from the difference in appearance, Quill works in exactly the same way with all
three forms of display. Most of the diagrams in this manual are shown for the 80 character
display.

The screen is divided into three main sections: the display area, the status area and

the control area.

—

Figure 2.3 The display area Figure 2.4 The ruler

The largest area, in the centre of the screen, is reserved for the text of your document,
Almost everything that you type at the keyboard will appear in this area.

Across the top of the display area is the ruler. This is a row of dots, marking each character
space across the screen. Every fifth space on it is marked with a colon (1) and every
tenth space is numbered.

12/84

Getting Started

The Display Area

Getling Started

The Status Area

The Control Area

THE CURSOR

TEXT

The status area, which uses the bottom three lines of the screen, shows information atbout
your current document. For example, it normally shows its name. Initially you will not
have given a name to a document and Quill shows “no name’ Quili will show this for
any text that you type, until you give the doecument a name,

The status area also shows that Quill is currently in insert mode, which means that anything
you type into your document will be inserted (as opposed to writing over any following
text). it also shows that there is no special typeface, ie. that you are using a normal
typeface. Bold (emphasised), underlined, subscript and superscript typefaces are also
available and we shall see how to use them later on.

In addition, the status area shows the number of words in the current document, and
the line and page number of the position of the cursor. It initially shows that you are
at line 1 of page 1 of a document which contains no words,

The status area is also used for showing any special text that is typed in during the
use of commands {the set of instructions available when you press F3). For example,
the section of text being searched for when you use the Search command (see Chapter
5) will appear in the status area.

Figure 25 The status area Figure 2.8 The control area

The control area occupies the top few lines of the screen. it shows the normal options
to abtain Help (F1), to turn the prompts on and off (F2}, to select a command {F3) and
to cancel any incomplete operation (ESC). in addition there are three options that are
specific 10 Quill. These are displayed in the three central boxes of the control area and are;

Cursor — move the cursor
Text — add or remove text
Typeface — change the typeface

On the top line of the central display area you will see a small rectangle. This is known
as a cursor and marks the position where the text you type will be placed.

The control area shows that you can move the cursor around the text area by use of
the four cursor keys on the keyboard, When you have some text in your document, each
time that you press one of these keys, the curser will move by one space in the direction
indicated by the arrow. The cursor will not pass the end of the text. If there is no text
in your document you will not be able to move the curser from its original position.

You can aiso move the cursor around the text in larger steps. If you hold down SHIFT
and, press the left or right cursor keys the cursor will move left or right by units of one
waord. When you press SHIFT together with the up or down cursor keys the cursor will
move backwards or forwards by one paragraph.

The option shown at the centre of the control area indicates the vanous ways in which
you can change the text of the document. Simply typing at the keyboard will insert the
text at the cursor position.

Figure 2.7 Moving the cursor Figure 28 The text options

The second ling of the Text option shows that pressing ENTER s used to mark the start
of a new paragraph. You do not need to press ENTER when you reach the end of
a ling of text If you continue typing in words until you reach the end of the first line,
the new words will automatically appear on the second line and the spacing of the words
on the first line will be adjusted. This is justification, which controls the way the text is
aligned with respect to the left and right margins.

Try pressing ENTER and then typing in some text to see the sffect of starting a new
paragraph. Do not worry if the indentation of the new paragraph is not as you wish
- you will find how to change it in Chapter 4.

You can include characters in your document which are not shown on the Keyboard,
They are selected by pressing CTRL or CTRL and SHIFT and ancther key. The Concept
reference quide contains a full list of the usable characters together with the relevant
keying.

You can delete text, one character at a time, to the left or right of the cursor pasition.
Hold down CTRL and press either the left or the right cursor keys.

While you were typing in text you may have noticed some changes taking place in the
status area at the bottomn of the screen. The word and line counts will always agree with
the contents of the document. The remainder of the status area will not have changed.
In particular, the document will still be unnamed. You give a name to a document when
you save it on a Microdrive cartridge, (as described in Chapter 7).

Now that you have some text in your document, you can try maoving the cursor around
the text area by use of all four cursor keys. When you have finished, move the cursor
to the end of the text

A further option in the control area is headed typeface and is used to modify the
appearance of the text in your document.

Press F4 and you are given five choices:

to use bold (or heavy) type

to display high script (superscript)
to display low script (subscript)

to produce underlined text

1o ‘paint’ existing text,

Any one of these is brought into effect by pressing F4 and then a single key from the
list shown in the control area. As an eéxample let us use this option to produce underlined
text. Press F4, then the U key.

The display returns to normal and nothing seems to have changed, except that the
typeface is marked as UNDERLINE’ in the status area. If you now type in some more
text you will see that it is underlined as it is displayed.

In Quill you see exactly what will appear in the final printed version, The only things
that are not always shown on the screen are the upper and iower page margins, and
the spacing between lines (when you select double or triple spacing). Quill does not
show these since they would reduce the amount of text visible on the screen at any
one time.

12/84

Getling Started

TYPEFACE

Getting Started

COMMANDS

To turn off underiining, oress F4 and then the U key again. If you now type in a few
more words you will see that they are not underlined - the underlining option works
like a simple on-off switch. or toggle.

You will find a fuller description of underlining, and the other three typeface options,
in Chapter 4.

Figure 29 Typeface Figure 210 The commands

You select a command by pressing F3. The list of commands in the control area is known
as the command menu.

You can select any of the commands shown in the menu (lisf) at the centre of the control
area by pressing the key corresponding to its first letter.

Quill has more commands than can be displayed in the command menu. You are
therefore given two alternative lists and can switch between them with the Other
command.

Since some commands start with the same letter it is important to check that the
command you want is displayed in the control area before you select it.

HELP COMMANDS Erase Header Margins Save COMMANDS

press F1 Copy Footer Justify Print Tabs press F3

PROMPTS Design Goto toad Quit ESCAPE

press Fe Other Press first letter press ESC
......... LIPS S SR TP SRR RPN UM IR DN . DIV SRR PR SNPAS -

In the beginning []

command >
MODE: INSERT WORDS: 3 LINE: 1 PAGE: 1
TYPEFACE: DQCUMENT: no name

Figure 2.11 the first command menu

12784

The descriptions of the various commands will take up much of the rest of this manual.
For the moment we will describe the use of just two commands: Quit and Zap.

Quit is used when you have finished with Quili, Press F3 and then the Q key o use
quit and return to SuperBASIC. Quit will ask whether you want to save your current
document on a Microdrive cartridge before guitting. Press ENTER to save it or press
A 1o abandon it

You can press ESC to cancel the command and return to your document

The Zap command is in the commands | menu and so you will have to use the Other
command before selecting Zap, You must press £3, O and then Z. Zap clears from
memory the text of the current document, but does not return to SuperBASIC.

HELP COMMANDS Merge Search COMMANDS
press F1 Files Page press F3
PROMPTS Hyphenate Replace ap ESCAPE
press F2 Other Press first letter |! press ESC

B S I - SN U S S S J Y TP A S

In the beginning [7]

command >
MODE: INSERT WORDS: 3 LINE: 1 PAGE: 1
TYPEFACE: DOCUMENT: no name

Figure 212 The second command menu

if you clear the text before you have saved it on a Microdrive cartridge you will not be
able to recover it without typing it in again. Quill will therefore ask you to confirm your
choice by pressing ENTER. You have the alternative choice of pressing ESC to cancel
the command and return to your document.

12/84

Getting Started

CHAPTER 3

CURSOR
EDITING

INSERTING TEXT

DELETING TEXT

OVERWRITING

In this chapter you will learn how to use Quill's simple editing facilties. The changes
to the text will atways occur at the position of the cursor. You must therefore use the
cursor keys fo move the cursor 1o the place you want to alter before making any changes.

This form of editing is known, for fairly obvious reasons, as cursor editing. You may practise
using these techniques on a piece of text that you type in yourself, or you may use the
text provided with Quill. If you type in your own text, do not worry about any mistakes
you make. In fact it may be a good idea to add deliberate mistakes ~ each mistake
will give you extra practice in using the editing facilities.

Quill is initially in insert mode, so that any text you type is automatically inserted at the
cursor position. To insert letters or words into the middle of the text, do the following:

Move the cursor, by using the four cursor keys, to the point where you want to
make the insertion.

Type the letters or words that you want to insert. The characters are inserted
immediately under the cursor position, and any existing text moves to the right
to make room for them. :

The text is rejustified autoratically as you make the inserion.

If you wished to insert several words, it would be annoying to have tc wait until the text
was adjusted each time you pressed a key, Quill detects this situation and reacts by
splitting the line at the point where you are inserting text. This is known as an aufornatic
text split. You can then type in as much text as you like.

Quill will restore the text when you finish inserting text at that point (i.e. when you press
a cursor key, a function key or ESC).

The deletion of text at the cursor position is also very simple. You use the CTRL key
together with the cursor keys.

To see the action of the left cursor key, position the cursor immediately after the character
or characters that you want to delete. Now hold down CTRL and press the left cursor
key briefly. The letter immediately to the left of the cursor position will be deleted and
the cursar will move one space to the left. Each time you press the left cursor key, with
the CTRL key held down, one more letter will be deleted. If you wish to delete ‘several
letters you can hold both the GTRL and the left cursor key down, using the auto-repeat
facility. Always press the CTRL key before the cursor key.

If you use CTRL together with the right cursor key, text will be deleted, character by
character, from beneath the cursor pesition, and the text to the right wilt close up o
fill the gap.

You can delete whole words at a time, to the left or to the right of the cursor, by using
SHIFT and CTRL together and pressing either the left or the right cursor key.

You can delete the whale line to the left or right of the cursor Hold down the CTRL
key and press the up cursor key. The line to the left of the cursor will disappear Similarly,
pressing the down cursor key will delete the whole of the line to the right of the cursor.

In all cases the text will be rejustified automatically.
In overwrite mode you can write over existing text and replace it with the new text.

You can change to overwrite mode by hoiding down SHIFT and pressing F4. The mode
indicator at the left hand side of the status area will change from INSERT' to ‘OVERWRITE'
indicating that text typed at the keyboard will replace existing text. Pressing SHIFT and
F4 again will change back to insert mode.

With Quill set to overwrite mode, position the cursor at the start of the text to be replaced
and type in the replacement. When you have finished making replacements, return to
insert mode by pressing SHIFT and F4 again, otherwise you will write over text that
you want 10 keep.

12/84

HELP CURSCR TEXT Insert Type at TYPEFACE COMMANDS
press F1 move New para Press ENTER press F3
PROMPTS witht | Delete CTRL & +~ 1. — || Press F4 ESCAPE
press F2 keys — Change mode SHIFT & Fé4 press ESC
NP P TP DOV S R P Y S SN PR - P R T
this is a sentflece to be ammended
MODE: INSERT WORDS: 7 LINE: 1 PAGE: 1
TYPEFACE: DOCUMENT: no name

Figure 3.1 Overwriting

Figure 3.1 shows a typical situation where you would want to use the overwrite mode.
With the display as shown, with the cursor on the 'n' of ‘sentnece, you can overwrite
with & and '’ to correct the word. (You can also practice deleting a character by removing

one of the ms from ‘ammended")

12/84

Cursor Editing

Vv

//

CHAPTER 4
TEXT

,4sMATTING

TYPEFACE

This chapter is concerned with the format of the text; that is, the layout and appearance,
as opposed 10 the actual content. You will find out how to use the different typefaces,
Bold, Underling, High and Low script You will also learn now to move the position of
the left, right and incdent margins, and how to change the justification which affects the
way the text is aligned with respect to the margins.

The underlining facility has already been used as an example of the use of the typeface
option. In this section we shall examine its use more fully, together with the options to
use boid characters, high script (superscript) and low script (subscript).

HELP TYPEFACE To change typeface press key COMMANDS
press F1 B(old}, H(igh), L{ow) or Ulnderline) press F3 -
PROMPTS ESCAPE
press F2 or P to paint or change existing text press ESC

AU DR DU ST DU SURE DY SRS DUU. SIS SO TR DIPUIN JUNPPR. P .
In the beginning God created the heaven and the earth And the eart

was without form, and void, and darkness was upon face of the deep And the
spirit of God moved upon the face of the waters.

And God said, [Uet there be Llight: and there was light.

And God saw the light , that it was good : and God divided the light
from the darkness. And God called the light Day, and the darkness he called
Night. And the evening and morning were the first day.

And God said

TYPEFACE >
MODE: INSERT WORDS: 99 LINE: & PAGE: 1
TYPEFACE: UNDERLINE DOCUMENT: no name

Figure 4.1 Selecting a typeface.

In general you can select any of these options by pressing F4 and then the appropriate
letter — Bold, Underline, High script or Low script. If one of these options is currently
switched on, you can turn it off again by exactly the same method as you used to turn
it on — by pressing F4 and then the appropriate letter

Note that any text that you type will always appear in the typeface shown in the status
area. If you move the cursor into a region which is in bold type, for example, the status
area will show Bold typeface, and any further text that you type within this region will
also be in bold type. The typeface changes automatically as soon as you move to a
region containing a different typeface.

Of course, you can only use cne of High script or Low script at any one time. If you
select one of these, the other is automatically switched off.

There are three ways in which you may want to use the typeface option:

Insert new text in a particular typeface,
Alter existing text to a new typeface,
Change or remove an existing typeface.

if you want 1o type in some text in a particular typeface you should press F4 and select
the typeface you want. Any text that you then type in will appear in the typeface you
have selected. When you want to return to normal text you should switch off the typeface
by pressing F4 followed by the appropriate typetace letter(s).

12/84

Itis easy to change the typeface used in existing text. The method is known as painting
since you use the cursor like a paint brush, changing the typeface of any text over which
it moves,

First you must move the cursor to the start of the text to be changed, press F4 and
then press the P key. Next, select the combination of typefaces you want Use the right
and down cursor keys tc move the cursor across the text 1o be changed. When you
reach the end of the text you want to alter, leave the option by pressing ENTER. You
do not need to switch off the typeface selection: it will revert to the correct typeface as
So0n as you move away from the area painted in the new typeface. Figure 4.2 shows
the appearance of the screen while painting text with underlining.

HELP TYPEFACE To change typeface press key COMMANDS

press F1 B{old), H{igh), L{ow) or Ulnder!ine) press F3

PROMPTS then use . = to paint existing text ESCAPE
unress F2 ENTER to end oress ESC
......... L S . F U S ST SUDEN. SO SN - SN S SO S

In the beginning God created the heaven and the earth And the eart
was without form, and void, and darkness was upon face of the deep And the
spirit of God moved upon the face of the waters.

And God said, Let there be light: and there was light.

And God saw the light , that it was good : and God divided the Light
from the darkness. And God called the light Day, and the darkness he callegd
Night, And the evening and morning were the first day,

And God said Let there bef]

TYPEFACE >
MODE: INSERT

WORDS: 95 LINE: & PAGE: 1

TYPEFACE: UNDERLINE DOCUMENT: no name

Figure 4.2 Painting underline typeface

You can change, or remave, an existing typeface in the same way in which you add
a new typeface to existing lext Again you should move the cursor to the start of the
text before pressing F4. Press the P key and then select (or switch off) the typeface
combination you require. Move the cursor through the text you wish to change and then
press ESC.

When you change text from an existing typeface to a new one, Quill does not remember
the original typeface. Suppose, for example, you change ‘ext which was originally
underlined to being in bold characters. If you fater remove the bold typeface, the final
text will be in plain characters, and will not revert to being underlined.

You change the widths of the margins with the margin command. Each new margin
position takes effect from the current paragraph and remains in force for all following
paragraphs, until you make ancther change to the position of the margin.

Press the command key (F3) and then the M key to start this command. In addition
to other changes in the contrel area you will see that three choices — LEFT, INDENT
and RIGHT will appear and that the LEFT option: is highlighted. These options represent
the three margins, and the one that is highfighted is the one that you can move. You
can step the highlighting from option to option by pressing the space bar, or you can
select a particular option by pressing the key corresponding fo its first letter. When the
name of a margin is highlighted in the control area you can move that margin with the
ieft or right cursor keys.

Suppose you wish to move the left margin to the right by three characters, starting with
the second paragraph of your document.

12/84

Text Formatting

MARGINS

TextFormatting

12

JUSTIFICATION

First move the cursor to any point in the second paragraph and then type:

[F3} M
As indicated by the highlighting, the left margin is the one you can move, st you just

have to press the right cursor key three times. The change in the margin takes place
immediately, so that you can see the effect before you leave the command.

You can ieave the command straight away by pressing ENTER, or you can continue
to make further margin changes. Press the space bar until the correct margin is selected
and move it with the left and right cursor keys. You can use the up and down cursor
keys to move the cursor to another paragraph and make further changes to the margins.
After you have made ail the changes you want you can leave the command by pressing
ENTER.

The indent margin marks the character positon which is used for the stari of a new
paragraph. For an 80 character display it is initially set at the fifteenth character position.

There is no restriction on the relative positions of the indent and left margins. If you do
not want to use indented paragraphs you may move them so that they are both in the
same place. You may even place the indent margin to the left of the left margin. This
is useful for producing numbered paragraphs as shown in the following example.

Indent Margin
| Left Martin
|

1) This is the first of two
paragraphs to show how you can
uge indent margins

2) The indent margin is three
characters to the left
of the left margin.

In this case, stariing a new paragraph (by pressing ENTER) will allow text to be typed
at the “indent” position. All following text will be displayed between the left and right
margin positions until you press ENTER again.

The justify command allows you tc alter the type of justification used in your document.
Like the margins command, all changes take effect from the current paragraph (that
containing the cursor) and remain in force until the end of the document, or until the
next change of justification. When you select this command you will see that you are
offered the choice of left, right or centred justification.

initially, it assumes right justification, the text is aligned on both the left and right margins,
producing text with an appearance like that of this manual. If there are not
sufficient characters on a line to make the margins maich, extra spaces will be added
between the words until they do. The final effect is very professional. However,
if you use an unusually large quantity of extra-long or nyphenated words in a document,
unpleasant-looking spaces may result.

To choose left justification, press the L key after calling the Justify command.

This will produce text which looks like the text in this paragraph. The left margin is
aligned, but the spacing of the text within a line is not adjusted, so that the right
hand margin is left uneven.

Centre justification, selected by using the C option
of the Justify command, causes the text of each line to be centred between the left
and right margins. The text could then appear as shown in this paragraph.
Centre justification is useful, for example, in centering headings
and titles, or for adding labels to diagrams.

As with the margins command, you may press the up or down cursor keys [0 move
to another paragraph and make further changes of justification. Press ENTER to leave
the command.

12/84

This chapter will extend your knowledge of the editing facilities to inciude block copies,
moves and erasures. In addition, the extremely powerful technique of search and replace
editing will be introduced. These faciiities are available through the Quill editing commands
~ copy, erase, search and replace.

In addition to copying a block of text from one place in the document to ancther. the
copy command also allows you to move blocks of text

The only difference between copying and moving text is that, in the case of a copy,
the original text is left in position so that you end up with two copies, You would use
this, for exampile, if you wanted tc create a table, with a piece of text repeated a number
of imes, or if you wanted to see the best place to include a particular paragraph.

If you move some text, the new copy is inserted and the old copy is deleted, so that
you are left with only ane version.

The copy command gives you the option of either keeping or deleting the old copy
and therefore gives you both facilities in a single command.

When you select the copy command (by pressing F3 and then the C key) you must
first move the cursor to the beginning of the text you want to copy, and then press ENTER.
Move the cursor to the end of the text 1o be copied. When you move the cursor the
text that will be affected by the command is highlighted so that it is easy o see how
much text will be copied. If you accidentally mark too much text you may use the left
OF up cursor keys to move backwards, but you may not pass the start of the marked
text After you have marked the text you shoutd again press ENTER.

In response to the next prompt you should move the cursor to the point where you want
the selected text to be inserted and press the C key. The copy will be made and inserted
immediately. You are then asked if you want to delete the old copy. You should press
the K key to keep the oid version (to produce the effect of a copy) or press ENTER
o accept Quill's suggestion to delete it.

You can then end the command by pressing ENTER, which will take you back to the
main display.

However, you also have an option of making further copies of the same text at other
places in your document. All you have to do is to move the cursor 1o the point wherg
you want another copy and press the C key. You can repeat this as many times as you
want. While you are making these extra copies you are not asked whether to keep or
delete the old copy. When you have finished making copies you should press ENTER
to leave the command.

As is normal in Quil, pressing ESC will cancel any partially completed action, but will
not undo anything that has been completed. All copies that you have made will be left
in the text if you press ESC.

You should use this command (press F3 and then E) if you want to remove any large
biocks of text from your document Remember that it is simpler to delete small bits of
text with the cursor editing facilities described in Chapter 3.

As with the copy command, you are asked to move the cursor 10 the start of the text
to be erased and then to press ENTER. You then have to move the cursor 1o the end
of the text — again the text which will be affected is highlighted. When you! are satisfied
that you have marked the correct amount of text you should press ENTER and the
marked text will be erased immediately,

The search command allows you to look for a particular word or phrase, through all
or part of your document. You can use it, for example, to check whether you have used
a particular word or phrase too often. The first search will start at the beginning of the
text, but can then be continued from the current cursor position.

The search command is in the second command menu so you select it by pressing
F3, O and then S.

When you use the command you are asked to type in the text which you want to find,
finishing with ENTER. Quill will immediately start searching your document from the
top until it finds the first occurrence of the text. The cursor is left positioned at the start

12184

CHAPTER 5
COMMAND
EDITING

COPY

ERASE

SEARCH

13

REPLACE

of the found text. If this is the cccurrence you want, you can leave the command by
pressing ENTER.

However, once you have given the search command some text to lock for, you can use
it again to find the next occurrence of that text. Instead of pressing ENTER, just press
the C key. !f you do this Quill continues 1o search from the current cursor position untii
it finds the next occurrence of the given text. You can repeat this as many times as you
like, finding successive cocurrences. Press ENTER to leave the command when you
have found the occurrence you want.

If. at any stage, Quili does not find anather occurrence of the text in your document
it tells you so and waits for you to press the space bar and will then return to the main
display.

The replace command is similar to the search command, but also gives you the ability
to replace some or all of the occurrences that are found. The command is in the second
command menu, so you select it by pressing F3, O and then R.

You are asked to type in the text to be found. When you press ENTER at the end of
the text, Quil immediately finds the first occurrence and asks you to type in the
replacement text (dont forget to press ENTER at the end) ‘

Quill then asks if you want to replace the found text. Press the R key to replace the text
— if you press the N key the text is not replaced. In either case Quifl then continues
the search for the next occurrence and offers you the same choice of keeping or replacing
the found text. This continues until no further occurrences are found, or until you press
ENTER.

If, at any stage, Quill does not find another occurrence of the text in your document
it tells you so and waits for you to press the space bar and will then return to the main
display.

You can use the command to make multiple replacements, insertions or deletions as
illustrated in the following examples:
To replace occurrences of Tiver' by stream; give river’ as the text to be found and
stream’ as the replacement text.
To insert ‘or strean., give Tiver' as the text to be found and iver or stream’ as the
replacement text.
To delete ‘river, give river’ as the text to be found and give no replacement text
(just press R).

12/84

In this chapter we shall cover the remaining options for modifying the appearance of
the text. It includes setting tab stops and page breaks, and using bold characters,
underlining, subscripts or superscripts. In addition there is a section on the design
command, which you can use to change the settings of various options (such as the
page size) that control the overall appearance of your documents,

A very common way of controlling the layout of a document is by tab stops. These are
marked positions, at particular columns of the text of your document. When you press
the TABULATE key, the cursor will move to the right, from its present position, to the
next 1ab stop in the line. If you have passed the last tab stop, then pressing the TABULATE
key will move you to the start of the following line.

So that you know where the tab stops are, Quill draws the tab positions and their types
{as described below) in the line immediately below the ruler.

Quill ailows you to use several different types of tab stop, and to position them in any
column. You can have up to sixteen tab stops in a line

There are four different types of tab stop.

The most common type is known as a left tab stop and this works in exactly the same
way as the tab positions on a normal typewriter When you press the TABULATE key
the cursor will move to the next tab position and any text you type in will start at the
tab column. It is called a left tab since fines of text at such a tab stop are aligned at
their left hand edges.

A second type is a right tab stop. When you move to such a tab stop and start typing,
the cursor will remain at the tab position and the text will appear to the left, so that it
ends at the tab position. This will continue until the text to the left of the tab position
has filed the space available or until you press the TABULATE key again to move to
the next tab position. Lines of text at such a tab stop are aligned at their right hand edges.

There is also a centred tab stop. Text typed at such a tab position will be adjusted so
that its central character is pasitioned on the tab stop. Again the aligning of the text wif
continue until the available space (o existing text or to the left margin) is filed, or you
press the TABULATE key again.

The tourth type of tab stop is a decimal tab, and is used for typing in numerical values.
When you type a number at such a tab stop it is positioned so that its decimal point
is at the tab column. If you do not type a decimal point in the text, it will behave like
a Right tab.

Figure 6.1 shows the appearance of text typed at each of the four different types of tab
stops.

Left Centre Right Decimal
| I | F

a a a a
piece of piece of piece of piece of
text text text text

| | | I
12.345 12345 12345 12.345
1234 1234 1234 1234
1234.56 1234.56 123456

123456
| r |

Figure 61 The four types of lab stop

Initially tab stops are set at every tenth character position and are all Left tabs. You can
change the number, position and type of tab stops with the tabs command.

You can place tab stops at any point in the line and mix the different types in any way
you fike. The only limit is that you may not have more than sixteen tab stops in the line.
The new tab stops take effect from the current paragraph ({that containing the cursor
when you called the tabs command) to the end of the document, or to the next change
of tab positions.

12184

CHAPTER 6
MORE
FORMATTING

TABS
Using Tab Stops

Tab Stop Types

The Tabs Command

More Formatting

Inserting a Tab

Deleting a Tab

DESIGN

When you select the tabs command (F3 and T) the positions are drawn in the display,
immediately beneath the ruler.

Each tab stop is marked by a letter (L, C, R or D) to indicate its lype. The cursor is
positioned at the beginning of the line and you can move it to the left or right using
the appropriate cursor keys,

You can make as many changes to the tab stops as you like. You may also press the
up or down cursor keys to move to another paragraph and make more changes 1o the
tab stops. When you have made all the changes you want, press ENTER to leave the
command and return to the main display.

To insert a tab stop, select the type you want, use the left and rignt cursor keys to move
the cursor to the position the tab is required, and press T

When you have selected the Tabs command the types are shown in the control area.

The control area contains the words {Llett, (Rlight, (Clentre and {D)ecimal and the word
{L)eft is highlighted. This shows that the next tab stop to be inserted will be a Left tab.

You can change the type of tab stop to be inserted either by pressing the space bar
{each time you press it the highlight moves from one type to the next) or by ‘pressing
the key corresponding to its first letter. For example, if you want to change to a Right
tab, you can either keep pressing the space bar unti the word (R)ight is highiighted,
or just press the R key.

Remove a tab stop by moving the cursor until it 1s over the tab marker that you want
to delete and pressing the X key.

You use the Design command to change features in the main display, such as:

characters per line
line spacing
lines per document page

The command is illustrated in figure 6.2 and a full description of each option appears
in Chapter 8.

Press F3 and then D to select the design command. Quill then shows the list of options.
¥, for example, you want to select a 40 character display, press the D key, for the Display
Width' option. This option will be highlighted and Quill waits for you to press 4, 6 or
8 to select a display width of 40, 64 or 80 characters. It will not allow you to select any
other option until you have chosen one of these three.

HELP DESIGN the FORMAT of the printed page COMMANDS
press F1 Press the first letter of option press F3
PROMPTS ESCAPE
press F2 When finished press ENTER press ESC
Bottom margin Ctype No. & ENT) . .t iveii i it st a s ieneasnnnn 3
Display width 80,864,400, (8,6,4) vuuirienee i ot iiant i vancreeasanaane s 8
Gaps between Lines (0,1,2,) v vrinin e et e b e 0
Page size (type No. lines & ENT) it iiier i i aen i ieaiasiaannns 66
Start page no. {type Ho. B ENT) Lttt inr e e it ie i it e 1
Type colour-Graen or Whiteuriiiiivnninrnnnssarerranossansssanss GRN
Upper margin (type No. & ENT) tuuiin v re e s en e et taaanrnrcanaannnnnsns 6

Figure 6.2 The design command

You then have the option of changing any or &l of the items listed in the display. When
you have made all the changes you want you should leave the command by pressing
ENTER.

12/84

If you move the right margin so that the number of characters in a line is greater than
the screen width, Quill cannot show the full width of your document on the screen. In
this situatior: the display area acts like a window, through which you see only part of
the full document. As you move the cursor along a line, the window will slide across
the width of your document, so that it always shows the region containing the cursor.

One of the options in the design command is to set page size, in terms of the maximum
number of lines of text that can appear on a page of your document. In addition to
the text, this number of lines inciudes the upper and lower margins, any header or footer
and the lines of space between them and your text.

Suppose, for example, that you have an upper margin of 3 lines, a header separated
by 2 blank lines from your text, a footer separated from the text by 4 blank lines and
a bottorn margin of 5 lines. This takes up a total of 3+1+2+4+5=16 lines. ¥ you have
a page size of 66 lines then there will be 66—16=50 lines of text on each page. If you
were then to use the design command to set the gaps between lines to be 1 (double
spacing) you would have conly 25 lines of text on each page.

A page break marks the point in your document where a new page wil start, dependifg
on the length of the page that is set in the design command. #t is shown as a horizontal
line across the screen and includes the page number. Quill allows far the upper and
lower margins, headers and footers when calculating the length of a page. It the above
example, with the gaps between lines set to zero, Quill will insert a page break after
each block of 50 iines of text,

If you set a page size that does not leave space for five or more lines of text per page,
Quill will turn off the paging. No page breaks are shown and Quill treats the whole
document as a single page. You can make sure that autormatic paging is turned off by
setting the page size to zero.

You can use the page command to force a page break to occur at a particular line.
This is very useful for making sure that a section of text, such as a list or a table, is started
at the top of a new page and is not shown in two parts on different pages.

You can set a page break in your text at any time by using th€ page command which
is in the second command menu — press F3, the O key and then the P kay. You shouid
then position the cursor anywhere in the line at which you want the page to end and
press the P key. Quil! will insert a page break after the end of this line.

You may set several forced page breaks, at different positions, but you may not set more
than one forced page break in any one line of your document. When you have finished,
press ENTER 1o ieave the command.

You can remove a forced page break from your document at any time ~ you do not
use the page command for this purpose. Remove a forced page break by moving the
cursor with the up cursor key untit # lies on the page break. Then press CTRL and,
while holding it down, press the léft cursor key.

12184

More Formatting

WIDE DOCUMENTS

Paging

Page Breaks

Forced Page Breaks

17

CHAPTER 7
FILE

OPERATIONS

SAVE

LOAD

FILES AND MERGE

When you have produced a document you will probatly want to save a copy of it on
a Microdrive cartridge. At some later date you may want to make some changes and
keep a copy of the new version. If you have a printer, you will certamly want to produce

printed copies.

Each document is saved on a Microdrive cartridge in the form of a file — a named
chunk of information. This chapter describes the commands provided to save, load and
print files.

You use this command to save a copy of the text of a Quill document on a Microdrive
cartridge. If you do not save a document after you have written it you will lose its contents
when you leave Quil.

When you use the save command (F3 and then S} you are asked to type in a name
for the document. The simplest way to use the command is. therefare, to type in scmething
like the following sequence.

S myletter [ENTER

This saves your docurment with the name ‘myletier__doc’ on the cartridge in Microdrive 2.

If this name is the same as that of a document which s already saved on Microdrive
2, Quill will remind you that the docurment alreacly exists and ask if you want to overwrite
it with the new one. Press Y (yes) to replace the document or ESC to save the document
with a different name.

When the document has been saved Quill asks you if you want to continue editing the
document press ENTER to continue and the space bar if you want to change to another
document.

When you name a document to save it, or if you load a previously saved document,
Quitt displays the document name in the status area. If, at some time fater, you want
to save the document again, Quill suggests the current document name as the name
to be used. If you type in a name of your own choice, it will replace the cne suggested.
Alternatively you may aceept Quill's suggestion by just pressing ENTER. In such a case
you can just type in:

s [ENTER

The new version will then be saved on the Microdrive cartridge, replacing the old one.

You should use the load command when you want to copy a document from a Micredrive
cartridge into the computer’'s memory so that it may, for example, be editea.

You are first asked to type in the name of the document you want to load. If you have
forgotten it you can type in a question mark, plus ENTER. Quill will then display a list
of all the documents on Microdrive 2 and again asks you to type in the name.

If the name you type in does not correspond to the name of an existing document,
Quill wilt tell you that the document does not exist and give you another chance to type
the name,

The files command includes four options:

Backup - to copy a Microdrive document or other Microdrive file

Delete - to erase a Microdrive document or other Microdrive file

Format to format a Microdrive cartridge

Impaort to insert a Microdrive file, exported from Abacus, Archive or
Easel, into the current document at the position of the cursor

The merge command allows you to insert a document from a Microdrive cartridge into
the current document at the position of the cursor

With these commands you will often want to use a second data cartridge. For example,
you will usually want to make a backup copy of a document on a different cartridge,
and an import fie will not usually be on the same cartridge as your Quill document,

You can remove the Quill cartridge in Microdrive 1 and replace it with ancther cartridge
but remember o replace the Quill cartridge before printing a document or asking for
Help. If you are using additional Microdrives then normally it will be necessary to remove
the Quill cartridge in Microdrive 1.

12/84

This command is used 10 produce a printed copy of all or part of a Quill document.
tis, of course, necessary that you have a printer and that it is correctly connected to
the computer, otherwise nothing much will happen!

Quill suggesits that you print the document you are currently working on and waits for
you to press a key. Press ENTER to accept this suggestion, or type in the name of
the document 1o be printed (which must be a document on the cartridge in Microdrive 2).

Quiit will ask you if you want the whole document to be printed. Press ENTER to accept
the suggestion. Otherwise you type the number of the page of the document at which
you want printing to start and aiso the page number of the last page you want printed,
terminating each number by ENTER. You can only print complete pages of your
document,

The print command has an option to print to a Microdrive file instead of to the printer.
Press ENTER to use the printer, or type a new file name if you want to send the text
to a fite. The file produced will contain all the characters and control codes that would

otherwise have been sent to the printer.
The simplest use is to print all of the current document. The keys you press in this case are:

P [ENTER][ENTER][ENTER

To print pages 2 to 4 inclusive of a document called “myletter__doc' to a new file
“myletter__lis" (both on drive 2) you should type:

[F3] P myletter [ENTER] 2 [ENTER] 4 [ENTER] myletter [ENTER

Before starting to print Quill will read the current printer driver from the Quill cartridge
in Microdrive 1. This will tell Quill what facilities are available on a particular printer and
how they can be used. Quill will work with most makes of printer and you will find details
of how to make changes for a particular type of printer in the information section, where
the printer driver program is described.

You may also wish to change things such as the line spacing and the number of lines
per page of the printed document. These are ali inciuded in the design command, which
is described in Chapter 6.

12/84

PRINT

CHAPTER 8
QL QUILL

REFERENCE

20

THE FUNCTION
KEYS

THE COMMANDS

COPY

DESIGN

In addition o the standard use of F1, F2 and F3, function key 4 is used as follows:

F4 change typeface
SHIFT & F4 swiich between insert and overwrite

Quill does not use function key 5.

Select a command by pressing F3. This switches Quil to display a command menu.
You can stil move the cursor but you are not allowed to insert or deiete text.

The control area display changes to show a list of the commands available. You select
a command by typing its first letter A second set of commands {COMMANDS 1) is
available and you can switch between them using the Other command.

Since there are commands in the two sets that start with the same lefter you must always
make sure that the command you want is shown in the controf area before you select it

In general, you can leave any partially completed command by pressing ESC.

At the end of most commands Quill returns o the main display. The exceptions are those
commands that have their own internal menu (eg. Files). In these cases you are left
in the intermal menu and must press ESC to go back to the main display.

In any command that requires text input (eg. save, load, files, replace) you may edit
the text with the line editor, described in the QL Program Introduction.

The foilowing commands are available:-

They are listed in alphabetical order If they are part of the second command menu
then this is shown by a Il symboi after the command name.

Use this command for either moving or copying text from one place in the document
to another.

You are first asked to move the cursor o the start of the text to be copied and then
to press ENTER. Next move the cursor to the end of the text you want to copy. You
can move the cursor backwards with the up and left cursor keys but you cannot move
it back past the starting point. The affected text is highlighted. Press ENTER when you
have finished. Press ENTER again to delete the original marked text or press K to keep
it Move the cursor to the position where you want the marked text to appear and press
the C key to insert the text at the new position.

You can make further copies of the text at any other point in your document. Position
the cursor where you want another copy to appear and press the C key. You may make
as many copies as you like. When you have finished press ENTER to end the command.

This command allows you to set or change a number of features which controt the overall
appearance of your document. Within the command you are asked to choose, by
pressing the appropriate key, from the following options:

Bottom margin type in the number of fines to be left blank at the bottorn of each
printed page of your document. Press ENTER when you have
typed in the number. The intial setting is for a bottom margin
of 3 lines.

Display width type in 4, 6 or 8 to select a display of 40, 64 or 80 characters
per line. Quill wilt not accept any other characters. The initial setting
is for either 80 or 84 characters depending on whether you are
using a menitor or a television.

Gaps between lines type in 0, 1 or 2 to select how many blank lines will be printed
hetween each line of text in your document. Quill will not accept
any other characters. The initial sefting is Q.

Page size type in the total number of lines to be used for each page of
your document and press ENTER. This number includes the
blank lines in both the upper and bottom margins. If you type

12/84

in a zero the document will not be split into pages. The intial
setting is 66. {You can normally print 66 lines on a standard A4
page)

Start page number type in a number, followed by ENTER. This number is used to
number the first page of your document. Successive pages are
numbered consecutively from this value. You may want to change
it if your document is a continuation of another decument. The
initial value is 1.

Type colour to change colours used for normal and bold text. Each time you
select this opticn the normal and bold text coiours switch between
green and white. The initial setting is for ordinary text to be green
and bold text to be white.

Upper margin type in the number of lines space to be left blank at the top of
each page of your document and press ENTER. The initial setting
is far 6 lines.

At the end of each option you may select ancther option, or press ENTER to leave .
the command.

This command allows you to erase text from your document. You are first asked to move ERASE
the cursor (with the curscr keys) to the first character that you want to erase, press ENTER,

and then mave the cursor through the text you want to erase. The marked text is
highfighted. When you have marked the text you should press ENTER again and the

text is erased immediately.

There are four options provided in this command. FILES Il

Delete to delete a named document or file from a Microdrive cartridge.
You are asked to type in the name of the file you want to delete.
The file is deleted when you press ENTER.

Format to format a cartridge in Microdrive 2. Since this erases ait the
information on the cartridge, you must confirm your selection.

Warning: all information on the cartridge is erased when you
format it

Backup to make a second, security copy of a document on a Microdrive
cartridge. You are asked to type in the name of the document
and the name you want to give to the new copy. You would
normally make the copy on a different cartridge and could
therefore use the same name again.

Import to insert another file from a Microdrive cartridge into your
document, at the position of the cursor. The file must be a file
exported from either QL Abacus or QL Archive, or a text file
produced, say, from SuperBASIC. See the Information section.

This command allows you to specify a line of text to be used as the bottom line on each FOOTER
page. It does not appear on the display screen—only on the printed page

You are first asked to select the position of the focter fram the four options:

None — no footer text

Left — at the left margin

Centre- centred in the page (the initial setting)
Right — at the right margin

Press the space bar until the required option is highlighted and then press ENTER.
You are then asked to type the text for the footer, ending by pressing ENTER.

If you have previously specified a footer then this list is shown in the status area. You
have the option of altering it with the line editor, rather than typing in the whole of the
revised text,

You can include a page number anywhere iri the text. The position and type of number
is marked by a three character code:

12484 21

GOTO

HEADER

HYPHENATE (Ii)

Characters Page Number Style

nnn or NNN Arabic Numerals eg. 1, 2, 3, 4
rrr or RRR Romanr Numerais eg. |, I, lil, IV
aaa or AAA Alphabeticeg. A, B, C, D

You are finally asked 1o type in a number, from 0 to 9 to indicate the number of fines
to be left between the bottomn of the text and the footer.

You may use this command to move the cursor ta the top, bottom or to a specified page
in your document. You are offered three optiors:

Top tc move the cursor to the beginning of your document.
Bottom to move the cursor to the end of your document
a page number typing in a number, followed by ENTER moves the cursor to the

start of that page of your document. If there are no page breaks
in your document this option will move the cursor to the end.

This command allows you to specify a line of text to be used as the first line on each
page. Note that the header does not appear in the display of your document on screen.
Quill does not automatically provide a header for your document.

You are first asked to select the position of the header from the four options:

None no header text (the initial setting)
Leit at the left margin

Centre centred in the page

Right at the right margin

You press the space bar until the required option is highlighted and then press ENTER.
You are then asked 1o type the text for the header, ending by pressing ENTER.

If you have added a header at an earlier stage the existing text is shown in the status
area. You then have the option of changing with the line editor, rather than typing in
the whole of the text.

You can include a page number anywhere in the text. The position and type of number
is marked by a three character code:

Characters Page Number Style

nnn or NNN Arabic Numerals eg. 1, 2, 3, 4
rrr Oor RRR Roman Numerals eg. [, i, li, IV
aaa or AAA Alphabetic eg. A, B, C, D

This command allows you to specify a point within a word where it can be split, with
an automatically inserted hyphen, if it extends beyond the end of a line. Words not marked
in this way will, if necessary, be moved to the next line in their entirety.

Hyphenation is particularly useful when you are using right justification, to avoid large
gaps being left between the words.

Move the cursor to the first character following the position where you want to allow a
split to be made and press the H key. You may repeat this process as many times as
you want, Press ENTER 1o leave the command.

The command will have no apparent effect on the word if it is not at the end of a line.

12/84

~ Use this command to select the type of justification you want. It takes effect from the
start of the paragraph centaining the cursor, and remains in effect to the end of the
document, or to the next change of justification.

You are offered the foliowing options, selected by pressing the key corresponding to
its first letter:

Left the text is aligned at the left margin, but the right margin is uneven.
Centre the text of each line is centred between the margins.
Rignt additicnal spaces are inserted between words in each line so

that the text is aligned at both the left and right margins.

You may make changes of justification to more than one paragraph. Press the up or
down cursor keys to move up or down by a paragraph and change the justification as
described above. Press ENTER to end the command.

This command allows you to load a document into memory from a Microdrive cartridge,
ready for printing or editing.

Type in the name of the document (the name you gave it when you saved it). If you
just press “?" plus ENTER, Quill will show you a list of the names of all the documents
saved on Microdrive 2. Edit the suggested text, Micrcdrive 2 — if you want a list of the
files from a different Microdrive. When Quill has shown the list, you are again asked to
type in a document name.

Use this command to set or change the positions of the left, indent and right margins
of your document. All changes in the marging are shown in the text as you make them,

The control area shows the words left, indent and right, and on first entering this command
the word left is highlighted. This means that you can use the left and right cursor keys
to move the feft margin.

You can select any of the three margins by pressing the space bar until the correct margin
name is highlighted, You can move the selected margin by pressing either the right or
{eft cursor key.

The change in each margin takes effect from the paragraph containing the cursor. It
remains in effect tc the end of your document, or to the next change of position of that
margin.

You may make changes of margin positions to more then cne paragraph. Press the
up or down cursar keys to move up or down by a paragraph and change the margins
as described above. Press ENTER 1o leave the command.

The merge command takes a copy of a named Quill document from a Microdrive
cartridge and insests it, at the position of the cursor, in the document currently in memory.

This command allows you the option to replace the Quill cartridge with a data cartridge.
You must replace the Quill canridge in Microdrive 1 at the end of the command.

Position the cursor at the point where you want the document to be inserted before
selecting the command. Quill asks you to type in the name of the file you want to insert.
if you insert the document in the middle of a paragraph, Quill wil split it into two
paragraphs at the paositicn of the cursor and insert the document between them.

This command allows you to switch to the display of a second set of commands in the
control area. The st of commands in the control area alternates between the two fists
each time you use Other.

Since several commands start with the same letter, you must make sure that the
command you want is one of those displayed, before you choose it.

You can use this command to mark a point in your document where you want a new
page to start.

Move the cursor to the point where you want the new page to start and press P

You may add such page breaks at several points in your document. Move the cursor
to the point where you want another page to start and press the P key. Press ENTER
o leave the command.

1204

JUSTIFY

LOAD

MARGINS

MERGE (If)

OTHER

PAGE (II)

23

24

PRINT

QUIT

REPLACE (II)

SAVE

SEARCH (Il

Do not use the page command for deleting a forced page break. You can cancel a
page break by moving the cursor to any paint on the page break line and then pressing
CTRL and the left cursor key together

This command prints all or part of the document currently in the computer's memory,
or any other document on the cartridge in Microdrive 2.

Press ENTER to print the current document, or type in the filename of the document
tc be printed, followed by ENTER.

Quill then suggests printing the whole document. If you reply by pressing ENTER the
whole document will be printed. If you cnly want to print some of the pages, type in
the number of the first page you want printed, followed by ENTER. Then type the number
of the last page you want printed, again ending by pressing ENTER.

Finally, press ENTER to send the text to a printer, or type the file name of a new file,
followed by ENTER tc send the output to a Microdrive file.

Before printing, Quill wili read a “printerdat” file entering the printer driver information.

This command allows you to leave Quill and return to SuperBASIC. You have three options:

ENTER to save your current document before returning to SuperBASIC.
You are given the further option of typing in a name for the saved
document. If you just press ENTER the document will be saved
with its old name, replacing the original version of the document
on the Microdrive cartridge.

A to abandon your current document and return to SuperBASIC
without saving it.

ESC to cancel the command and return to your document.
You can use this command to replace some or all occurrences of one piece of text by
ancther.

First type in the word(s) to be replaced. followed by ENTER. Then type in the replacement
word(s), again followed by ENTER.

Quill searches from the start of the document until the first occurrence of the cld text
is found. It then offers you the opticn of replacing the cld text with the new. Press the
R key to replace the text, or N if you do not want to replace it.

Quill will then search for the next occurrence and again offer you the option to make
the replacement. This process will continue until you reach the end of the document
or until you end the command by pressing ENTER.

You use this command to save a copy of your document on a Microdrive cartridge.

Type in a name for your document, so that it can be identified. The document is then
saved under that name. If, instead of typing in a name, you just press ENTER, the
document will be saved with its old name, replacing the original version.

Quill then asks you if you want to continue editing the document you have just saved.
If you press ENTER, the text of the document remains in the computer's memory and
you can continue working on it.

Alternativety, press the space bar if you want to work with another document,

This command searches your document for a particular word or phrase.

First type in the text which you want to find. When you press ENTER Quill starts at the
top of your document and searches for the first occurrence of the text.

You may press the C key to continue the search to find the next occurrence of the text.
Press ENTER tc end the command when you have found the occurrence you want.

12/R4

oak

PRt

“ The tabs command allows you to specify the positions and types of lab stops on a fine

of text. The tabulate key wil then take you straight to the next tab stop along the rule
which you have set. Each change of the tab stops will take effect from the start of the
current paragraph (the one containing the cursor). It will remain in effect to the end of
your document, or until the next change of tab stops.

There are four types of tab stop provided:

Left the tab stop behaves like a left margin; the text is positioned to
the right of the tab stop.

Centred the text will be centred around the tab stop.

Right the tab stop behaves like a right margin; the text is positioned
to the left of the tab stop.

Decimatl this is used for aligning decimal numbers. Each number will be
positioned so that its decimal point 1s at the tab stop. Until a
decimal point is encountered it behaves like a right tab.

The tab positions are drawn on the screen, below the ruler, using the following symbols:

L - left

C - centred

R - right

D - decimai
The cursor s positioned at the start of that line. You can move the cursor along the line
by using the left and right curscr keys.

You can remove a tab marker by moving the cursor with the left and right cursor keys
until it is over the tab marker in the line under the ruler and then pressing the X key.

To insert a tab marker you should first select the type you want by either pressing the
space bar until the correct type is highlighted in the control area, or pressing the L,
C. R, or D key. Then move the cursor to the appropriate point and press the T key.

You can mix inserting and deleting tab markers in any combination. You may also press
the up or down cursor keys to move to another paragraph and make further changes
to the tab stops. When you have made ali the changes you want you should press ENTER
10 leave the command and return to the main display.

This command deietes the whole of your current document, without saving it on a
Micredrive cartridge. !t allows you to discard your current document and start again.

You can change the typeface of the text in your document by pressing F4 and then
the first letter of one of the four options listed below. The selected typeface affects all
text subsequently typed in,

Alternatively you may press F4 and then the P key to paint new text in a new style.

You are offered the foliowing options:

Bald text is converted to a bold, or heavy, typeface.
High script text is printed in the upper half of the line.
Low script text is printed in the lower half of the line.
Underline text is underlined.

You may select any combination of these options except. of course, that you can not
have both high and low scripts selected together. if you select either of these, the other
will be switched off automatically.

If you want to select a combination of typefaces, you shouid select them one after another,
by pressing F4 and the appropriate letters.

if you press the P key to select the paint option, Quill allows you to select one or more
typeface styles. Move the cursor to ‘paint’ the text to the new style and press ENTER
when you have finished. Note that the criginal typestyle is restored afier painting.

You can switch off any of the typeface options in the same way that you use to turn
it on — that is by pressing F4 and then the appropriate key (B, H, L or U).

12/R4

TABS

ZAP

TYPEFACE

213

INSERT AND
OVERWRITE MODES

THE START-UP
PARAMETERS

28

Inially Quikt in insert mode and any text that you type in will be inserted into your document
at the position of the cursor. Any surrcunding text will be spread out to make room.

If you hold down SHIFT and press F4, Quill will swilch to overwrite mode. In this mode
any text that you type in will replace, character by character, any text from tne cursor

position onwards.

You can switch back to insert mode by the same method, that is by holding SHIFT

down and pressing F4.

When you first load QUILL it is in the state described by the following list. You can change
each of the properties by the method indicated in the right hand column

Feature Initially Change By
Mode: insert SHIFT & F4
Display width; 80{mon) B4(TV) Design
Left margin: 10 0 Margins
Indent margin: 15 5 Margins
Right margin: 70 64 Margins (max 160)
Upper margin: 6 Design
Bottom margin: 3 Design
Justification: Right Justify
Tab stops: Left, cols 10,20,...80 Tabs
Page size: 66 Design
Gaps between lines: 0 Design
Page header: none Header
Page footer: centred, "page nnn” Footer
Start page number: 1 Design
Text coleur:

Normal green Design

Bold white Design
Typeface:

Bold off F4

Underline off F4

High script off F4

Low script off F4

1224

£
‘ y

sinci=ir

QL

QL Abacus

ERVICE MANUALS

CONTACT:
MAURITRON TECHNICAL SERVICE®
WWW _mauritron.co Uk
TEL: 01844 - 351694
FAX: 01844 - 352554

FOR S

by Dick d©(13984 PSION LIMITED
e Grandis-Harrison (Psion Limited)

QL Abacus is a spreadsheet which can be used for planning, budgeting, tabulating
data, caleulatior, information storage or for presenting information. This information is
represented on a tabulated gridd divided into 255 rows and 64 columns. The data area
you see on the computer screen is a window through which you can see part of the
grid. You can move this window across the grid. The intersections of the rows and columns
represent more than 16000 cefls or boxes in the grid. You can enter text into any cell
or cells, or the cells may be used for the storage of numbers or data.

The real power of Abacus, however, comes from the use of rules, or formulae, which
can connect different blocks, rows or columns of cells, or even individual cells of the
grid. This means that information inserted in one area can immediately be evaluated
and represented in another form elsewhere.

For example, you can use twelve of the columns to represent months of the year and
you can then enter sales data along a 'sales’ row. The next two rows can contain formulae
to calculate the cost of sales (as a percentage of sales plus a fixed cost, say) and the
profit. The rmonthly profits will then be evaluated autormatically each time you type in
a sales figure, The yearly totals can also be summed by another formula, so that a change
in the sales of, say, March will immediately lead to a completely different profit profie
and total for the year All the figures are evaluated by Abacus automatically.

You can alsc represent the data from Abacus as graphics or in a table in the word
processor, through the export commands of the Psion QL package.

In many respects Abacus is like a visual programming language, but one which is easy
to use. You may marspulate text, data, or forrulae, use input and cutput statements and
text variables.

If, at any time, you are not sure what to do, remember that you can ask for Help by
pressing F1. Alsc remember that you can cancel any partially-completed operation (eg.
typing in @ number, or using a command) by pressing ESC.

12/84

CHAPTER 1
ABOUT
QL ABACUS

M

CHAPTER 2

GETTING
STARTED
LOADING

QI. ABACUS Load QL Abacus as described in the Introduction to the QL Programs, dont forget
that Abacus requires a formatted cartridge in Microdrive 2. When loaded the following

message will de displayed:
LOADING QL ABACUS
VErsion x.xx

Copyright © 1984 PSION SYSTEMS
spreadsheet

where x.xx represents the version number {eg. 102).

The program will then wait for a few seccnds before starting.

The Help information is not loaded into the computer's memory together with the
program. It is only read from the Abacus cartridge when it is needed. You should
therefore not remove the Abacus cartridge from Microdrive 1 if you intend to use
the Help facility.

When Abacus is first loaded the appearance of the screen is as shown in Figure 2.1,
This is the main display.

GENERAL Abacus can display 80, 64 or 40 characters per line of the display. if you are using
APPEARANCE a domestic television the disglay may not be clear enough for you to see 80 characters
per line and you should use 64 or 40 characters. The 64 character display is very
similar to that for 80 characters but the 40 character display is arranged slightly differently.

This is shown in figure 2.2.

HELP CURSOR DATA & FORMULA TEXT type” || COMMANDS
press F1 oress +T— press F3
PROMPTS G0TO CELL enter directly followed by || ESCAPE
press F2 press F5 % press ENTER text & ENT. || press ESC
g I R f g i - f -

o

R

A 0B O ur B Ry e P

CELL A1 GRIDAUSED AT:A1 WEMORY 23K
CONTENTS EMPTY

Figure 2.1 The main display with a monilor. (80 characters)

Abacus initially selects either an 80 or a 64 character display depending on whether
you started from SuperBASIC in the Monitor or the TV.

1284

Getting Started

~ Apart from the difference in appearance. Abacus works in exactly the same way with
all three display formats. Most of the diagrams in this manual are shown for the 80
character display.

CURSOR DATA & FORMULA TEXT type"
press + 77—
GOTO CELL enter directly followed by
press F5 & press ENTER text & ENT,

[_HELP FT || PROMPT 72 || COMMANDS F3] ESCAPE ESC

CEELL A1 CGRIDUSED A1:A7 MEMORY 23K
“CONTENTS EMPTY

Figure 2.2 The main display for 40 characters
The central area of the screen contains the window showing part of the grid. The Window

Across the top of the window you will see a line in which a number of letters appear
These letters label vertical columns of cells making up the grid. As you can see, columns
ABC and sc on are visible. Down the side of the window there is a series of numbers,
from 1 to 15. These numbers label the rows of cells in the grid.

|

L

Figure 2.3 The window Figure 2.4 The grid labels.

A combination of a letter and a number will therefore identify ane particular cell, and
is known as a cell reference. Far example, Al. This refers to the cell which is in column
A and row 1, {the top left hand cell in the window).

You will see that this cell is different from all the others in that it is filed by a large red
reclangle. This is known as the cursor and it marks the current cell, that is the cell which
will receive any data you lype in.

12/84

Getting Started

The Status Area

The Control Area

MOVING THE
CURSOR

Figure 2.5 The cursor Figure 26 The status area

The bottorn section of the display contains the status area, which gives information
about the current state of the grid. ‘
It contains the cell reference of the current cell and its contents. This cell is empty when
you have just loaded Abacus. In addition, the status area shows the extent of the used
partion of the grid (as the cell reference of the bottom right cell of the used portion)
and the amount of memory left.

The control area shows the normal options to obtain Help (F1), to turn the prompts
on and off {F2), to select a command {F3) and to cancel an incomplete selection {(ESC).
In addition there are three options that are specific to Abacus. These are:

move the cursor,
type in data or a formula,
type in text.

" "

Figure 2.7 The control area Figure 2.8 Maoving the cursor

The four cursor keys move the cursor around the grid. Press the right cursor key once.
The cursor moves one column to the right and the current cell indicator now shows
B1. If you then press the left cursor key once the cursor returns to cell Al Pressing
the left cursor key again will have no effect because you are at the extreme left hand
edge of the grid.

Move the cursor to the extreme right hand edge of the grid. Pressing the right cursor
key again will not move the cursor but the letters across the top of the window will
change. When you attempt to make the cursor leave the visible area of the grid the
window will move across the grid so that the cursor remains in view.

The cursor keys are a useful way of moving the cursor, provided you only wish to move
it one or two cells. They are very inefficient for making large movemnents across the
grid. For such iarge movements it is more convenient o go directly to the required
cell. You can do this by pressing F5. to select the goto opticn, and then typing the
required cell reference, followed by ENTER.

12184

———

Mo

© As an example of using the goto option, ask Abacus to move the cursor to cell D11,
First press F5 to select the goto option. The words 'goto > A1’ wiil then appear in the
line immediately below the window. Abacus is suggesting that the cursor be moved
to the top left hand corner of the grid. If you accept this suggestion (by just pressing
ENTER,) the cursor will move to that point. To move the cursor to another cell, type
in the cell reference — in this case type:

d11

and press ENTER. Note that the d' may be in upper or lower case — Abacus will
accept either. The cell reference you type in replaces that suggested by Abacus and
the cursor moves directly to the cell you have specified.

You should now move the cursor back to the top left hand corner of the grid by using
this option again. This time you can accept the suggested cell reference (A1) so all
you have {o type is:

ENTER

You will find that you go back to the ariginal state of the display, with the cursor at
the top left hand corner of the window, in cell Al.

Now move the cursor to cell Y1, by typing in

y1 [ENTER

Look at the letters labelling the columns across the tap of the window and you will
find the column to the right of column Z is labelled AA, the next one is labelled AB,
and so on. This enables you to refer to more than 26 columns.

There are 64 columns in total and, after AZ, the columns are labelled BA, BB and
so on. The last column in the grid is labelled BL.

You can also move down the grid to find the last row but you will have 10 go a long
way; there are 255 rows in the grid.

Return the cursor to cell At and then type
100

but dont press ENTER just yet. The ‘Data or Formula' option box in the control area
is now highlighted, 1o confirm your action. The prompt value >, followed by the number
100 will also have appeared in the line immediately below the window.

All typed input, and the text that Abacus shows while you are using a command,
appears in this line. It is the input line,

The small rectangle in the input line marks where the next input character will appear,
and is known as the input cursor, to distinguish it from the main cursor in the window.
If you make a mistake at any time during typing to the input line, you can correct it
by using the line editor, described in the Introduction to the QL Programs.

When you press ENTER the value 100 will be transferred to the current ceil (A1) and
the input line will clear, ready for more input. You will see that the value 100 alsc appears
in the status area, at the bottom of the display.

Putling text into a cell is the same as entering a number except that text is preceded
by double guotation marks. As soon as you type the quotation marks, Abacus responds
by emphasising the TEXT option box in the control area and showing text>"* in the
input line. You then type in exactly what you want to appear in the cell, followed by
ENTER. There is no need for a closing quotation mark. Try entering text inte a few
cells and, in particular, notice the difference between entering, say:

1000 LENTER | {a number)
and

1000 [ENTER] (text)

A number is shown at the right of the cell, whereas text is placed at the left. The status
area also shows the type of information; text, numeric and so on, in the current cell.

12:84

Getting Started

ENTERING
NUMBERS

ENTERING TEXT

Getting Started

THE COMMANDS

You select a command by first pressing F3.

The central part of the control area shows a list, or menu, of the available commands
and is known as the command menu, illustrated Figure 2.9.

Most of the commands are described in later chapters but we can take a quick look
at two of them. These are Zap, which you use to clear the whole grid, anc Quit, which
allows you G stop using Abacus and return to SuperBASIC.

Try the Zap command first. Press F3 and locate the Zap command in the displayed
menu. If you press the Z key, the word Zap will appear in the input ling — you need
never type more than the first letter of any command. Also, the command box in the
control area changes lo show the menu for Zap. Try pressing ESC first, to cancel the
command.

Now return to the command menu by pressing F3 and then press Z to call the Zap
command again, but this time press ENTER next, to clear the grid. You will be left
with a blank grid and with the cursor in cell Al, ready to start afresh.

Whenever you want to leave Abacus and return to SuperBASIC, you must use the Quit
command. This works in a similar way 1o Zap, {press F3 and then the first |etter of
the command (Q)). Quitting causes you to lose the contents of your grid, so you are
again given the option of going back to the main level by pressing ESC.

HELP COMMANDS Echo Load Quit Window COMMANDS
press F1 Amend Files Merge Rubout Xecute press F3
PROMPTS Copy Grid Order Save Zap ESCAPE

press F2 Design Justify Print Units press ESC

! 6

Lty

cémmand > l
CELL A1 GRID USED AT:A1 MEMORY: 23K

CONTENTS EMPTY

Figure 28 The command menu

12/84

¢ e

Much of the power of Abacus lies in its ability to handle whoie rows, columns or ranges
of cells in & single operation. You do this by using simple expressicns which allow you,
for example, to fill all or part of a row of cells The values in the cells may all be made
the same or they may vary in & reqular way.

This chapter describes some of the properties of cells and the ways in which you can
refer to them.

The cell is the basic unit for holding information in Abacus. Each cell can contain one
itemn of information which may be text, a number or a formula.

For each cell that contains information, Abacus also keeps a record of how that information
is to be displayed. You can, for example, display numbers or text at the left, centre or
right of the cell, and you can display numbers in several different formats.

You use the Justify command to change the posttion of the display within a cell. it allows
you to select the position of numbers or of text within a cell or group of cells.

Put a value of 100 in cell A1 and then use the Justify command by pressing F3 and
then the J key. Abacus first asks you to select between a Cells and a Defaults option;
select the Cells option by pressing ENTER. Abacus then asks you to choose between
either text or numbers. Select numbers, by pressing the N key. Next you rmust select
Left, Centre or Right justificaton. Since Left is suggested by Abacus, select it by pressing
ENTER.

Finally Abacus asks you to specify the range of cells that are to be affected. In this case
just press ENTER. You will see that the value of 100 in cell AT will mave to the left hand
side of the ceil.

Note that you can change the numeric format or numeric justification of a cell which
currently contains text. Nothing wil appear to happen. i, however, you later change the
contents of the cell to be numeric, it will be displayed with the format and justification
that you specified. This also applies to a change of text justification for a cell which currently
contains numeric information.

Cells that contain no Informaticn do not exist as far as Abacus is concerned, and use
no memary. They can therefore have no properties. If you atternpt 1o use the Cells option
of either the Justity or the Units command on an empty cell they will have no effect,
Numbers subsequently placed into such a ce!l will be displayed in the genera! default
format.

If you want to change these defaults you must use the Defaults option of either the Justify
or the Units command (or beth). For example, use the Defaults option of the Units
command (press £3, U and then D) to select a defauit of percent format with one decimal
place. The choices are similar to those in the Cells option, but you are not asked for
a cell range.

The Defaults option of the Justify command works in the same way. Again you are not
asked to type in a cell range because Abacus will use the new default each time you
put informaton into any previously empty cell.

The new default settings will remain in effect until you change them again, or until you
finish using Abacus and return to SuperBASIC.

To restore the defaults to their original state - numbers justified right, text justified left
and numbers displayed in General format — use the following sequences:

[F3]JDNR {number right justified]
J D [ENTER](ENTER] {text left justified]
UDG inumber displayed in general format}

Very often you will want to fill several cells in a particular row with a particular value,
or with values that vary in a regular way. Abacus provides simple ways of doing this.
One methed is to refer to the cells of a row with a range identifier. There are two range

12/84

Getting Started

CHAPTER 3
CELLS,
ROWS,
COLUMNS
AND RANGES

CELLS

Justification

Empty Celis

ROWS

Cells, Rows, Coiurnns and Ranges

COLUMNS

LABELS

identifiers, row and col. They refer to the cells of the current row or column — the row
or the column that contains the cursor,

As an example, let us fill the first row, from column B to column D, with the value 100.
We shall use the range identifier row as follows. Piace the cursar in cell Al and then type:

row = 100 {ENTER

As soon as you press ENTER a prompt appears in the input line suggesting that the
row be filed starting at column A (the calumn containing the cursor). The system wil
always make a reasonable suggestion for the starting point and this can be accepted
simply by pressing ENTER. Ir this case, however, we want to start at column B so you
shouid press:

B [ENTER

The input line changes to show that the filing of the row is to start at column B and
a further prompt appears with a suggestion of BL (the last column in the grid) for the
end column. Again this wil have to be changed, since we want to end at column D,
50 you shoufd press: '

b [ENTER

The instruction is now complete and will be carried out — the value 100 will appear
in each of the cells from B1 to D1 inclusive and the input line will clear, ready for your
next input.

Filling a column follows a very similar pattern except. of course, that you refer 1o a column
by one or two letters rather than the number that identifies a row. Suppose we want
to put the text ‘helld’ in each of the cells of column D, from row 5 to row 1. We can
de this by using the second range identifier, cal. Move the cursor to cell O5 and type:

col = "heltlo” |[ENTER

This time Abacus suggesis the correct starting point (row 5) as this row contains the
cursor, and you can accept this suggestion by pressing ENTER. Row 255 will then be
offered as a suggested end point and you should change this by typing:

11 [ENTER

The text will appear in cells D5 to D11 inclusive and the input line will clear, ready for
the next input

Each time you use col you will be asked to specify the first and last row to be affected.
You may, as usual, accept or replace the values that Abacus suggests.

In addition 1o this way of using the range identifiers row and col, you can also use them
to specify the range of celis for any function that needs such a range. For example:

For example put some numbers in all the cells of the rectangular area whose top left
hand corner is the cell A1 and whose bottom right hand corner is the celf C3 (rne
numbers in all). Now move the cursor to cell D1 and type:

col = sum(row) |[ENTER

This fils each cell of calumn D with the total of the values in the cells of the carresponding
row. Abacus needs to know the ranges for both row and col. It will thersfcre ask for
the range of columns for row (Abacus suggests column D to columa D, which is correct
— accept each by pressing ENTER) and then for the range of rows to be used by
col. Abacus suggests from row 1, which is correct, to row 255 {or o row 11 if you type
i this example immediately after the previous ane). Accept the first by pressing ENTER
and type the correct value, 3 (dont forget to press ENTER,) for the second. Abacus
will then calculate the total for each of the three rows and display the results in the cells
of cclumn D.

The previous examples referred 1o rows and coiumns by an explicit use of their number
and letter cell references. An important alternative for identifying rows or columns is to
use labels, that is names which you may choose yourself. These labels are then used
ta refer to specific rows, columns or cells,

Any text that you put into a cell can be used as a label. You can use labels in any
command or formula where you would otherwise use a letter and number reference.
The advantage is it is much easier to remember names than numbers and letters when
you want to refer to a particular cell.

12/84

Celis, Rows, Columns and Ranges

This is an extremely powerful and flexible method which you can use to great advantage
to simplify the sefting out and operation cof a grid. The following two sections explain
how you can use these labels,

Row and Column
Labels

A label may refer to either a row or a column, depending on the contents of the other
cells in the grid. The basic rule when you use z label to identify a row or column of
figures is that Abacus searches below and to the right from the cell containing the label.

HELP CURSOR DATA & FORMULA TEXT type" | COMMANDS
press F1 press —fl— press F3
PROMPTS 6070 CELL enter directly followed by || ESCAPE
press Fe¢ press FS & press ENTER text & ENT. press £5C

) R e Rl e
:15
2

3

4] COSTS 100 00

73
7z
‘CRLL GRIDUSED A1:C4 MEMORY 23K
CONTENTS: EMPTY

Figure 31 Labelling a row
HELP CURSOR DATA & FORMULA TEXT typatt || COMMANDS
press F1 press —1tl— press F3
PROMPTS GOTC CELL enter directly followed by ESCAPE
press F2 press £5 & press ENTER text & ENT. press ESC
EELL A1 GRIDUSED A1:04 MEMORY 23K

CONTENTS EMPTY

Figure 3.2 Labelling a column

12:84 9

Cells, Rows, Columns and Ranges

10

Labelling Cells

RANGES

The closest cell that cortains a number, below or to the right of the paosition of the label,
determines whether the label refers to a row or 1o a column. Figures 3.1 and 3.2 should
help make this clear In Figure 31 the label refers 10 & row and in Figure 3.2 it refers
to a column.

In more complex cases, for example where there are numbers both to the right and
below the label, the nearest number (measured by the number of cells separating the
number from the label) determines whether it is a row or a column reference. If the two
numbers are the same distance from the label, Abacus shows the message:

Cannot tell whether name is a row or col

and wait for you to press the space bar Abacus will then put the text of your formula
back into the input line so that you can correct it with the line editor

You should replace the unresolved reference with either row or col and press ENTER
again. You should consider rearranging the labels so that Abacus can resolve the
reference in future.

HELP CURSOR DATA & FORMULA TEXT typer || COMMANDS
press F1 press —— press F3
PROMPTS GOTO CELL enter directly followed by |} ESCAPE
press Fe press f5 & press ENTER text & ENT. press ESC
MARCH
LOsSTS 100 00

et e o

CELL A1 GRIDIUSED A1:C4 MEMORY 23K
LONTENTS EMPTY

Figure 33 Labeling a cell

You can alsc use labels to refer to single cells, but in this case two labels are needed.
In the following example the labels March and ‘Costs’ can be used to refer 10 cell C4.

The reference is made up of the names of the two labels, separated by a full stop (eg.,
March Costs). It is not necessary to give the full names, and e distinction is made between
upper and lower case letters. Also Abacus needs only enough letters of each name
to make sure that the identification is unigue. In the above example ‘marcos’ would be
perfectly adequate. The order of the labels is also irrelevant, so you could also use
tos.mar' o refer to the same cell.

In addition to being able to refer to a whole row or 2 whole column, you can make
an instruction work on a rectangular block, or range, of cells.

A range reference is made up of two parts. The first part is the row and column reference
of the top left hand cell of the range. This is separated by a colon from the second part,
which is the row and column reference of the bottorn right hand corner of the range.
An example of a range reference is:

A2:D27

12/184

fﬁiﬁ

An example of the use of a range reference wouid be the use of the Copy command
to copy the contents of a range of cells to a similar range at a different place in the grid.

Many of the commands ask you 10 type in a range reference, to identity the ceils on
which they are to work. Since a range reference has a much wider set of possibilities
than a row or column reference, Abacus can not suggest a possible range. You must
type in the entire range reference yourself. You can specify the range in any one of four
ways. These are:

1. With explicit row and column numbers and letters,
eg. A1LCY

2. With labels,
eq. januarysales:march costs

3. With & combination of the above two methods,
eg. Al:marchcosts

4. With a range identifier,
eg. row (or col)
This refers to the cells of the row (or column) that contains the cursor, In this case,

Abacus can suggest suitable start and end points.

HELP {OPY-contents of a block of cells to a COMMANDS

press F1 new {ocation press F3

PROMPTS Enter the range to be copied as ESCAPE

press F2 (Tep left cell) : (Bottom right cell) press ESC
g e s T e e i

-
P
~0

command > copy,from range b3 d5 .

TELL A1 GRIDUSED A1:05 MEMORY: 23K
CONTENTS EMPTY

Figure 3.4 A range reference

Now that we have seen how the position of a cell or range of cells can be specified
to Abacus, we can go on to show how the appearance of the contents of these cells
can be modified. First we must explain the way in which numbers are stored. Move
the cursar to cell At and type in the number 123458,

Abacus slores all numbers to an accuracy of 16 significant figures and it can display
up to 14 significant figures — the extra two figures are used to make sure that the
calculated value is displayed accurately. Although Abacus calculates and stores all
numbers to this accuracy, you do not have to display all the significant figures.

Select the Units command (by pressing F3 and then the U key). There are two options:
Cells or Defaults. in this case press ENTER to select the suggested Cells option.

Abacus offers you several different forms of display.

12/84

Cels, Rows, Columns and Ranges

MORE ABOUT
NUMBERS AND
TEXT

Cels, Rows, Colunns and Ranges

Press the M key to select the Menetary form of display. Abacus asks you to choose
how you want it to show negative values. Abacus suggests that they are displayed with
a leading minus sign and you can accept this suggestion by pressing ENTER.
Alternatively you can display negative values in brackets by pressing the B key instead.
In this example it does not matter which we choose, bul we shall assume the minus
sign option,

Abacus then asks you o specify the range of ceils which are to be affected. You could
reply by typing in a range reference (eg. A1:B3) or just the reference tc a single cell.
Abacus will always try to anticipate the range you require. However, in some circumslances
Abacus is unable to do this and will simply suggest the range AT:A1. This range reference
is identical to the single cell reference Al. You can either accept the suggestion by pressing
ENTER or type in your own reference choice followed by ENTER.

We will assume that Abacus makes the default range suggestion Al:AT and the complete
sequence of keypresses is:

U [ENTER] M [ENTER][ENTER

Just before you press ENTER for the third time the input line should contain:

'

Command>units,cells,monetary, minus sign,range A1:A1

When you press ENTER the display in cell A1 will change to £123.46, even though the
actual value (123.456) is still kept, and shown in the status area. Abacus automatically
takes you back to the main display.

The monetary form of display always shows the number rounded to two decimal places,
with a leading currency sign. (You can change the sign to §, or anything else, by using
one of the options in the Design command.)

Let us now change the display in cell A1 to Integer (whole number) format, by calling
the Cells option of the Units command again, but this time pressing the | key. This format
also allows you to choose whether to use a minus sign or brackets to show negative
numbers and this time we can choose the bracket option by pressing the B key followed
by ENTER (again we are only affecting cell Al).

The full sequence of keypresses in this case is:
U [ENTER] | B [ENTER]

and the input line shows:

Command>units, cells, integer, brackets, range A1:Al

The cell display now shows 123 — the decimal paint and all figures following it are not
shown in integer format.

We can now try Decimal format For this, and the remaining formats, you do not have
the option of displaying negative vaiues in brackets. Instead (excegt for the General format)
you must specify the number of figures you want to be displayed after the decimal point;
let’s use five decimal places. Select the Cells option of the Units command. Decimal
is the default format and can be selected simply by pressing ENTER, then specifying
five decimal places. Finally, in response to the range’ prompt, press ENTER to accept
the default suggesticn. The fu! sequence of keypresses and the corresponding input
line contents are:

[F3] U [ENTER][ENTER] 5 [ENTER | [ENTER
Command>units,cells,decimal,decimal places 5,range A1:A1
Cell A1 will now show 12345600, as reguired.

Now use the command again, but this time press the P key, to specify the Percent format
Use one decimal place and select cell A1, The full sequence of keypresses is:

U [ENTER] P t |[ENTER][ENTER]

The display will now show 123456%. The percent option shows a number muitiplied
by 100 with an added % sign. Note that the stored value, as shown in the status area,
is still 123.456, regardless of the cell display. :

We can now try the Exponential format, with three decimal places, by typing:

[F3] U [ENTER] E 3 [ENTER][ENTER

12/84

#
)

Before you press ENTER for the third time the input line should contain:
Command>units,cells,exponent,decimal places 3,range A1:A1
and, after pressing i, the cell display will be 1.235E+02.

The exponential format is used to display numbers which are 00 large or too small to
be writter: in decimal format. The number is written as a value between 1 and 10,
multiplied by the appropriate power of ten. The number 2 300 000 0CO, for example,
can be written as 2.3 muitiplied by 1 000 000 000 and 1 000 000 000 is ten raised
to the ninth power (nine tens multiplied together). So 2 300 000 000 could be written
in exponential format as 2.3 E+09. Very small numbers are written using negative powers
of ten. Thus, the number 0000123, which is 1.23 divided by 1000G (ten raised to the
fourth power}, can be written in exponential format as 1.23 E-04.

The remaining option is the General format, which you can see in cell A1 by typing:
U [ENTER] G [ENTER]
The input line contains:

Command>units,cells,general,range A1:A1

This format again does not require you to specify the number of decimai places, Using
the General format lets Abacus choose a sensible form for the display of each number.
It does the best it can to display each number as accurately as possible in the space
that is available.

Before we leave the Units command, try displaying the number in cell A1 in decimal
format, with nine decimal places. Type:

[F3] U [ENTER] [ENTER] 9 [ENTER| [ENTER]

Ceil A1 now shows # # # # # # # # # # indicating that the display will not fit in the
space avallabie. Whenever you see this, you should then either change the display format,
or increase the width of that column,

Now clear the grid by using the Zap command. With the cursor at cell Al type:

"This is a Llong bit of text

Although the text is too fong to be contained in one cetl, itis all shown. It overflows across
the following cells. Now put the number 1 into cell B1. The text is cut off at the end
of cell A as itis not alowed to overflow across another filled cell. Move the cursor back
to cell A1 and verify that the whale of the text is still stored by locking in the status area.

Move the cursor back to cell B1 and use the Rubout command to erase. When you
use this command you are asked to specify the range of cells whose contents you want
to delete. In this case we only want to delete the contents of cell BY and can do so
by pressing ENTER. The full sequence of key presses is:

R [ENTER

Now that cell 81 is empty, the full text in cell Al appears again.

12/84

Cels, Rows, Columns and Ranges

CHAPTER 4
FUNCTIONS
AND

FORMULAE
FUNCTIONS

FORMULAE

Abacus contains a number of pre-defined funciions which are used to perform specific
calculations on the contents of one or more cells. A function takes a number of input
values, known as arguments, and from them calculates a specific result. The result is
said 1o be the value that the function refurns.

In Abacus you must supply the arguments in brackets after the name of the function
and, if there is more than cne argument, you must separate each with commas. Most
of the functions provided return a numeric value, for example, the function sum(). This
takes, as an argument, a range reference and returns a numeric valug equal to the sum
of the numeric values contained in ali the cells within the range.

Some functions, such as month(), return a text value. (month(1), for example, returns
the text January’). A few functions require no arguments, but you must still include the
brackets. For exampte the function pi() returns the numerical value of the mathematical
constant 7 (approximately 3.14).

Two particutarly useful functions are col{) and row(). These return the number of the
column (or row) which intersect at the cell that contains the function. They are used
extensively in the examples in the next chapter,

For example, col() will return a value of 1 from column A, 2 from column B, and so
on. The function row() simply returns the row number

As an example we can use the two functions month() and col() to label cclumns of
the grid. The object wil be to place the headings January, February, and so on at the
top of columns B to M. We use the function col() to supply the number that month()
needs a3 s argument, so that it gets a different value in every column. Type in:

row = month{col())

and then press ENTER. Select the range from B to M when Abacus asks for the start
and end columns. You will see that the result is not guite what we want in that, although
the labels start at column B, the first label is February and not January. This is because,
in column B, col{) returns the vaiue 2 and month{2) is the text February! All we have
to do is to alter the instruction so that 1 is subtracted from the value returned by col(),
before calculating the menth. Type in:

row = month{(col()-1)

{Dont forget to press ENTER to mark the end of the input) Select the column range
from B to M, as before.

A formula is usually used to relate the contents of one cell to the contents of one or
more of the other cells in the grid. The idea of formulae is very important in the use
of Abacus as it allows you to describe even the most complicated calculations in a simple
waly.

You enter a formula into a cell using the same method employed for entering numbers,
that is, by moving the cursor to the cell, typing it and then pressing ENTER. Abacus
assumes that anything it does not recognise as a number (starting with a numeric digit)
or a text value (starting with quotation marks) is a formula.

Move the cursor to cell B3 and enter the number 100, move the cursor to cell C3 and
enter 200. Now move the cursor to cell D3 and type in the following formuia

B3 + C3

When you press ENTER you will see two things happen. First the value 300 wil appear
in cell D3: the formula’s result has been calculated by adding together the contents of
cell B3 and cell C3 and the total placed in cell D3. In addition you will see that the status
area at the bottomn of the screen shows the formula used to calculate the value in this
cell. A cell which contains a formula will always show the result of the calcutation. If you
position the cursor on the cell then Abacus will show the formula itself in the status area
at the bottom of the screen.

12184

The rest of the examples using formulae make use of the labelling facility and the row
and col range identifiers. They allow much more efficent methods of entering information
into the grid than the direct use of letter and number cell references.

Note that any numeric formula that does not contain any cell references is not stored
as a formula. In such a case Abacus calculates its vaiue and stores the result as a pure
number. For example, 37 + 100/20 is stored as the value 42, and not as the original
formula.

| A { B | C I D | E
1 January February March April
2| Sales £1000.00 £1050.00 £1102.50 £1157.63
3] Costs £722.00 £749.50 £778.38 £808.69
4| Profit £278.00 £300.50 £324.13 £348.93
5

Figure 41 Simple cash flow analysis

Start this exampie with a grid containing month headings in cells B1 to M1, If you have
anything else in the grid you should clear it with the Zap command.

Now move the cursor to cell A2, enter the text ‘Sales' and then put the value 1000 in
cell B2. Now move the cursor to cell C2 and type in the formula:

row=sales, january*1.05

Accept the range selection given by Abacus (column C to column M) by pressing ENTER
twice. Note that Abacus knows the end of the row is at column M because that is where
the previous row ended. When you press ENTER a second time you will see a whole
series of values appearing in row 2, from column C onwards, and the formula B2 * 1.05
wil appear in the status area at the battom of the screen.

If you move the cursor along row two you will see that the formula for each cell is slightly
different. In each case the formula takes the contents of the cell on the immediate left
and multiplies it by 1.05 to obtain the value to ptace in the current cell. For example,
the formula in cell E2 refers to ceil D2, and the formula in cell H2 refers to cell G2, and
SO on.

n Abacus all formulae work in this way unless you specify otherwise. Each formula
remembers the retative poesitions of all cells to which it refers. When such a formula is
used in more than one cell the references are adjusted to maintain a refative cefl reference.

It may prove helpful to point out that the initial value of 1000 placed in cell B2 was
necessary for two purposes; to ensure that the label ‘Sales’ was recognised as a row
reference and also to specify the first value to be used by the formula.

Now posttion the cursar at cell A3 and enter the text ‘Costs, Without moving the cursor,
type in the formula:

costs = sales » 0.55 + 172

This formula calculates the cost from two components. They can be regarded as
manufacturing costs (55% of sales) and fixed costs totalling £172.00.,

Use the suggested start and end points of column B and column M. Since the contents
of the row is defined in terms of the row reference ‘Sales the label ‘Costs’ will also be
taken as a row reference, with the same range as ‘Sales.

Again you should move the cursor along the row, examining the different formuiae shown
at the bottorn of the screen, in order to understand how the results have been calculated,

Finally, put the text ‘Profit’ in cell A4 and type in a further formula

profit = sales-costs

12/84

Functions and Formuiae

A SIMPLE CASH
FLOW EXAMPLE

Functions and Formulae

AUTO-CALCULATION

16

with the same range selection as before (ie. columns B to M). Abacus will do all the
rest of the work for you, producing a simple, but complete, example. If you now change
the display to monetary format with the command:

Units,Cells,Monetary, Minus sign,Range B2:M4
you should find that the first few columns appear as in Figure 4.1.

When you have lyped in the simple cash flow application described in the previous
section, try changing the number in cell B2 (SalesJanuary).

Move the cursor to this call — the easiest method is to press F5 and then type in the
cell reference {either B2 or sal jan) followed by ENTER. Now type in any number you
like. When you press ENTER you will see that all the numbers in the grid wil change!

All the formulae in the cells of the grid are recalculated automatically each time you
make an entry to a cell. Since all the formulae in this examgple refer, directly or indirectly,
to the value held in cell B2, all their values will change when you alter the contents of
this cell. (Remember that we assumed that sales would increase by 5% per, month,
based c¢n the January figure)

You can switch off the auto-calculate facility by using the Design command. This is useful,
for example, when you have many complicated formulae in the grid and do not want
to wait for a recalculation each time you change a single value.

Select the Design comand by pressing F3 and then the D key. The display changes
to show a list of the options, as shown in Figure 4.2. You can select any one of these
options by typing its first letter. Select the aute-calculate option by pressing A and the
auto-calculate state changes automatically. You leave the command by pressing ENTER.

HELP DESIGN allows modification of opticns COMMANDS
press F1 Press first letter of option press f3
PROMPTS ESCAPE
press F2 Press ENTER when finished press ESC
AUTO=CALCULATE 0N 3MPUL C oo e e cmecccmc === m— e —maamm=— YES
BLANK if 2Br0 - o o e mmmm——mmmmm—————mmmm NC
CALCULATION order row or column_ e ROW
DISPLAY 80,64,40, columns (8,6,4) oo tmmmmememeoe oo 64
FORM feed DefWween Pages _ o o immm—mmmmmmm— e mm e —mmmm— e YES
GAPS between Lines onm printer . o oo e mmm——mmm e 0
LINES per page of printer Daper - - oo mmme————eao &6
MONETARY symbol (e.g. f,8) oo e £
PRINTER paper width (characters) oo oo mcrmmmeeeeeam 80

Figure 4.2 The design command.

If you now change the contents of cell B2 you will see that there is no change in the
contents of any of the other cells,

You can also force a recalcuiation of all the formulae in the grid at any time by using
the Xecute command. While you have the auto-calcutate turned off, try using this
command. Make sure thal the command menu is displayed in the centrol area (press
F3) and then press the X key. The values in the cells of the grid will be recalculated.

12/84

L

Before you go any further you should restore the auto-calculate facility by using the Design
ccmmand again. Select the auto-calculate option by pressing the A key, as befare, and
leave the command by pressing ENTER.

12/84

Functions and Formulae

17

CHAPTER 5
THE

EXAMP LES The following sections illustrate the use of Abacus by developing a number of examples.

CASH FLOW
MODELLING

In addition to explaining the way a number of features work, the examples have been
chosen to show some of Abacuss wide range of applications. The best way o learn
about Abacus is to use it The examples have been written with this in mind.

You are recommended to work through alt the examples yourself, typing them in as
you go along. Each contains some additional information, as well as giving more practice
with the topics covered in earlier examples. You may well be able to think of medifications
and improvements and they should give you ideas about how to construct applications
of your own,

In all the examples in this chapter, text, numbers and formulae are shown exacty as
you would type them in. If a cell range is required, it will be given in brackets at the
end of the line. In many cases the range you need will be the one that Abacus suggests
and you can select it simply by pressing ENTER. In other cases you will have 10 type
in the range yourself. If the cursor needs 1o be positioned on a particular cell, its cell
reference is shown in square brackets at the beginning of the line — do not type in
any such cell reference. For example, the line:

[A4] row=month{(cot (=12 [columns B to M}
should be read as:

move the cursor to cell A4, and then type In

row=month{colt ()-13

If necessary, moditying the range suggested by ABACUS to be from column B
to column M.

Where you have to type in an explicit range reference, eg. b3:€15, it will be given in
that form.

When commands are given in full they are shown exactly as they will appear cn the
screen. Remember that you only need to type in the first letter of each option - the rest
is fited in by Abacus. If you want to use the default option you should just press ENTER.

Each example assumes that you start with a completely blank grid. if necessary clear
the grid with the Zap command before starting to type in the example.

This is a more complete version of the simple cash flow exampie of Chapter 4. When
you have finished the grid it should look like Figure 51

The first two cell entries produce an underlined title for the grid.

|C1] "*CASH FLOW
[C2] rept (=", len(c1))

The second entry uses the rept{) function which needs two arguments. The first is text,
or a reference to a cell which shows a text value and the second is numeric. The function
produces that number of repetitions of the first character of the text. In this case it
underlines the titte with ‘=" signs, to the exact length of the title. If you decice to change
the title there is no reed 1o alter the formula in cell C2 since it uses the len() function
to read the length of the text in cell C1.

[Ad4] row=month{col)=1) [columns B 10 M]
[A5] row=rept (=", width(+1) {columns A to M]

These row entries produce month headings, and rule a line across the whole of the
used part of the grid. The function width{) gives the width, in character spaces, of each
column. it can therefore be used to rule lines across a grid with columns of different
widths. There is one extra character space separating each column of the grid, which
is why the additional +1 is needed.

[A6] "SALES
[B6] 4000
[C6| row=sal.jan*1.02 {columns C to Mj

,

Mo entries fill in the sales figures for the year, assuming that the January sales were
4000 and that sales are increasing at 204 per month.

| A | B [C I 0 | E

1] CASH FLOW

y I S======

5 |

o January February March April

l)‘ | ___

6 | SALES 4000.00 4£080.00 4161.60 4244 83

7 | COST OF SALES 2750.00 2790.00 2830.80 2872.42

I I
9 | GROSS PROFIT 1250.00 1290.00 1330.80 1372.42
10|
11 | EXPENSES
12 | wages 700.00 700.00 700.00 700.00
13 | advertising 100.00 100.00 100.00 100.00
14 | rent 200.00 200.00 200.00 200.00
15 | electricity 50.00 50.00 50.00 50.00
16 | depreciation $3.00 90.00 90.00 30.00
17 = m e e e e e
18 | TOTAL EXPENSES 1140.00 1140.00 1140.00 1140.00
1§ [m e
20 | NET PROFIT 110.00 150.00 190.80 232.42
21 I=========::::==.-_==:================:====:==:Z======

=gure 51. The completed cash flow grid (first five columns)

[A7 "COST OF SALES
cos=sal*0.5+750 {columns B to M]

(The costs are assumed to be half of the selling price plus a fixed amount of £75000.)

[A8] row=a5 {columns A to M]
[A9] "GROSS PROFIT
gro=sal-cos [cclumns B to Mj

This rules off the grid again and calculates the monthly gross profit figures,
[AT1] "EXPENSES

[A12] "wages
row=700 [columns B to M}

[A13] "advertising
row=100 [columns B to M|

[A14] "rent
row=200 {columns B to M}

[A15] "electricity
row=50 {columns B to M!

[A16] "*depreciation
row=%90 [columns B to M]

These entries fill in the expense figures, assuming them to be constant throughout the
year You can, of course, change the expense headings and amounts to suit yourself.
You can include more or fewer entries, as long as you make the necessary changes
to the cell references in the rest of the example. You may want to have different values
for each month, but it is faster to set up the table with fixed values and modify them later

[A17] row = a5 [columns A to M}

[A18] "TOTAL EXPENSES

(B18] row=sum(col) [rows 12 to 16, columns B to M}
[A19] row=a5 [columns A to M]

You now have the totals of the monthly expenses.

The sum{) function adds the contents of all the numeric cells in the range specified
as its argument. All empty cells, together with those containing text, are ignored. The
range could be given as an explicit range reference — B12:B16 for example. in this

12:84

Examples

Examples

MULTIPLICATION
TABLES

case, however, each range is only a single column so we have used the range specifier
ol All you need to do is to answer the range guestions asked by Abacus, and just
press ENTER if the suggested range is what you want.

Note that this formula uses the range identifiers row ard col in the two different ways.
Firstly, row is used to indicate that the formula is to be placed in several cells of the
current row. Secondly, col is used to specify the range of cells over which the addition
should take place. Both of the range identifiers need vou to confirm (or change} their
beginning and end points. In this case Abacus deals with the range for the sum() function
first.

[AZ0] "NET PROFIT

net=gross—tot [columns B to M|
[A21] row= rept("=",width()+1) {columns A to Mj

The table is now compigie, with the net profit figures calculated as the difference between
the gross profits and the total expenses. All you have to do now is to adjust the appearance
of the table by using a few commands. Remember to press F3 each time you want

to use a command.
First we change the width of column a (ncte that the Grid command has its own menu
of options).
Grid>Width, 15 FROM a TO a
Then we change the justfication and numeric display format for a few cells:

Justify,Cells,Text,Right,Range a4:mé
Justify,Cells,Text,Right,Range al2:al1é
Units,Cells,Decimatl,Decimal places 2,Range Range al:m21

We have chosen to display the figures in decimai format, with two decimal places. If
you prefer the pound sign to appear you should replace the last command by

Units,Cells,Monetary,Minus sign,Range al:m21
It is very simple to alter any of the figures. Suppose you want o increase the February
advertising figure. All you have to do is press F5 (go to a cell) and type the cell reference
feb.adv -
The cursor will move to that celt and you can type a new value.

Remember that the sales figures were calculated by a formula which assumed a 2%
increase each month. If you change one of these cells 1o a numeric value you wilt destroy
the formufa in that cell. The formulae in the other cells of the row will, however, be
unchanged. The amounts in the following ceils will still increase by 2% per month, starting
from the new value.

This simple example may prove useful to a child who wants to learn the muitiplication
tables. It lets you request a particular tabie and then displays it.

When you have typed in the example you use it by forcing a recalculation of the grid
with the Xecute command, ie you type:

X
Abacus then asks you to type in a number and displays the corresponding multiplication
table.

The tabie in Figure 52 shows an exampie of the display it produces.
First title the application as normal;

[B1] "MULTIPLICATION TABLES
[B2] rept("=", len(b1))

The next three lines give a heading to the table.

[B3] "The
[C3] askn("Which multiplication table do you want'')
[D3] "*times table

12/84

.

. Here we have used the askn() function to request input; it allows you to choose which
table you want, by typing in a number

A | B | ¢ 0 | E | F
MULTIPLICATION TABLES

times table

=
4]
~J

14
21
28
35
42
49
56

-
—
SO ONCU W =~

70
77
84

PLNN—‘O*OCON.IO\UI-I\MN—N

—_

-y
-y
NN N N N N N N N

L1 L T 1 O 1 I 1 O VI NN

* % o % F o % F ¥ % A A

-
P

|
|
I
|
|
I
I
|
I
|
|
I
|
|
I
5

Figure 52 A multiplication table

This function takes a text string as its argument and displays the text in the input line,
followed by a question mark. It then waits for you 10 type in a number, ending with ENTER,
The number that you type in will be displayed in the cell which contains askn().

Note that askn() will not wait for input during a normal auto-calculation of the grid. It
will only display the message and request input when first put the fomula into the cell,
cor when you force a recalculation of the grid by using the Xecute command. Once you
have input a value 1o the cell it will be retained until the next time you force a recalculation
with the Xecute command.

The remaining grid entries use the column-illing facility to produce the body of the
multiplication table.

[B4] col=strlrow()-3,2,00+" *" frows 4 to 15

This is the most complicated formula of the example, It is used to display the muitiplier
in each row of the table. The number is converted te a text string so that we can combine
it with the muttiplication sign and display them both in a single cell.

The str() function converts a number to the equivalent string of digits. It takes three values;
the number to be converted, a code for the format (0 = decimal, 1 = exponential,
2 = integer, 3 = general) in which the number is to be displayed, and the number
of decimai places 10 be shown. In this case the number is converted to integer format.

In this case the value is obtained from the expression ‘row(}—3’, whose value is 1 in
row four, 2 in row five, and so on, up to 12 in row 15. The next value (2) selects display
as an integer (whole number). The third number normally specifies how many decimal
places are to be used. lts valte must always be given but is ignored for integers. It has
been given a value of zero {(any cther value could have been used).

Finally the result is concatenated i{the correct term for adding one text string to another)
with the string *, so that both the muitiplier and the multiplication sign are displayed
in a single cell.

[C4] col=%¢3 {rows 4 to 15]

Column C contains copies of the vaiue typed in in answer to the askn{) function. The
cell reference is preceded by a $ sign to make it an absolute cell reference. When you
have entered the formula, move the cursor up and down the cells of column C and
look at their contents. You will see that they all contain the cell reference $C3. The reference
has nct been adjusted in each row. An absolute celi reference always refers to one
particular cell, from any position in the grid. You can make any cell reference absolute
by adding a leading $ sign.

[D4] col="=" {rows 4 to 15]
[E4] col=$c3*(row()-3) {rows 4 to 15

These last two column entries are almost self-explanatory. They are used to produce
the equals sign and the answer for each row of the table. The last formula multiplies

®

Examples

21

Examples

CHEQUE BOOK
RECONCILIATION

the value from the askn() function in cell C3 (another absolute cell reference) by the
row()-3 expression which, as we saw earlier, gives a valug of 1 in row four, 2 in row
five, up to 12 in row fifteen.

We now need to use a few commands to change the display of the table to & mare
convenient form. Use the following commands:

Justify,Cells,Text,Right,Range b3:b15
Justify,Cetls,Text,Right,Range d4:d15
Justify,Cells,Numbers,Centre,Range c3
Grid>Width, 5 FROM b TO b
Grid>Width, 3 FROM ¢ TO ¢
Grid>Width, 2 FROM d TO d
Grid>Width, 4 FROM e TG ¢

You use the table by forcing a recalculation of the grid with the Xecute cermmand. The
text of the askn() function will appear in the input line — and you should type in a number
between one and twelve.

This example allows you to keep a check on your bank account. You enter detalls cf
your cheques in the spaces provided. At the end of the month you add the details of
your salary, standing orders etc. You are then provided with a balance which you can
compgare with your bank statements.

The result, with a few figures added, is shown in Figure 53.

| A i B ! c

1 | CHEQUE BOOK RECONCILIATION

2 | i - - = =]

3|

4 | Month January

5

6 | Opening balance 200.00

7 | salary 527.35

8 | Miscellaneous income 0.00

9|

10 | CREDIT 727.35

12 |

13 | Standing orders 130.00
14 | Charges 0.00
15 |

16 | Cheques Date Cheque no. Amount
17 | 3/01/84 123456 50.00
18 | 10/01/84 123457 50.00
19 | 14/01/784 123458 32.21
20 | 17/01/84 123459 50.00
21 | 24/01/84 123460 50.00
22 | 31/01/84 123461 50.00
23 | - — -
24 | - -— -——=
25 | -— - -—-
26 | -—- -— -
27 |

28 | DEBIT 412.21
29 | =====
30 | Closing balance 315.14
3‘[I =====

Figure 53 Cheque book reconcikation

[81] “"CHEQUE BOOK RECONCEILIATION
[B2] rept (=", Llen{b1))

[C4] "Month
(D4 askt("Enter manth™)

12/84

. The askt() function works in the same way as askn(}, but the expected input is text
instead of a number. When you use Xecute Abacus will display the message in the
input line and then wait for you to type in some text. You should type in the name of
the month for your balance.

[AB] "Opening balance

[A7] Salary

|[A8] "Miscellaneous income
[C6] askn(aé+' for "+$d4)

The prompt string for askn() is constructed from the text of other celt entries, using both
relative and absolute cell references.

We now use the Echo cammand o copy the formula from cell C6 into cells C7 and
C8. instead of typing the range reference C7:C8, we can use the ranqe identifier cal.

Echo,cell c6,over range col (rows 7 to 8)

[B10] “CREDIT
{C10] sum(col) {rows 6 to 8]

Cell C10 is used to contain the totai of al credits for the menth. This cell is labelled;
its reference is ‘creditmonth”

The cell's contents are calculated using the sum() function which we met in the first
example in this chapter This function adds the numeric contents of all cells in the range
specified by its argument. Remember that it ignores any cell in the range that is empty
or that contains text.

In this case we have again used It as sum(col), which specifies that the cells to be summed
lie in the current column. As normal, Abacus asks you to specify the sxact range,
suggesting reasonable values based on your previous work.

[C11] rept (=", len(str{credit.month,0,2)))

Cell C11 underiines the total, using the usual rept() and len() functions. In this case,
however, we do not know in advance the number of characters to underline. We therefore
have to convert the number o a string of characters with the str() function, assuming
that it is 10 be shown in decimal format with two decimal places. The length of this string
gives the correct number of characters to underline.

[A13] "Standing orders

{A14] "Charges

[D13] askn{a13+" for "+3d4)
[D14] askn(alé+" for "+$d4)

These allow you to enter the monthly debits in response to prompts, using askn() in
the same way as described earlier,

[A16] "Chegques

[B16] "Date

[C1B] ""Cheque no

[D16] ""Amount

(B17] row=""-~--"[columns B to Dj

These cells set up an area of the grid which you will later use t¢ enter the details of
your cheques.

(B328] "DEBIT
[D28] sum(col) [rows 13 to 26)

This calculates the total of the debits. Remember that sum{) only adds numeric values
in the cells of the specified range. Cells containing text, and empty cells, are not included.
The sum will therefore ignore all unused entries in the list of cheques, as well as the
table heading in column D,

[A30] “Closing balance
[C30] credit.month-debit.amount

The calcuiation of the closing balance completes the grid entries. You should now use
the commands to tidy up the appearance of the application.

First we can use the Echo command 1o fill the rest of the chegue table and complete
the underlining of the totals. This command makes copies of the contenis of a single

12/84

Examples

23

Examples

STANDARD
DEVIATION

cell intc all the cells in a range. The first of the following three uses, for example, copies
the contents of cell B17 inte all the cells in a rectangle whose top left and bottom right
corners are B18 and D26 respectively.

Echo,Cell b17,over range b18:d26
Echo,Cetll c11,over range d29:d29
Echo,Cell c11,over range c31:c31

Next we need to set the numeric display 1o decimal, with two decimal places, for the
whole of the application, with integer format for the cheque numbers:

Units,Cells,Decimal,Decimal places 2,Range a1:d30
Units,Cells,Integer,Minus sign,Range c17:c26

We have already explained that empty cells do not exist as far as Abacus is concemed
and so a change of format will therefare onty affect non-empty cells. We can fiil the cheque
table with ' - ' before making the change to ensure that these cells are changed to
decimal format. An alternative method is to change the default format.

Finally we can modify the justification of the text, including the underlining, to improve
the final appearance.

Justify,Cells,Text,Right,Range b16:d26
Justify,Cells,Text,Right,Range ¢11
Justify,Cells,Text,Right,Range d29
Justify,Cells,Text,Right,Range c31

The part of the grid that is used is too large for it ail to be visible in the window at once.
In order to see the final results, together with the values entered via the askt() ana askn()
functions, you might like to use the spiit window facility. The Window command splits
the window, either vertically or horizentally, info two windows, using the position of the
cursor to determine the position of the spiit

A vertical split is most suitable for this grid and you can set it up by moving the cursor
to the centre of the window and then using the command:

,

Window,Vertical,Separately

You can move the cursor from one window to the other by pressing F4. For this example
you should use the cursor to adjust the left hand window to show cell AT at its top left
corner. and cell B15 at the top left corner of the right hand window.

This example calculates the mean and standard deviation of a set of numbers. It makes
use of the labelling facilities of Abacus so that the formuiae used in the calculations are
mostly self-explanatory.

| A ! B | ¢ | D | E
1| STANDARD DEVIATION
2 | ==czxzz=ss========T
3
4 | Value Deviation Square of dev.
5] 5.00 -4.50 20.25
6 | 6.00 -3.50 12.25
7 | 7.00 =-2.50 6.25
8 | 8.00 -1.50 2.25
9 | 9.00 -0.50 0.25
10 | 10.00 0.50 0.25
11| 11.00 1.50 2.25
12 | 12.00 2.50 6.25
13 | 13.00 3.50 12.25
14 | 14.00 4.50 20.25
15 |
16 | Mean 9.50 Variance 8.25
17 | Std. Dev. 2.87
&0 mmme———=-

Figure 54 Standard deviation calculation

In addition it uses a grid layout which requires calculation in column order, rather than
the normal row order.

12]84'

P
N

. In'general, a formula should oniy refer to cells that are in the region above and to the
left of the cell containing the formula, including the row and column containing the formula.

If you do not follow this rule, as in this example, it is fikely that the resuits may be incorrect.
In most cases you can obtain a correct result by forcing a recalculation of the grid with
the Xecute command or. as in this case, calculating the grid in column order

[B1] "STANDARD DEVIATION
[B2] rept ("=, Len(b1))

[B4] "value

[C4] "Deviation

[D4] "square of dev.

[BS] col=row() [rows 5 to 14]

This last formula inserts a set of dummy vaiues in the cells of colurmnn B for testing the
application. When the grid entries are complete you can replace them with other values.
The table described in this example will only hold ten values - you can change this
to cope with more if you want.

[A16] "Mean
(B16] ave(value) [rows 5 to 14]

deviation=value-Smean.value (rows 5 to 14
square=dev*dev {rows 5t 14}

[C18] "Variance
[D16] ave(square) [rows 5 to 14]

These formulae show that the variarce of a set of numbers is defined as the average
of the squares of the deviations from the mean,

[C17] ''std. Dev.
(D17] sqr(variance) [cclumns D to D)

and that the standard deviation can be calculated as the square root of the variance.
[D18] rept("'-",len(str(std.sqg,3,0))

The numbers in this example are left in general format so that it can handle any range
of values. The underlining uses the length of the text string corresponding o the number
in the cell above {with cell reference “std.sq”) expressed in general format.

You can improve the appearance of the display by changing %o centre justfication for
the text in the range B4:D4, and using left justified numbers in the range B16:017.

It you try using this example by putting different values in the cells of column B, you
will find that it does not give the correct answers. The reascn is that the recalculation
of the grid is performed row by row, from the top downwards. Any alteration you make
will therefore be worked out on the basis of an incorrect mean value (since the new
mean wilt not be calculated until after the deviations from the mean). The sclution is
to make the recalculation cf the grid be in column ordler, from left to right. You do this
with the Design command.

Use the 'C’ option ta change the column order and leave the command by pressing
ENTER, as indicated in the control area. When you next change a vaiue in column
B, the calculation will be correct, since the new mean is now calculated before the
deviations. Afthough this ability to change the order of calculation is very useful, you
should not get into the habit of using it too often — calculating in column order is much
slower than row order

If you save a grid to a Microdrive fle, the current settings of all the Design options are
saved with it and they are used whenever you reload the file,

This example will allow you to plan your household expenditure over the year, You can
enter your estimated expenditure under a number of headings for each quarter. You
are then provided with quarterly totals, your expenditure for the whole vear and the
averaged monthly cost

Do not type any numbers into the table until you have compieted it This allows you
to change the form of numeric display, with the Defaults option of the Units command,
as described later.

12/84

Examples

A HOUSEHOLD
BUDGET

25

Examples

26

A B

11

2

3

4

51

6| ! Item

7

8 | IMortgate|Rent
9 | IRates

10 | 'Gas

11§ !Electricity
12 | ‘tWater rates
13 | !Telephane

14 | 1lInsurance

15] IcClothing

16 | 'Hire-purchase
17 | tCar tax
18 | !Petrol
19 | 'TV licence

20 | !Savings

22 | Quarterly tots
23 |

24 |

25 |

26 |

27 | Payments
28

Figure 55 Home budget example.

Ici

D

el F gl

HOUSEHOLD BUDGET

ESTIMATED EXPENDITURE

Qct-Dec !

150.00
40.00
35.00

150.00

Yearly

£3300.00

[D1] ""HOUSEMOLD BUDGET
[D2] rept (="', Len(d1))

Now we can set up the structure of the table with its ruled divisions.
[Ad] row=rept (""", width()+1)

[AS] cot="im

{frows 5 to 20

I Apr~Jun ! Jul-Sep
! 400.00 ' 400.00
I 450.00
I 80.00 ' 60.00
I 30.00 ! 30.00
1 35.00
' 150.00 ' 150.00
| |
| |
1 1
| I
| I
I I
| I
V1145.00 1 640.00
Monthly
£275.00

{columns A to K}

The following commands complete the table structure.
Grid>Width, 16 FROMb TO b

Grid>Width, 8 FROM
Grid>Width, 1 FROM
Grid>Width, 1 FROM
Grid>Width, 1 FROM
Grid>Width, 1 FROM
Grid>Width, 1 FROM
Grid>Width, 1 FROM

Echo,Cell a5,cver
Echo,Cell a5,over
Echo,Cetl a5,over
Echo,Cell a5,over
Echo,Cell a5,over
Echo,Cell a4,over
Echo,Cell a4,over

Echo,Cell a4,over

[A7] -

[F5] "ESTIMATED EXPENDITURE
[BB] "Item

[D6] '*Jan-Mar

[F6] ""Apr-Jdun

(HB] "Jul-Sep

[J6] '"Oct-Dec

d To
aTo
c TO
e TO
g TO
i TO
k TQ

range
range
range
range
range
range
range
range

; FOR SERVICE MANUALS

: CONTACT:

] MAURWHONTECHNWALSERWCES

; Www.maurtiron.co .uk

; 'TEL:01844-351694
FAX:01844—352554

c5:c22

eb:ed?

gb:ge2

i6:122

kS5:k22

b7:j7

b21:k21

c23:k23

12/84

B8| "Mortgage/Rent
BY| '""Rates

BiO} "Gas

B11] "Electricity
B12] "Water rates
|[B13] "Telephone
B14] "Insurance
B15] *"Clothing

B16] "Hire-purchase
B17} "Car tax

B18] "Petraol

Bi9} "TV Llicence
B20] "Savings

[B22] "Quarterly tots

1022] sum(col) [rows 8 to 20
F22] sum(col) frows 8 to 20)
H22] sum(col) {rows 8 to 20
[J22] sum(col) [rows 8 to 20

D25] "Yearly
F25] "Monthly
B27) #Payments

[D27] sum(d22:j22)

[F27] year.pay/12

[D28] rept (=", len(str(year.pay,0,2))+1)
[F28] d28 .

Note that the underlining of the two final figures assumes a monetary format. The length
of the underlining is for a number in decimal format, with two decimal places, plus one
{for the currency symbol).

You also should use a few more commands, to justify text right in the range B22'B27
(quarterly tots and payments) and to justify numbers left over the cells containing the
yearly and monthly payments.

You must also modify the numeric display format. Since many of the cells are still empty,
simply changing the format will have no effect. You must change the default format of
the cells to make the effect permanent.

The following command will change the display default to monetary units over the whole
of the budget application.

Units,Defaults,Monetary,Minus sign

The display of Figure 55 uses decimal format, with two decimal places, except for the
yearly and monthly paymernts, which are in monetary format. The appropriate commands
are;

Units,Defaults,Decimal,Decimal places 2
Units,Cells,Monetary,Minus sign,Range d27:127

This last command can use tne Ceils option since the cells concerned already exist

You can enter values in this tabie by meoving the cursor to the appropriate cell and typing
in the number. The easiest way of moving the cursor is to press F5 (Go to cell) and
then use a cell label, such as:

apr.gas

The chart displays twelve values, labelled by month. The values are read from twelve
cells above the chart. The vertical scale is adjusted automatically to make sure that all
values will fit the display. It is only suited to displaying positive values,

First you should set the column widths to five in column A, one in colurmn B and three
in columns C to N, using the Width option of the Grid command.

[C2] row=0 |columns C to N}

Examples

AN AUTO-SCALING
BAR CHART

Examples

28

| A gl ¢ b tE |F |6 fH [I | |K L |[M|N
1
2 | 3 4 3 2 3 4 3 4 1 2 3 2
3| SCALED BAR GRAPH
4 | 5
5| 4.5 1
é l 4 1 Xk ke k * ok k
7 3.5 1 * k% * %% ¥k
8 | 3 | kxk kkk RRok hkk khkh kkk kkk
9 | 2.5 | kkk khkk kkk hokk kkk dhkk kAN *kk
10 | 2 | kak kdkk kkk kkk kkk khkk kkk kkk khkk KAk KKK
11 | 1.5 1 dkdk kkk kkk kkk hkk kkk kkk kkk kkk KAk Kkk
12 I 1 I Rk %xdk kkk Khkhk kkk hkkk hkdk kkk hhkx kkk kA* dokk
13 | 0.5 | %kk kkdk hkdk kkk kkk Kkk kkxk xhkk kkk kEkk Kk Ak
14 | 0) —mmmmmm oo m o=
15 | Jan feb Mar Apr May Junm Jul Aug Sep Oct Nov Dec

Figure 56 A scaled bar chart
Row two will contain the values to be displayed — inttially filled with dummy dots.
[F3} **'SCALED BAR GRAPH

[P2] int{max(c2:n2)/5+1)%5
Q2] int(min(c2:n2)/5)*5

Cells P2 and Q2 contain the maximum and minimum values for the vertical scale of
the graph. These cells are chosen so that they do not appear in the final display of
the chart. Their initial values are five and zero respectively.

The max() function finds the maximum, or iargest, numerical value in the range of cells
specified by its argument. Similarty, the min() function finds the minimum, or smallest,
value in the range.

Let us first examine the formula in cell Q2. The min{) function finds the minimum, or
smallest, value in the specified range which is then divided by five. The int() function
then removes the fractional part of the resuit of the division. If, for example, the minimum
value is 13, dividing by 5 gives a value 26, and int(2.6) is 2. When this is multipfied
by 5 we end up with a value of 10, which is the largest muitiple of 5 that is less than
the minimum.

The formuia in cell P2 is similar, except that it finds the largest value in the range and
adds 1 to the number before the final multiplication by 5. lf, as an example, we assume
that the maximum value is 21, you can verify that the formula will give a value of 25
— the smallest multiple of 5 that is greater than the maximum.

The two values in these cells will therefore always bracket the values in the cells from
C2 to N2. Their difference is always a multiple of five.

The rext formula displays the vertical scale of the graph in column A
[A4) col=8q2+(T4-row()) *($p2-%$g2>/10 [rows 4 o 14}

The interval between successive numbers in the scale is (P2 —Q2) / 10. Note that we
made the difference between the contents of P2 and Q2 a multiple of five so that this
interval always has a simple value.

This interval is multiplied by a number (14-row()) which starts at zero in row fourteen
and increases by steps of one to a value of ten in row four The result is added to the
smallest value, from cell Q2, to produce the number for each cell.

The net result is that the value in cell Q2 is displayed in At4, the value from P2 is displayed
in A4 and the intervening cells contain a set of equally spaced values between these

two limits.
[B4] col="t" frows 4 to 14]
[B14] row=rept("-",width()+1) [columns B to Nj
[C15] row=month(col()-2) ¢ to 3) [columns C to Nj

These draw the axes for the chart and add the horizontal axis labels, using the months
of the year Note that we have used the string slicing operator, simiar 10 that of SuperBASIC,
to display only the first three characters of each month.

12/84

£ ¥,

~
r

[C4] iflindex{1,raw()) > index{caol(),62) 1", tesx)

This is the formula that does all the work of producing the bars themselves. It must be
copied into every ceff in the display area:

Echo,Cell c4,over range c4:n13

The formula itself needs some explanation. It uses the if() function to decide whether
to display part of a bar. The if{) function takes three argumerts. The first is an expression
which must give a numeric result. if this resuit is non-zero the cell displays the second
argument, which may be text or numeric. if, however, the result is zero the third argument
is displayed in the cell. Again this may be text or numeric.

In each cell the formula compares the number in coiumn one of that row {the value
labelling the vertical axis) with the number in row two of that column ({the value tc be
displayed in the graph). If the axis label is greater than the display value, the condition
is true (it evaluates to 1) and ncthing is displayed. If the axis label is less than or equal
to the display value, the condition results in a value of zerg, and three asterisks are shown
in the cell. The net result is that a bar is drawn to the correct height in each column.

Since a single formula is used for all the cells in the display, the cell reference can be
neither absolute nor relative. The reference to the display values must change as we
maove from column to column (ie it must be relative along a columny but must aiways
refer to row two as we maove down, from row to row. We need a form of cell reference
which is relative with respect to columns, but absolute with respect to rows.

Fortunately the index() functon can be used to produce this effect It takes two
parameters, a column number and then a row number, returning the contents of the
specified cell. With this we can construct any combination of absclute and relative
references. For example:

Function Column Ref. Row Ref.
index(5,5) absolute absolute
index{col(},5) relative absolute
index(5,row()) absolute relative
index(col(),row() relative relative

The function indexicol(),2) therefore returns the contents of the cell in row two of the
current column, and index{1,row{)) returns the contents of the cell in column one (A)
of the current row.

Try putting different vaiues in cells C2 to N2 and see what effect they have on the display.

This example enables you 1o calculate the monthly payments due on a repayment
mortgage. You are asked to type in the amount of the loan, the interest rate, the length
of the loan in years and the month of the first payment. The required repayments are
calculated and displayed, together with a complete repayment table for the whole period
cf the loan. This table shows you the outstanding sum at the beginning of each month
until the loan is repaid.

Several of the calculations in the grid make use of values that are input by use of the
askn() function,

In this section we shall produce the part of the grid that accepts your input and calculates
the monthly repayments. When you have typed in the formulae and added a few figures
in response to the askn(} functions, it should look like Figure 57

{C1] "MORTGAGE REPAYMENT CALCULATOR
[C2] rept("=", len(c1))

[B4] ""Loan
[C4] askn(rAmount of Loan')

The next three entries request the input of the interest rate. The original input is to a
cell {H4) well away from the displayed portion of the grid so that you do net normally
see it You type in a percentage value, eg. you type 12 to mean 12%. The value needed
by the rest of the formulae is a fractional value (eg. 12% must be converted to 0.12)
and this is calculated from the input vaiue by the formula in cell C5.

12/84

Examples

MORTGAGE
CALCULATCR

Mortgage Repayment
Calculations

E_xamples

Mortgage Repayment
Table

30

| A | 8 | c | D | E
1| MORTGAGE REPAYMENT CALCULATOR
2 I A T
3
4 Loan £25,000.00
51 Int rate 14.00% Mnth
6 | Term 25 Start 4
7 (April)
8 || REPAYMENTS
9l e
10 | Annual £3637.46
1 | Monthly £303.12
w2 et

Figure 5.7 Calculating the repayments.

E6| askn("Month of first payment [Jan=1, Feb=2, etcl')
E7] ' (' + month{ed) + ')

[H4} askn(''Percentage interest rate’)

[BS] "Int rate

[C5] h4/100

[BE] "Term

{C6] askn('"Period of locan in years {maximum 351')
[ES] "Mnth

[D6] "start

|

[

In this last formula we enclose the literal text with single quotation marks. f the first
character had been a double quote, Abacus would have interpreted the following
characters as text input, rather than a formula.

(D8] "REPAYMENTS

[D9] rept ("=, len(d8)?

[C10] "Annual

[D10] mor.loan*mor.int/(1-(1+mar.int)*(-mor.term))

This formula, which calculates the annual repayment, assumes that the interest is
calculated annually and added to the ioan before the twelve monthly repayments are
made.

[C11] "Monthly
[D11] ann.rep/12
D12] d9

The grid is now sufficiently complete to calculate mortgage repayments. Try using the
Xecute command and enter the figures requested, sc that you can see it working.

To make the example look better, we can change the format of some of the numbers
with the Units command. In this example there is no need to alter the default numeric
format since you do not need to make new entries In any grid cell once the application

is completed.

Units,Cells,Percentage,Decimal places 2,Range c5
Units,Cells,Monetary,Minus sign,Range c4
Units,Cells,Monetary,Minus sign,Range d10:d11

In addition it improves the appearance if we move the numbers in rows 4, 5 and 6 tc
the left hand side of the cells:

Justify,Cells,Numbers,Left,Range c4:eb
This section describes how you can add a repayment table to the mortgage calculator.

The first part of a repayment tabie for the values appearing in Figure 57 is illustrated
in Figure 58.

12/84

e

A | B i ¢ | D E

|
15 | REPAYMENT TABLE
16 ! =====z========z
17 |
18 | Year 1 2 3
L T it e
20 | April 28500.00 28343 .30 28164 .65
21 | May 28196.88 28040.17 27861.53
22 | June 27893.76 27737.05 27558.441
23 | July 27590.63 27433 .93 27255.29
24 | August 27287.51 27130.81 26952.17
25 | September 26984.39 26827.6%9 26649 04
26 | October 26681.27 26524 .57 26345.92
27 | November 26378.15 26221.44 26042.80
28 | December 26075.03 25918.32 25739.68
29 | January 25771.90 25615.20 25436.56
30 | February 25468.78 25312.08 25133 .44
31 | March 25165.66 25008.96 24830.31
32|
33 | Year 1 2 3
34 |
35 | End-of-year balance 24862.54 24705.84 24527.19

Figure 58 The repayment table.

If you have a mortgage, type in your own figures. Don't spend too much time over the
results for the first few years — they make rather depressing reading!

[C15] “"REPAYMENT TABLE

[C18] rept(''="", len(c15))

(B18] "'Year

|C18| row=col (}-2 {columns C to AK]

[B19] row=rept ("=, width(}+1) [columns B o AK]

[B20] col=month(row()-20+8mnth.start) [rows 20 to 31|

These entries set up the headers for the table: now we must add the formulae that will
calculate the values. We start with the first item which is the initial amount due. It is
calculated by adding the first year's interest to the amount of the loan.

[C20] mor.loan*(1+mor.int)

Then the rest of the first row is calculated by subtracting the yearly payment and adding
the interest for the current year. These values should not be calculated beyond the year
in which the loan is repaid and we allow for this by using the if(') function. If the year
number (given by col{)-2) is greater than the term of the mortgage, zero is placed
in the cell.

[D20]

row=if({col()~-2)>%mor.term,0, (c20-%ann.rep) *(1+$mor.int))
{columns D to AK]

The remainder cf the table can be filled with a single formuta. We fill the first cell with
a formula which just subtracts the monthly repayment from the amount in the cell above.
Again we use the if{) function to prevent the calculations extending beyond the year
in which the loan is repaid.

[C21] if((cot (¥-2)>3mor.term,0,c20-$mon.rep)

You can then use the Echo command to copy the formula from cell C21 to the range
C21:AK31.

Echo,Cell ¢c21,0ver range ¢c21:ak31

We can now complete the table by adding a final row to give the cutstanding balance
at the end of each year It is probably a good idea to add a copy of the year, from row
18, for easy reference.

[B33] row=year.term {columns B to AK]
[A35] ""End-of-year balance

[C35] row=if((cot()-2)>$mor.term,0,c31-Smon.rep)
icolumns C o AK]

12/84

31

Exampies

FOURIER ANALYSIS

Calcuiating the
Fourier Transform

The Cosine
Components

The Sine Components

The entire table, and the end-of-year balances should be set to either monetary
format or to decimal format with two places of decimals, The ranges for these
changes are C20:AK31 and C35:AK35.

The French sclentist Fourier showed that a repetitive wave of any shape can be built
up from a set of sine or cosine waves of the correct amplitudes and frequencies. The
building up of complex waves from pure sine and cosine waves is known as Fourier
synthesis and is employed, for example, in many of the music synthesisers in use today.

The opposite process, decomposing a complex wave shape into a number of pure sine
and cosine waves, is known as Fourier analysis. This example allows you to perform
a Fourier analysis of any shape of wave. All you have to do is type in the height of the
wave at sixteen equally spaced intervals and let the formulae in the grid do the rest.
The formulae assume that the wave repeats its shape after the sixteenth value, ie. that
the seventeenth value is the same as the first, the eighteenth is the same as the second,
and so on.

Since the calculation takes an appreciabie time it is worth turning off the auto-Galculate,
by use of the Design command, before typing in the example,

C1] "FOURIER ANALYSIS
C2] rept("=",ten(c1))
B

f

[

[B3] "Function:
[A7] "Input

[A8] "values

The input values are placed in the sixteen cells from B9 to B24 inclusive.

cal=row()-% [rows 9 to 24}

We shal now set up the headings for the table which will calculate the cosine compeonents
of the wave. The result contains the amouats of all cosine-like waves in the input.

[E3] "Transform:

[E4] "Cosine
[D6} “Ccycles
row=col()-5 [columns E to T}
(D8] "sample

Surprisingly, the entire cosine ftransformation can be performed by a single
formula. In each row the input value is multiplied by the cosine of an angle (in radians)
which is calculated as follows:

angie = 2 * pi() * rownumber * colnumber / 16
The row number and column rnumber are the values given in the row labelled ‘Cycle

and the column labelled ‘Sample’ respectively. They each count up from zero to fifteen,
The final divisor is simply the number of peints in the input (or output).

[E9] index (2, row())*cos(pi (I *(row()-9Y*(col ()-5)/8)

Now use the Echo command to copy the contents of cell E to the cells in the range
from E10 to T24.

The final result is calculated by summing the contents of each column to produce the
sixteen output values.

[A26] "Components
[E26] row=sum{col) {rows 9 to 24, columns E to T}

The cafculation of the sing components follows exactly the same pattern as for the cosine
ones. The resulting values are the amounts of all sine-like waves in the input.

[x4] "sine
[X6] row=col()-24 {columns X to AM]
[X9] index(2,row{))*sin{pi O *{row()-9)*(col ()-24)/8)
tcolumng X to AM]

12/84

* Now Echo the contents of cell X9 over the range from X10 to AM24, to fill in the rest
of the table, and Echo the contents of cell C3 to column V. from V9 to V24 (this makes
a copy of the Sample values).

{(X26] row=sum(col) {rows 9 to 24, columns X to AM]

Any input wave that 1s not a pure sine or pure cosine wave will generally produce
components in both the sine and cosine transforms. Furthermaore, when you calculate
the transform of many types of wave, some of the components will turn out to be negative.
In order to obtain results which combine both transforms, and are never negative, we
shall maxe one more calculation. This will add the squares of the sine and cosine
compenents. In the case of a real wave this result shows how much power (energy per
second) is present in the wave at each frequency, irrespective of whether it is in the
sing or the cosine compenents. |t is usually called the power spectrum (a spectrum
records how much of each frequency 's present). In this case we shall calculate the
square roet of the power spectrum, to avoid having too large a range of vaiues for the
simple graphical display we are using.

[C28] '"Power
[E28] row=sqr(cos.comp*cos.comp + sin.comp*sin.comp)
{calumns E to T}

The results of this calculation can be made clearer by presenting them in graphical form,
If you would iike high-guality graphs the best way is for you to use the Export command
to create files that can be read by Easel, containing the input and output values of the
caicufation. The following additions to the grid will allow you to see very simple graphical
results.

| I

31| max = 10.00 80.0
32| =

33

*
*

................

INPUT POWER SPECTRUM

Figure 59 Simple graphical cutput

The output graphs are only half the size of the input graph, since the highest detectable
frequency is numerically equal to haif the number of input points. All the information
is present in the first half of the resuits.

The first part produces a bar graph of the input values.

[A30] "Graph
[A31] "max=
[B31] max(col) [rows 9 to 24]
[A32] "min=

[B32] minCcol) [rows 9 to 24
[A33] col=rept (".", (func.max-%$func.min)
18/($func.max-$func.min+1))+"" {frows 33 to 48]

12/84

Examples

The Power Spectrum

Graphical Display of
the Fourier Transform

33

Examples

34

Using the
Fourier Transform

The second set of entries graphs the power spectrum.

[D31] "= max

[C31] max(e28:t28)

[D32] "= min

[C32] O

[C33] cot=rept{".", (index{row(}-28,28)-%pow.min)
18/ ($pow.max-$pow.min+1))+"" [rows 33 to 40]

The next set of entries graphs the cosine components.

[F31} "= max

[E31] max(e26:t26)

[F32] = min

[E32) min(e26:t26)

[E33] col=rept(".", (index(row()-28,26)~3cos.min)
*18/(%cos. max ~$cos.min+¥1})+"%x" frows 33 to 40

The final set of entries gives a graph of the sine components.

[Y31] ''= max
[X31] max{x26:am26)
(Y32] "= min

[X32] min(x26:am26)
[X33] cal=rept (".", (index{row()-9,26)-%sin.min)
18/($sin.max-$sin.min+1))+"" {rows 33 to 40}

As was mentioned eartier, you should put the input values in cells BS to B24 inclusive.
You may try any set of values you like, but here are a few suggestions.

{B9] tol=10*cos{pi O *(row()-$1/83 {rows 9 to 24]

[BY] col=10*cos(pi (¥ x(row()-9)/4) {rows 9 to 24]

[BY] col=10*sin{pi (X% (row()-9)/8) {rows 9 to 24]

[B9] col=10*sgn(cos(pi O *{row()-93/8)) frows 9 to 24}
[BY] col=10 {rows 9 to 24}

Remember that, since the auvto-calculate is turned off, you must use Xecute to calculate
egch result.

A further advantage of including lots of labels is that you can move the window to most
of the interesting points in the grid by using the goto (F5) facility, followed by a cell
reference in its label farm.

12/84

CHAPTER 6
QL ABACUS

REFERENCE
THE FUNCTION

In addition to the standard use of F1, F2 and F3, function keys 4 and 5 are used as foliows: KEYS

F4 move curscr between the two halves of a split window
F5 Go to a cell

You can refer to single cells, rows, columns or ranges either by using explicit letter and CELL REFERENCES
number references or by using text {abels.

A reference to a single cell consists of two parts, a column and a row reference. Single Cells

There are 64 columns in the grid and they are labelled from A to BL. There are 255
rows, numbered from 1 to 255. Typical ceil references are

A1 AC13 BD20O

A range reference is made up of two celf references, separated by a colon. You must Range References
always type in the colon to separate the two parts of the raference. The first cell reference

specifies the top left hand cormer of the block and the second one identifies the bottom

right hand corner. Examples of range references are:

B5:D09
AZ23:BA155

A part of a row or column can be considered as a range that is only one column wide Row and Column
(or one row deep). You can therefore use a range reference to specify part of a row References
or column, such as:

A3:L3 fcells A to L of row 3i
D7:DLL fcells 7 to 11 of column D

There are two range identifiers: row and ¢ol. They refer to the cells of the current row Range |dentifiers
or the current column respectively (those that intersect at the cell containing the range

identifier).

Each time you use one of them in a formula you will be asked to specify the exact range

of cells within the row or calumn. Abacus will suggest reasorable starting and ending

points for the range and you can either accept this choice or change it.

There are two ways in which you can use range identifiers. You can fill the current row
or column by use of either

row = (formuia) or col = (formula)

You can also use them as the argument for any function that requires a range, for example,
count{row). You can, of course, only use them in this way when you just want to refer
to the cells of a single row or column.

You can mix the two methods freely, for example,
col = ave(row)

Each occurrence in a formula will resuit in Abacus asking you for a particular range.

Abacus normally assumes that all cell references are relative, ie., that the important thing Relative and Absoclute
is the difference in position between the cell containing the reference and the cell to Cell References

which you refer When you copy such a reference into another celi, the references are

modified to keep this relative difference. For example, imagine that a formuia in cell B2

contains a reference to cell Al (one column to the left and one row above). If the formula

in cell B2 is copied into cell D4 it will, in this new location, refer to cell C3 (again one

column to the left and one row above).

This is ilustrated in Figure 6.1. A formula in cell X contains a reference to the lightly shaded
cell. If this formula is copied o cell Y it then refers to the heavily shaded cell. The two
cells in each pair have the same relative positions.

12/84 35

Reference

36

LABELS

Row and Column
Labels

Figure 6.1 Relative cell references. Figure 6.2 Absolute cell references

Suppose we put the formula A1*2 into cell A2, and then use the Echo command 1o
copy the formuia into cells in the range B2:G2. Examining the cells of row 2 will show
that they have the following contents:

Cel: A2 Bz c2 b2 EZ2 F2 G2
Contents: A1*2 Bi2 C1'2 D2 E1*2 F1"2 GI1*2

You can make any cell reference absolute by prefacing it with a $ sign. Such a reference
will not be modified when the formuia is copied o other cells. For example, if a reference
in cell B2 was to $A1, any copy of the farmula will also contain the reference $A7. You
can also use labels to give an absolute cell reference (eg. $marchcosts).

Figure 6.2 shows the effect of an absolute cell reference. A formula in cell X contains
an absolute reference to the shaded cell. A copy of the formula in cell Y refers to the
same cell.

Let us try the previous example, but this time we shal! use an absolute reference, Put
the formula $A1*2 in cell A2 and Echo it to cells B2 to G2 inclusive. You will ther: find
that the cells contain the following:

Cell: A2 B2 Cc2 D2 g2 F2 G2
Contents: $A1*2 $A1"2 SAT"2 SAT2 SAT2 $A12 SA1™2

See also the index() function.
Cell ranges, in any form (including the range identifiers, row and col) are always relative.

A label is a cell containing text. The text must only include letters and digits. Any such
cell can be used to identify a row or column in the grid. You can also use labels 1o
refer to a single cell, but you may not use them to replace a range reference or to refer
to a whole block of cells.

Whenever you refer t0 a label in an expression or formula, Abacus uses a set of rules
to determine whether it refers to a row, a column or a cell. The rules for rows and columns
are:

1 The row and column intersecting at the labe! are scanned (fo the right and below)

to find the numeric entry.

a) itonly arow entry is found, the label refers to the row, starting at the found
entry.

b) # only a column entry is found, the label refers to the column, starting at
the found entry.

¢) Ifentries are found in beth the row and the column, the entry closest to the
labelled cell is used to make the choice.

2 If no decision can be made under 1), but the label is used on the left hand side
of an expression, it will be given the type of any label(s) used on the right hand
side. For example, if “Costs” is a row label:

12/84

Sales = Costs » .5
then "Sales” will also be a row label,

If both of these rules fail, you are told that Abacus cannot decide the meaning
of the label.

[T

]

[X _]==---~FRUIT
A

i

APPLES ————["¥]

Figure 63 Labelling a cell

You need to use two labels to identify a single cell and you make the cell reference
by giving both labels, separated by a full stop. For example, if you have two labels “fruit”
and ‘apples’ you can refer to a cell as

fruit.apples

{or by any unique abbreviation, such as frap). The order of the two labels is unimportant
S0 you could also use apples.fruit, ap.fr and so on.

Such a reference refers to the cell at the intersection of the row s and columns containing
the fabels but, as Figure 63 shows, there are two such cells (labelled X and Y).

The cell that is selected is the one in the rightmost column and the lower of the two
rows. In the previous example, the celi labelled Y will be selected. You should, therefore,
always place labels above or to the left of the cells to which they refer

Aformula is any allowed combination of functions, cell references, labels and arithmetic
operators, Examples are:

A1+B3

month(col()-1)
iflinstr(B6,"is"),1,
rept ("=*, Len(G23))+" ;1

Each new formula, in addition to being used in one or more grid cells, is stored separately
in a list of master formulae. Each master formula may therefore appear in one cell or
in many. When you fill celis by use of the row and column fili operations, or by using
the Copy or Echo commands, all the filled cells share a single master formula. If a master
formula contains relative cell references they are adjusted, in each cell using the formula,
to be valid for that particular iocaton. The formulae may therefore appear superficially
different but are all based on the one master formula.

You can modify all copies of the formula by editing only one of the copies. if you use
the Amend command to change any copy of a master formula, the master is also
modified and all copies are changed simultanecusiy.

This section contains a full description of all the commands available in Abacus.
This command allows you to change the contents of a cell. The contents of the cell
containing the cursor are copied to the input ling, ready for editing with the line editor

described in the Introduction to the QL Programs. When you press ENTER the edited
version replaces the original cell contents.

12/84

Reference

Cell Labels

FORMULAE

Master Formulae

THE COMMANDS

AMEND (A)

37

Reference

38

COPY (C)

DESIGN (D)

You use this command to copy a range of celis from one area of the grid to a similar
range in another place. Abacus first asks you to give the range reference of the cells
to be copied, eg. A1:B3, and you should then press ENTER. Abacus next asks you
to specify the cell reference for the top left hand corner of the area 1o which the range
of cells is to be copied. When you then press ENTER the range will be copied 16 the
new location.

You use the Design command to modify a number ¢f the features of Abacus that affect
the appearance of the whole grid, such as whether the display should be set for a
domestic television or a manitor. The cheices remain in force until you modify them again,
or until you leave Abacus. When you save an application these choices (except for the
Display opticn) are saved with it 30 that they are used every time you load the application.

Changing the defaults, however, does not affect Abacus itself. You must set them to the
values you want each time you load Abacus from SuperBASIC.

When you have finished you return to the main display by pressing ENTER. The options
are:

Auto-calcutate on input
used to specify auto-calculate or no auto-calculate. Each time you press the A key the
auto-calculate option switches between YES and NO.

If you choose YES, the whole spreadsheet will be recalculated after each entry. Selecting
NO. however, means that the spreadsheet wil only be recalculated when you use the
Xecute command. The initial value is YES.

Blank if zero

switches between two ways of treating zero values in the grid. The original option is to
display the value zerc in the appropriate format for that cell. You may select the alternative,
which is to display a blank cell if its contents evaluate o zero,

Note that, in this eption, a blank cell will anly be shown if the value is truly zero, Suppose
you have selected decimal display format, with two decimal places, and the vaiue in
such a cell is 0.003. The cell will show .00, rather than being blank, since the true value
iS Non-zero.

Calculation order

selects between calculating the spreadshest in ROW or COLumn order. The option
changes each time you press the C key (as for auto-calculate). The specified order will
be used for both auto-caiculate and the Xecute command. The initial value is for row order.

Display 80,6040 columns

selects the number of characters displayed across the screen. You are asked to type
in 8, 6 or 4 (fallowed by ENTER) to select an 80564 or 40 character display. The initial
value is either 80 or 40, depending on whether you select the Monitor or Television option
when you load Abacus from iis Microdrive cartridge.

Form feed between pages
selects whether or not a form-feed is issued at the end of each page of printed output,
in the same way as for auto-calculate. The initial value is YES.

Gaps between lines on printer

sets the line spacing on printed output by specifying the number of gaps between the
lines of text. You are asked to type in 01 or 2 (no ENTER is necessary). You can set
ordinary double-spaced printer output, for example, by specifying one gap between each
line. The initial value is zero.

Lines
specifies how many lines on a page of printed output You should type n a number,
followed by ENTER. The initial value is 66 and the maximum is 285,

Monetary
specifies the currency sign to be used in the display of monetary values. You should
type in the single character that you want (no ENTER is necessary). The initial value

is the pound sign.

Printer
sets the number of characters per line of printed output. You should type in a number,
followed by ENTER, The initial value is 80 and the maximum is 255.

12/84

. The Echo command makes a copy of the data or formula in a particular cell to all the
cells in a specified range.

You are given the option of specifying the cell reference of the celi to be copied, or
pressing ENTER to copy the current cell. You then should type in the range over which
the cell contents are to be copied, followed by ENTER.

This command allows you to modify Abacus files, previously saved on a Microdrive
cartridge. The options ask you to type in the names of files, Each time you are asked
for a fie name you can press ? for a list of all files on Microdrive 2.

You are offered the following options:

Backup

used to make a backup copy of an Abacus file. You are asked for the name of the file
to be copied. You are strongly recommendead to make copies of all your files, to protect
yourself against accidental loss of, or damage to, the cartridge.

Delete
deletes a named flle from a Microdrive cartridge. Note that this command is NOT
reversible and should therefore be used with GREAT CARE.

Export
exports a named file. The file is saved in a form suitable for being imported by Archive,
Easel or Quill.

Abacus first asks you whether you want to export to Quill, Archive or Easel. Accept the
suggestion of export to Quill by pressing ENTER, or select export to Archive or Easel
by pressing either the A key or the E key.

In all cases you are then asked to type in the range reference for the section of the
grid that you want to export, ending your nput by pressing ENTER.

It you have chosen to export to Archive or Easel you can export the file by rows or by
columns. Abacus asks you t¢ press ENTER to accept the suggestion of exporting by
rows, or to press the C key to choose export by columns. You are not given this option
if you choose to export to¢ Quill. In this case the data is always exported by rows.

Abacus finally asks you to type in a name for the exported fie. If you do not specify
a file name extension Abacus will supply an extension of __exp.

Format
formats the cartridge in Microdrive 2. Abacus gives you the Micradrive specifier, mdv2__
and you must type in a volume name for the cartridge,

Make sure that the cartridge in Microdrive 2 contains no files that you want to keep —
ALL the contents of the cartridge are erased.

Import
imports a named file. It allows Abacus tc read files exported from Archive or Easet. There
is a full description cf Import in the Information section in the User Guide,

You may import a file in either row or column order, and are asked to select which. You
are aiso asked for the cell reference of the top left hand corner of the area of the grid
into which the data is to be imported.

If you do not specify a file name extension Abacus will assume an extension of __exp.

The Grid command is used to make changes which affect the entire spreadsheet. It
allows you to insert or deiete an entire row or column, or to change the number of
characters displayed in ocne or more columns.

The options are:

Insert

allows you to insert empty rows or columng into the grid. You are first asked if you want
to insert rows (press ENTER) or columns (press C). You are then asked to give the number
of rows or columns to insert, and a row (or column) reference. When you then press
ENTER empty rows or columns are inserted before the one specified. The last rows
{or columns) will be lost from the gric, if, for example, you insert three rows, the last
three rows of the old grid will be lost.

You will not be able to recover any of the data that these lost rows contain, unless you
type it in again.

12/184

Reference

ECHO (E)

FILES (F)

GRID (G)

39

Reterence

40

JUSTIFY (J)

LOAD (L)

Delete

allows you to delete ane or more rows or columns from the grid. You are first asked
if you want to delete rows (press ENTER) or columns (press C). You are then asked
to give the reference of the starting row (or columny of the region you want to delete,
followed by ENTER. You are then asked for the row (or column) reference of the end
of the region.

When you then press ENTER the selected region is deleted and the following rows (or
columns) close up to fill the gap. Empty rows (or columns) will be inserted at the boftorn
{or at the extreme right) of the grid.

In both of these options all formulag in the rows or columns that are moved wilt be adjusted
to correct them for their new positions

Width

allows you to change the width (number of characters) of one or more columns. You
are first asked to specify the number of characters in a column, and then to specify
the starting and ending colurns over which you wish the change (o take effect

The Justify command is used to modify the positioning of text and numbers in a range
of cells. It has two main options; to modify existing cells, or to set the defautt justification
that Abacus will use when you put data in a cell which is currently empty. You shouid
press ENTER to select the Cells option, or the D key to select the Defaults option.

You are then asked to specify whether you want to modify the justification of text (by
pressing ENTER) or of numbers (by pressing the N key). in either case you can then
select left (ENTER), right (R) or centre (C) justification.

In the case of the Cells option you are finally asked to give the range over which the
change is to act

You do not have to give a range in the Defaults option. The new defauit will apply to
all newly created cells, at any point in the grid, untl you make a further change in the
default justification.

Some of the different types of justification, together with the original seftings (text justified
left and numbers justified right} are shown in Figure 6.4.

HELP CURSOR DATA & FORMULA TEXT type” || COMMANDS
press F1 press —t— press F3
PROMPTS GOTO CELL enter directly followed by || ESCAPE

press F2 press F5 § press ENTER text & ENT. |[press ESC

i E

LEFT 12340
RIGHT 12340
DEFAULT 12340

(text left, numbers right)

A1 BRIDUSED A1:DS MEMORY 23K

ONTENTS ENPTY

Figure 6.4 Justification

This is used to load a file from the Microdrive. You are first asked to specify the file name;
pressing the ? key at this point gives you a list the files on Micradrive 2.

12/84

If you do not include an extension in the file name you type in, Abacus wil assume
an extension of __aba.

This command is used 1o combine, or consolidate, data from a previously saved file
with the data in the current grid. You are first asked for the name of the file to be merged
from the Microdrive cartridge and will then have to indicate whether the data in this file
is to be added to (press ENTER) or subtracted from (press S) the data in the current grid.

Whenever a cell (in the file) containing a number or a formula maiches a corresponding
data cell in the grid, the value from the file will be added to or subtracted from the grid
data. The contents of any other cells are nat affected. The command will not have any
effect on grid cells containing text, which are therefore protected against alteration.

The resulting grid contains purely numeric values in each cell that have been affected
by the merge. The formulae that preduced these values in the original grid cells wil
be destroyed. These formulae would not have any meaning in the consolidated grid.

This command offers a fast and easy method of combining the data in two similar models.
It s, of course, essential that you have laid out the two grids in exactly the same way,
using the same cell locations, for the results of the command to make sense.

You use this command to sort the rows of the grid into ascending order. based on the
contents of one particular colurmn.

You are first asked to specify the ¢glumn on which the sorting is to be based. You are
then asked for the first and last rows to be sorted. The exact ordering sequence that
is used is:

Empty cells
Nurmmeric cells, in ascending numeric order
Text cells in alphabetic order

Cnly use the Order command on rows or columns which contain data. It is likely to
invalidate any formulae present in the affected portion of the grid, as they are not adjusted
for their new locations.

This command is used to send a selected portion of the grid to a printer or to a Microdrive
file. You are first asked whether you want the printed grid to show the values or the
formulae in each cell. Press ENTER to show the values, or press the F key to show
the formuiae. Abacus next asks you 1o specify the range of cefis which you want printed.
Then you are asked if you want the grid border to be included (press ENTER) or not
{press the N key). Following this you should specify whether the output should be sent
to the printer {press ENTER) or to a Microdrive file (press the F key). If you choose to
send the output to a file, you are also asked to type in a fle name (ending with ENTER).

The selected portior of the grid will be sent to the chosen destnation. You can stop
the printing at any time by pressing ESC.
It you have asked for a display of the formulae, Abacus will first print a numbered list

of all the formulae used in the grid. It then prints the grid itself. The formula number
is shown in any cell that contains a formula.

if you do not, in the case of the option tc print to a file, specify an extension when you
type in the file name, Abacus will assume an extension of __lis.

You use this command to leave Abacus when you have finished using it

When you leave Abacus the current grid contents are iost. You are asked to confirm
your request so that you have the chance to change your mind. You can cancel the
command and return to your spreadsheet by pressing ESC. If you press ENTER you
will confirm your wish to leave Abacus and return to SuperBASIC.

This command is used to rub out, or delete, the contents of one or more cells in the
grid. When you use this command you will be asked to specify a range of cells, Al
the cells in that range will be cleared.

This is used to save a file on a Microdrive. You are first asked tc specify the fie name;
pressing the ? key at this point gives you a list of the files on Microdrive 2.

If you do not include an extension when you type in the file name, Abacus will assume
an extension of __aba.

The Units command is used to change the way that numbers are displayed within a
cell, or group of cells. It does not affect the values of the numbers in any way.

12/84

Retererce

MERGE (M)

ORDER (0O)

PRINT (P)

QUIT (Q)

RUBOUT (R)

SAVE (S)

UNITS (U)

41

Reference

You are first asked to select whether you want the command to affect existing cells (just
press ENTER} or to s&t the default format that Abacus will use for al subsequently created
cells (press the D key).

In either case you are then asked to choose the display format from the following list:

Decimal

Numbers are displayed in a fixed point decimal notation, that is, all numbers are shown
in the same way, with a fixed number of decimal places. Numbers which actually contain
more decimal places than are displayed wilf be rounded up or down as necessary. You
are asked te type in the number of decimal places you require. It will nct accept a value
greater than 14,

If you want the cell values themselves to be rounded, rather than just being displayed
in rounded form, you must do the rounding yourself. For exampie, to round a value
to two decimal places:

1. multiply by 100 (1000 for rounding to 3 decimal places, and so on)
2. add 05

3. discard the decimal fraction with the int() function

4. divide by 100 {or 1000)

The following formula will round the value in cell C3 1o 2 decimal places:
int{c3100+0.5)/100

Integer

Numbers are shown as integers, or whole numbers, as for the int() function. You are
given the option for negative values to e enclosed in brackets, rather than with a leading
minus sign. Press the B key for bracketed negative values, or enter for a leading minus
sign.

Use the int{) function if you want the cell values to be converted to integers, rather than
just being displayed in integer format,

Exponent

numbers are displayed in expenential, or scientific notation. The option asks you to type
in the number of decimal places you want to be shown. It will not accept a value greater
than 14. Again the displayed number is rounded as necessary, to the number of decimal
places that you select.

Percent

this displays numbers as percentages so that, for example, the value 055 is displayed
as b5%. The option asks you to type in the number of decimal places you wart to be
shown. It will not accept a value greater than 14.

General
this is a general numeric format in which any of the previous formats is chosen, depending
on the value of the number, to make best use of the space availaole in the cell.

Monetary

numbers are displayed in fixed-point decimal format, with two decimal places and a
leading currency symbol. You are given the option for negative values tc be enclosed
in brackets, rather than with a leading minus sign. Press the B key for bracketed negative
values, or ENTER for a leading minus sign.

In the case of the Cells option Abacus asks you, at the end of any of the above choices,
to specify the range over which the change is to act. You can type in any form of cell
or range refarence (including labels or range identifiers}. Press ENTER to mark the end

of the reference,

Abacus does not ask you to specify a range if you selected the Defaults option. In this
case the selected format will be used for all new cells, as they are created.

You use this command to control whether the display is a single window or is split into
two windows which can be used to show two separate portions of the grid.

You are first asked to choose between a vertical (V) split, a horizontal (H) split, or to join
(J) a split display back into a single window. If the window is initially spiit and you want
to change from, say, a horizontal to a vertical split you must first join the two windows

before making the new split

If you choase 1o split the window then the split will occur at the column or row containing
the cursor. You should theretore position the cursor at the point where you want the split

12/84

to occur before making the split. Whale columns will always be displayed. Each window
in a verlical spiit will never be less than ten characters wide.

You then are given a further choice as to whether the two windows should move togsther
(T) or separately (). If you specify the T option, this means that any change in the position
of one window — in the direction parallel to the split — wil cause a corresponding change
in the position of the other Moverments at right angles to the split are not related in this
way. The S option allows the two windows to move around the surface of the grid
independently.

This command is used to force a recalculation of all formulae appearing in the grid.
A recalculation is normally performed automatically when you make any new entry in
the grid. You will only need to use this command if you have switched off the automatic
recalculation cption or if you want to activate any askn{) or asks() functions stored in
the cells of the grid.

This command ctears the entire contents of the grid and returns you o the beginning
of Aacus for a fresh start. Since this command is drastic (and irreversible) in its action,
you will be asked to confirm your reguest. If you press ESC you will return to the command
menu without any deletion taking place. You should press ENTER ta confirm your wish
to clear the grid.

Think of a function as a kind of recipe which converts a number of values, known as
the function’s arguments into a different value, which is said to be the value that is returned
by the function. In Abacus this is the value which would be shown in a cell containing
the function.

The functions provided by Abacus may take three, two, one or no arguments which
are placed in brackets after its name. You must not leave a space between the name
and the opening bracket but spaces are allowed between items within the brackets,
if a function takes more than ane argurment, then they are separated by commas. Al
functions must be icliowed by the brackets, even if they take no arguments. The presence
of the brackets is a useful reminder that you are referring to a function.

in the descriptions of the functions:

n s either a numeric expressicn or a reference
to a cell displaying a numeric value,

text is either a text expression or a reference to
a cell displaying a text value,

range is a grid range reference.
A numeric expression is either a number or an expression which gives a numeric result

A text expression is either a text string {enclosed in quotes) or an expression which gives
a text result, :

The following functions are provided.

ABS(n)
Returns the absolute value (that is, the value ignoring any minus sign) of the argument.

For example, abs(3) returns 3 and abs(-7) returns 7.

ASKN(text}

This function is used for the input of numeric data. it displays the given text (which may
be up to 40 characters in length) as a prompt in the input line, followed by a ? and
walls for a reply to be typed in. The reply is shown in the cell cantaining the function.
Input will anly be requested when you first put the function into a cell, and when you
recalculate the grid by use of the Xecute command. It is nct asked for during an auto-
calcuiate after each grid entry.

ASKT (text)
This function i1s used for the input of text strings. It works in exactly the same way as
askn(}, except that it expects you 1o type in text instead of a number.

ATN(n)
Returns the anglein radians, whose tangert is n.

12/84

Reference

XECUTE (X)

ZAP (2)

FUNCTIONS

43

Reference

a4

AVE(range)

Returns the average of the numeric values contained in all the cells in the specified range.
Empty cells and cells containing text are ignored n the calculation of the average. If
there are no numeric cells in the range it will return a value of zero.

CHR(n)

This function returns the ASCII character whose code is n. A character with an ASCII
code less than 32 has no effect on the screen, but is sent to the printer (when you print
the porticn of the grid containing it) if preceded by an ASCIH nuil. For example,
chr{0)+chr{13) passes the ASCIl character for a carriage return to a printer, when the
cell containing it is printed.

You can show an ‘A on the screen with chr(65).

CODE({text)
This returns the ASCIHl value of the first character found in the specified fext.

CcoL()
Returns the number of the current column.

COS(n)
Returns the cosine of the given (radian) angle.

COUNT(range)
Returns the number of non-empty cells in the specified range. Both text and numeric
cells are included in the count,

DATE(r)
Returns today’s date as a text string in one of three forms:

n date string
0 “YYYYMM/DD

1 “DD/IMM/YYYY"
2 "MM/DD/YYYY”

You must first have set the system clock, as described in the SuperBASIC keyword guide.

DAYS(text)

Returns a number of days, from the first of January 1583, to a date given by a text
expression of the form YYYY/MM/OD! The conversion assumes the Gregorian (modern)
calendar is being used. The formula is therefore only valid for dates after 1582.

DEG(n)
Takes an angle, measured in radians, and converts it to the same angle in degrees.

EXP(n)

Returns the value of e (approximately 2.718) raised to the power n. The returned value
will be in error it n lies outside the range from —87 to +88, since the result will then
exceed the numeric range of Abacus.

IF(expression,true,false)
The value of the expression is calculated and used to determine which of the following
two arguments shouid be returned.

expression.= n
frue:= n | text
false:= | text

If the expression evaiuates to O it is considered to be false and the false’ argument is
returned. Any non-zero value for the expression is interpreted as being true and causes
the ‘true’ argument to be returned. The true’ and faise’ arguments may be either text
or numeric in nature. Thus all the following examples are valid uses of the function;

if(A1=B1,"equal',not egual™
if(Al1,1,00

You can also mix a text and a numeric argument as in the foliowing example. Try this
one out if you are not sure how if{ } works.

[A1] 1

[B1] 0

[C1] if(A1 or B1,"either",0)

12184

You should see the word Either' appearing in ceft C1 since the first parameter of H{)
refurns a non-zero (true) value if either cell A1 or cell B1 contains a non-zero value. i
you change the contents of cell Al to be zero then you will see a zerc displayed in cell C1.
INDEX(colurmn,row)

columm:= n

row.= n
Returns the contents of the cell at the intersection of the specified column and row,
INSTR(main,sub)

mair.= text

sub.= fext

This finds the first occurrence of sub within main and returns the position of the first
character of sub in main. It will return a value of zero if no maich is found. The match
is case-dependent.

instr{"lanuary',"Jan") [returns 1]

instr{"January","an")} {returns 2}
instr("January',"AN'") [returng 0}
INT{n)

Returns the integer value of the number, by truncating at the decimal paint. The truncation
always makes the number less positive. Thus;

int(3.7) returns 3
int(-4.8) returns -4

IRR(range period)
period:= n
Calculates the Internal Rate of Return for the numeric data in the specified range, which

may be either a row or a column.

The data in the range represents a cash flow for each of a series of periods, separated
by i months. Negative vaiues represent cash outlays and positive values represent cash
returns.

IRR(range,period)
period:= n

Calculates the internal Rate of Return for the numeric data in the specified range, which
may be either a row or a column.

The data in the range represents a cash flow for each of a series of periods, separated
by n months. Negative values represent cash outlays and positive values represent cash
returns.

The function returns the rate of interest necessary so that investment of your outiay would
match the proposed returns.

For exampie, suppose you are offered a return of twenty thousand pounds at the end
of each of the next seven years, in return for an initial outlay of one hundred thousand
pounds. Is this a good deal?

[A1] " Low
[A2] -100000
[A3] col=20000 [rows 3 tc 9}

We can refer to the range of the data by the label flow' and the interval between
successive periods is twelve months:

[Co] irr(flow,12) [rows 2 to 9]

The completed grid should look like Figure 65, showing that the internal rate of return
is 9.1%. If you can invest your hundred thousand pounds at a higher rate of interest
you should do so, and forget the deal.

Note that the first item in the range is counted as period zero, the next is period one,
and so on. The function assumes that each amount is payable in full at the end of the
relevant period.

12/84

Reference

45

Reference

46

1
2 -100000.06 9.10
3
4
5
<)
7
8

9
Figure 65 Internal rate of return

LEN({text)
Returns the number of characters in the specified text.

LN(7)
Returns the natural, or base e, logarithm of n. An error results if n is negative or zero,
since logarthms are not defined in this range.

LOOKUP(range,offset,value)

offset= n
value:= n

This function implements a lock-up table in the grid. Two tables of values are assumed
to be present. The first table occupies the specified range (which can be in a row or
a column). The second table runs parallef to the first, in the following row or column.’
For example, if the first table is in column G, from G10 to G25, the second will be assumed
to be from H10 to H25. Every entry in the first tatle should have a corresponding entry
in the second. The first tabie is searched for the largest value that is less than or equal
to the specified value. The function returns the corresponding entry from the second
table. Note that it is assumed, for the correct operation of this function, that both tables
contain numeric vaiues, and that those in the first table are arranged in ascending order.

'

The first value in the first table is a dummy. it must be less than the second value. which
is the lower limit for the table lookup process. It is ctherwise ignored. The first value in
the second table is the value that is returned if lookup{) is called with any number less
than the lower imit

MAX(range)
Returns the largest numeric value found in the cells in the specified range. if there are
no numeric cells in the range the function will return the smallest possiole number
(1.7-E+38).

MiN(range)

Returns the smallest numeric value found in the cells within the specified range. If there
are no numeric cells in the range the function will return the largest possidle number
{(—1.7 E+38).

MONTH(}
Returns, as text, the name of month 7.

For example month(3) returns the text "March”.

if an argument larger than 12 is used, it is replaced by the remainder after division by
12 so that, for example, month(13) and menth(1) will both give the result January'.

NPV{range,percent period)

percent.= n
period,= n

Calculates the Net Present Value for the cash flow data in the specified range. Percent
is the annual interest rate (14 represents a 14% rate). The data is assumed ‘0 refer to
a series of periods, separated by equal intervais of period months.

The net present value is the amount of money required now to produce a given future
cash flow, assuming an interest rate. For example suppcse you are given the opportunity
to buy, for a single payment of seventy thousand pounds, a ten-year lease on a shop
which is currently preducing a yearly net income of ten thousand pounds. You expect
the income 1o increase by 10% per year If you did not buy the shop your seventy
thousand pounds would earn 14% interest. What shouid you dad?

12/84

You shouid calculate the net present value of the income and compare it with the sum
you are asked to pay

[A1] "flow

[A2] 0

[A3] 10000

{Ad] col=a3*1.1 f{rows 4 to 12}

[A14] npv(flow,14,12) [rows 2 to 12)

The resuit is shown in Figure 68

| A | 8
| flow

| 0.00

| 10000.00

| 11000.00

| 12100.00

| 13310.00

| 14641.00

| 16105.10

i 17715.61

| 19487.17

| 21435.89

| 23579.48

I
|

FSUN 220000 NWV W R =

PR S NP Y

75088.51
Figure 66 Net present value

The net present value {in cell A14) of the cash fiow from the shop is more than the asking
price, so you should go ahead.

The first item in the list is for period zero, the second is for period one, and so on. This
is consistent with the assumption, made by the function, that the returns are received
at the end of each period. You therefore have to wait for one period before you obtain
any return on your investment. In a real situation of this type you would probably work
on a monthly basis, rather than on twelve month periods.

PI{)
Returns the value of the mathematical constant .

RAD(n)
Takes an anrgle, measured in degress, and converts it to the same angle in radians.

REPT(text,n)
This function will fill the current cell with n copies of the first character of the given text

For example,

rept{"*",5) {will put five asterisks in the current cell}
rept("abc",3) [makes three repetitions of "a'}.

ROW()
Returns the number of the current row.
SGN(n)
Returns +1, -1, or 0, depending on whether the argument is positive, negative or zero.
SIN(n)
Returns the value of the sine of the specified (radian) angle.
STR(n, type,dp)
numi=n
fype:= n
dpi=n

Converts a number, num, to the equivalent text string. Type indicates the form of the
converted string as follows;

0 decimal (floating point)

1 exponential, or scientific, notation
2 integer.

3 general format

12/84

Reference

47

Reference

48

ERRORS

Grid Errors

The third parameter, dp, specifies the number of figures after the decimal point in the
converted string. It should always be included, although its value is ignored for integer,
general and monetary formats.

SQR(n)
Returns the sguare root of the number n, which must not be negative.

SUM(rangs)

Note that the value returned by the function is the sum of the exact values in the relevant
cells. It does not take into account any rounding that may resull from use of the Units
command. For example, if two cells contain the values 344 and 9.73, the sum() function
will add them to give 1317 If you then select a display in decimal format with one decimal
place, the two numbers will be rounded to 3.4 and 9.7. The sum, whose value will stil
be 13.17, will be rounded to an apparently inaccurate 13.2. See the units command.

TAN(n)
Returns the tangent of the specified (radian) angle.

TIME()
Returns, as text, the time of day in the format "HH:MM:SS" You must first have set the

systemn clock, as desribed in the SuperBASIC keyword guide

VAL{text)

Val converts the text to its equivalent numeric value. It will only convert text composed
of valid numeric characters and the conversion will stop at the first character that cannot
be interpreted as a digit. For exampte, val{"2.2ABC™) will return the value 2.2, and
val("*ABC”) will return 0.0

WIDTH()
Returns the width, in character spaces, of the current column. Note that there is one
space separating adjacent columns.

Any symtax error in a formula — such as supplying the wrong number of arguments
for a function, or mis-matched brackets — will be reported at the time you type in the
formula. You are toid the nature of the error and the formula is left in the input line. You
can then examine it, and then correct it with the line editor.

The possible error messages are listed below.

Message Example

Missing closing guotes in a string abc" + "'def

Badly formed numeric constant 1.5e (missing number after)
Number too large 1.5e99

llegal character 125 {underscore instead of minus)

All names must refer to columns

All names must refer to rows

Name references may only be relative
(see the section on Cell References,
earlier in this chaoter)

Badly formed range reference at:
Badly formed name reference c3.
Name is not a row or colurmn (see Chapter 3)

First name reference undefined

Second name reference undefined
{the text does not appear in the
grid, above and to the left of this
cell)

Function requires a range reference irr(1,2,3) (see description of irr())

lllegal range
Syntax error
Mismatched brackets

Type mismatch 1 + "abc"

12/84

Reference

Wrong number of function arguments sqr(1,2)

String bigger than 255 characters rept ("'%',256)
Division by zero
flegal function arguments sgr{-1)

String subscript out of range

(either subscript less than zero or greater
than 255, or first subscript greater than
length of text)

Reference out of range
(to a cell outside the grid)

Reference to an error cell

(the formula refers to a cell cortaining a
formula which produces cne of the errors
described below)

Out of memory,
use RUBOUT to make more room

Other errars, such as a formuia which adds the contents of two other cells, one containing
a numeric value and the other containing a text value, will not be detected until the result
of the formufa is calculated - afier the formula has been placed in the grid.

If a formula contains a reference to an empty cell, Abacus will assume that the cell has
a numeric value of zero, This may well cause an error when the formula is calculated.

It Abacus detects an error when a formula is calculated it gives a brief error message
in the relevant cell. You can then move the cursor to the cell to exarmine the formula
and find out what is wrong.

The possible errors are:

#TYPE - the formula contains a reference to a cell containing information of the
wrong type, i.e. numeric instead of text, or vice versa.

K #LONG - the formula contains a reference to a text string that is more than 255
characters long.

##ZERQ - The formula is attempting to divide something by zero.

RARG - The formula contains a function called with a non-valid value for one
or more of its arguments eg. In(-5).

##SUB - The formula uses a string slicing operator with an error in one or more
of its subscripts.

#REF - The formula contains a reference 1o a cell which is outside the grid. The
formula in such a cell will show the word 'ERROR’ for each cell reference that
is not valid.

ERR - The formula contains a reference to a cell which contains an error, You
can ignore these messages since they will disappear when the ariginal error, in
the cell to which the formula refers, is corrected.

The following error messages will only appear if an error occurs while you are using File Errors
a file-related command eg. Load or Files.

File does not exist
the file name you gave was not found on the carridge
in Microdrive 2.

File /O incomplete

the loading or saving of a file has started

successiully but has falled at a iater stage — this may
mean that the data in the file has been corrupted, or
that the cartridge has been damaged.

Unable to open file
the file can not be opened — for one of the reasons
given for the previous error.

12/84 49

Reference

Wrong file type

the file name extension is not the one that Abacus
was expecting — eg. attempting to load an export file
instead of importing it.

lllegal file name

eg. "3test” file names must start with an alphabetic
character and may nct be more than 8 characters.

llegal import file format
this is only likely to occur if you attempt to import a
file net created with an export command.

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
Www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

50 12/84

— | g | — | | g

QL Archive

©1984 PSION LIMITED
by Dick de Grandis-Harrison (Psion Limited)

QL Archive is a database program which enables you to create filing systemns for any
type of information you choose. You are free to decide how this information wilt be stored
and retrieved.

You will quickly discover how Archive can be used for creating simple card index systems
such as address lists or customer records. Once you have masterad the creation of
straightforward systems such as these, you may wish to develop more complex muiti-file
relational systems where information is shared between, for example, purchase and stock
control records.

Information may be presented using the screen layout that Archive provides, or you may
design your own. Printed forms and reports can be produced from the information in
the file in any format you choose.

One of the most powerfui features of Archive is its command structure. Once you have
created a fle and stored some records in it, these commands can be used to find
particular records, make searches and selections or display the information in the file
in a particular order.

The commands combine to form a powerful programming language, similar to
SuperBASIC, which can be used to construct a multitude of specialist applications.

At all times you will be guided by an informative set of prompt messages which never
leave you in doubt about what your options are or what you are expected to do. If you
require further information you can use the Help files. You may ask for Help at any stage,
no matter what you are doing, and will automatically be given the information that is
most relevant to your current needs.

The real power of Archive becomes apparent when you write your own procegures in
the command language. You can create a named procedure to do exactly what you
want and then use it as an additional command, in the same way as you use the
commands provided with Archive.

The mechanics of writing and modifying a program are sided by a full procedure editor
which, together with the input line editor (which is available at all times), make editing
a simple and painless task,

The data files themselves use variable length fields and records. Not oniy does this lead
to the most efficient use of available memory and cartridge space, but also to simplified
file creation. You never need to decide in advance how large a record needs to be

This manual contains a number of working examples. Try these out to see some of the
range of things that can be done. They contain many general purpose procedures which
you might include in your own programs.

¥, at any time, you are not sure what to do, remember that you can ask for Help by
pressing F1. Also remember that you can cancel any partially compieted operation (eg.
typing in a number, or using a command) by pressing ESC.

Archive has been designed to give you the greatest possible flexibility. As a consequence
it cannot give as much assistance with the selection of options as the other QL programs.
If you are not familiar with computers and computer programming you may find it helpful
to read the Beginner's Guide to SuperBASIC before attempting to write Archive programs.

CHAPTER 1
ABOUT
QL ARCHIVE

CHAPTER 2
GETTING

STARTED

LOADING
QL ARCHIVE

GENERAL
APPEARANCE

Load QL Archive as described in the Introduction to the QL Programs. When lcaded
Archive will display the following message:

LOADING QL ARCHIVE
version x.xx
Copyright © 1984 PSION SYSTEMS
database

where X.xx represents the version number, eg. 2.00.
The program will then wait for a few seconds before starting.

The Help information is not loaded into the computer's memory together with the program.
It is only read from the Archive cartridge when it is needed. You should therefore not
remove the Archive cartridge from Microdrive 1 if you intend to use the Help facility.

When you have lpaded Archive the screen should lock like Figure 2.1. This is the main
display.

HELP COMMANDS create Look open close COMMANDS
press F1 delete display back alter find press F3
PROMPTS first insert last next quit ESCAPE
press F2 type command & press ENTER (F3 for more) press ESC
8
>H

Figure 2.1 The main display with a monitor. (80 characters)

If you are using a domestic television, the screen is arranged slightly differently. This
is because a television is not normally able o show clearly 80 characters per line. Archive
therefore only shows 64 characters.

The screen is divided into three sections: the display area, the work area and the control
area.

12/84

Getting Started

The Display and

As its name suggests, this 1s where all information produced by Archive is shawn. WOJ' k Afeas

The work area uses the bottom four lines of the screen. All commands that you type
in, together with any error messages, are shown here,

o= I N | -

Figure 2.2 The display area Figure 2.3 The work area

These two areas almost invariably work together, since commands typed into the work
area produce their results in the display area.

As an example, type in the following short program, exactly as it is shown below
let x=13:while x>0:print x:let x=x-1:endwhile [ENTER

The text of this program will appear in the first line of the work area. When yOu press
ENTER, the numbers from thirteen down to one will be printed on successive lines of
the display area. The bottom line of the display area will be left biank except for a red
cursor indicating the next position at which text will be displayed. The numbers from
fifteen to one are displayed which, together with the bottom blank line, occupy all sixteen
lines of the dispiay area.

The command:

cls |[ENTER

will clear the display area completaly.

The contrcl area occupies the top few lines of the screen. It shows the normal options: The ContrOI Area
Help (F1), to turn the prompts on and off (F2), cance! any incomplete operation (ESC),
and use a command (F4).

L

Figure 2.4 The control area Figure 2.5 The commands

USING THE

Archive's commands form a programming language and you must type their names COMMAN DS
in full. This may seem long-winded at first, but later you will be shown how to create
procedures which allow you to enter commands with a single keystroke.

12/84

Getting Started

THE
MODE COMMAND

There are four different lists of commands which can be displayed by pressing F3. If
a command list is already being shown, pressing F3 will dispiay the next list in sequence.
These commands are used simply by typing in the name and pressing ENTER. However,
some commands need further information and will ask for it

You can use any of the commands, even if its name does not appear in the current
display in the control area.

You can combine the control, display and work areas into a single area with the mode
command. Used by itself mode will combine the three areas into a single area. Typing
mode 0 will also have the same effect. Try

mode

and the input from the keyboard and anything displayed by a command or program
will share the whale of the screen. A value of 1 divides the screen back into three areas.

You can also use the mode command to change the number of characters displayed
across the screen. To do this you must supply a second number separated by a comma
from the first. The second number must be a 4, 6 or 8 1o select a 40, 64 or 80 column

display. Try typing
mode 0,4 [ENTER

to change the display to 4G characters and to combine al! three areas on the screen.
Note that the 0, which originaily was optional must be typed to change the size of the
display.

Try some different combinations to see the effect on the display. Finish with a command
that leaves the screen divided into its three areas, but choose the number of characters
that gives a clear display on vour television or monitor

12/84

An Archive file behaves rather like a card index. A real card index consists of a box
containing a set of record cards, each card containing various items of information. For
such a card index to be useful, there have 1o be rules to determine where each piece
of information is written.

Suppose, for example, that we have a name and address index. You would normally
write the person's name across the top, followed by the address and telephone number
(if any}. It would be very difficult to use if some cards had the name written at the top
and others had it written near the bottom. You wouid normally expect to be able to use
the index by flipping through the cards, reading only the top line, until you found the
name you were looking for

I you had two sets of record cards, such as a set of name and address records and
a set of stack records, you would not normally store them both in the same box. You
would use two boxes and label them, for example, “Customer Records” and “Stock
Records”

The card index system contains most of the ideas necessary to understand how an
Archive file works. A file is like the card index box and is given a name to identify it.
The file is made up of a collection of records, each of which serves the same purpose
as a record card. A file, then, is simply & collection of related records.

like a card index, the information in each record is organised in a regular way. Individual
iterns of data, such as telephone numbers might be kept on a specified area of the
card. A record in an Archive file is organised in the same way. Each iterm is stored in
& separate region of the record, known as a field. A record in a customer file, such as
that described above, would contain a name field, an address field, a discount field and
SO On.

if this were the whole story there would be little point in using an Archive data fle in
preference 10 a physical card index. There are, however, many advantages when you
use computerised records. A customer record card index would normally be arranged
in alphabetical order of customer names which makes it an efficient way to find the
information about a particular customer. Suppose, however, you warnt tc send a letter
to all your customners who have not placed an order with you during the last six months.
it would be a very tedious task to go through the entire contents of a card index to compile
such a list. In Archive you can make such a search by using a few simple commands.
Furthermore, it is easy to arrange for a set of address labels to be printed at the same time.

You can save a great deal of time and effort by using Archive to store and manipulate
your records.

12/84

CHAPTER 3
QL ARCHIVE

FILES
FILES RECORDS
AND FIELDS

CHAPTER 4
EXAMINING
A FILE

DISPLAYING
A RECORD

EXAMINING
OTHER RECORDS

SEARCHING A
FILE

Find

The best way to start learning about Archive is to look through the demonstration file
gazet, provided on the Archive cartridge. This is a file which contains information about
various countries — the continent, the capital, the currency, the language, the population,
the land area and the gross domestic product per cepita.

Most of the examples in chapters 4 and 5 refer to the ‘gazet” file. Before using I, you
should make a copy of it using the following procedure:

When you have loaded Archive, put a formatted cartridge into Microdnive 2 and type:

backup LENTER
mdv1_gazet_dbf [ENTER
mdv2_gazet_dbf [ENTER

Wait untii the two Microdrives have stopped; be patient as the file is quite long and can
take a while to copy. Use the copy, now on the cartridge in Microdrive 2, for

experimenting.
From now on we will not always write ENTER at the end of every command but please
remember that it must still be used.

The look command opens a file so that you may read its contents, but you are not able
0 make alterations or additions to the file. It is a safer command than open if you are
merely locking through a file because the file is protected against accidental maodification.
You can examine the copy of the ‘gazet” file on Microdrive 2 by typing:

Look '"gazet"

To look at the first record type:
first
display

Dont forget to type ENTER after each command and then the display will show the
first record of the fie.

Note the first line shows the logical name of the file; Archive automatically supplies the
name ‘main” for a single file. Logical file names are usually used when you are using
more than one file at a tme and are described later.

Having looked at the first record of the file, you may want to move on to the following
record. Type:

next

and the display shows the next record in the file. When you are typing single commands
after a display command the display area is continuously updated to show the contents
of the current record. You can use the next command to step through the file, record
by record until you reach the end (it will not pass the last record).

There are three other related commands which you can use to control which record
of the file is displayed.

back ~ which displays the previous record,
first ~ which displays the first record,
Last - which shows the last record of the file.

Try using these commands ic move around the file, displaying any record you like. Note
that the four commands first, last, next and back do not themselves display the record.
They merely move fram record to record regardless of whether or not you have used
display command.

The first and simplest search command is find. This will search from the beginning of
a file, 10oking for the first occurrence of a specified piece of text in any of the text fields.

12:84

For example:
find "africa"

When you press ENTER there will be a slight pause and then the first record containing
the word africa’ in any of its text fields will be displayed. Note that this search is
independent of whether the text is in upper or lower case and will therefore find Africa
AFRICA or africal

If the first record that is found containing the text is not the one that you want, you can
find the next occurrence by typing:
continue

The continue command will repeat the pravicus search, looking for the next occurrence
of the text in any text field of the following records.

Itis possible that you may have to repeat a search several times before finding the record
you require. Press F5 and Archive will put the previous command back in the command
line. Press ENTER and the command wil be executed.

Ancther method of locating a particular record is to use the search command. This allows
you to find a record by specifying the contents of one or more specific fields, for example:

search continent$="EURCPE" and Language$=""FRENCH"

will find the first record in the file which matches both conditions. You must type in the
full field name.

Unlike the find command, search will only test the fields you specify and will differentiate
between upper and lower case letters. Use the upper(Jor lower{) case functions to make
the search case independent, for example:

search lower{continent$)="europe"

Again the continue command can be used to find the next occurrence of the text,

In many cases, you may want to look at a sub group of the records within a file. Suppose,
for exampte, you only want o look at the details of countries in Europe. You can use
the select command to pick out from the fie all those records which satisfy a certain
condition. The file will then behave as though only those selected records are present
Try this command on the ‘gazet” fle to see how it works. First type:

print count ()

which will teli you how many records there are in the file. Then type:
select continent$="EURCOPE"
print count()

and you will see how many records have been selected. The records that are removed
from the file are still heid in the computer's memory and you can restore them to the
file at any time by using the reset command. Type:

reset

and print the value of count(} again, to check that the file has been restored to its original
state.

When you use the print command from the keyboard, any file shown on the screen
will be erased. This is because, in general, display and print use areas of the screen
which overlap. After using print you must type display again to restore the display.

The file records may not always be in the order you need. You can sort the file by the
contents of numeric or text fields. Only the first eight characters of text are taken into
account by order.

Suppose, for example, you want to sort the records of the ‘gazet” alphabeticaily by capital
¢ity. You can do this by using the order command as follows:

order capitals$;a

The "a" following the semicolon specifies that you want to sort the file in ascending order
Replace it by ‘d” if you want the file sorted in descending order. The capital$ field becomes
the sort key for the file. You can specify a sort key composed of up to four fields by

12/84

Examining & File

Continue

Searth

Select

SORTING A FILE

Examining 2 Fie

LOCATE

CLOSING A FILE

giving a list of fields after the order command. For each of the keys you must specify
whether the sort is to be in ascending or descending order. The following command,
for example, will sort the file into descending order by population and ascending order
by capital.

order pop;d,capital;a
Note that a semicolon separates each field name from the "a" or ‘d” that specifies

ascending or descending order, but that each pair (fiefd name and letter} is separated
from the next by a comma.

When more than one field is specified for sorting purposes the records are initially sorted
according to the contents of the first field in the list. If two or more records have the
same contents for this field, they are ordered according to the next field in the list. If
records exist which are equal in respect of the contents of both of these two fields, they
are ordered according fc the contents of the third field, and so on.

When a file has been sorted, you can use the locate command tc make any particutar
record the current record in the file, Its action is to find the first record whose first sort
field is greater than or eqgual to the given expression. This record becomes the current
record in the fiie

For example, if the "gazet” file has been sorted as described in the last example, the
command:

locate "100"

locates the first country in the sorted file which has a population of 100 million. If there
is no such country Archive will locate the first country with a population less than 100
million (remember that the fle was sorted in descending crder).

Locate is followed by an expression which may be either text or numeric, but must be
of the same type as the field used to sort the file. (See the Reference chapter)

You can locate a record with respect to the contents of more than cne sort field by using
locate with multiple expressions, separated by commas. For example,

Let a="100"
let b$="D"
locate a,b$

will find the first country with a population of 100 mition or less, and with a capital whose
name either starts with “D" or is after “D” in the alphabet. In this example Archive will
locate Bangladesh, which has a pepulation of 76.1 million and whose capital is Dacca.

The oniy restriction on the number of expressions that you can use with locate is the
numbper of fields used to sort the file.

You cannot use continue after locate. Repeating a locate with the same condition will
always locate the same record.

Locate is the fastest way of locating a record in a large, sorted, file. Because of the

uncertainty in the record that is located, you may have to make a further check on the

record to make sure it is what you want.

When you have finished looking at a file you must tell Archive. You can do this by typing
close

This will onty act on files and will leave any program or screen layout intact. You can
close all your files and clear out your data and display area by typing

new
This will clear Archive to its initial state after loading.
This anly acts on the data files, leaving any program, or screen layout, intact.

Alternatively, if you have finished using Archive, you can go back to SuperBASIC by
using quit. This command closes all open files automatically before leaving Archive.

Remember that you should never remove a cartridge from a Microdrive while it contains
open files.

12/84

™

Before typing in examples in this chapter, type new first to ensure that Archive is cleared
and ready for a fresh start.

The open command prepares a file for both reading and writing.

If you open a file with the open command, instead of look you will be able to write to
the file to change its contents as well as read it. This means that any additions, deletions
or modifications will make a permanent change to the copy of the file when it is closed.
Type:

open '"gazet"

it you have opened a file for reading with look then you must not use any commands
which will atternpt to modify the data. If you do, Archive will report an error. The commands
described in this chapter modify data files and so should only be used with a file opened
with open.

Display the first record of the file with;

first
display

When you have finished modifications to the file you must close the file {using close
or new) to ensure that all the changes are recorded.

It you do not close a file properly (for example, if you just turn off the computer when
you have finished) the file may be changed and your most recent changes will not be
recorded. Always make sure that there are no open files on a cartridge before you
remove it from the Microdrive. Do not switch off the computer without first closing
all open files and removing the cartridges from the Microdrives.

The insert command is used to add one or more records to the current file. When you
use insert you will be asked to type in the contents of each field of the new record. Type:

insert
The display area will now show:

Logical name : main
country$ H
continent$
capital$
currency$ H
languagess$:

pop :

area

gdp

You can now type in the contents of each field. You can step from one field to the next
by pressing ENTER or TABULATE or you can step back to the previous field by holding
down SHIFT and pressing TABULATE. You can make as many changes as you like
1o the fields until you are satisfied. The new record can be inserted into the file by pressing
F5. Press F4 1o leave insert. Try typing;

SCOTLAND TABULATE
EUROPE TABULATE
EDINBURGH TABULATE
POUND STERLING TABULATE
ENGLISH TABULATE
10 [TABULATE |
30 TABULATE
50 TABULATE

12184

CHAPTER 5
MODIFYING
A FILE

CLOSING THE FILE

INSERT

Moditying afile

DELETE

CHANGING
A RECORD

Alter

Update

The display area should now show:

Logical name = main

country$: SCOTLAND
continents$: EURCPE
capital$: EDINBURGH
currency$ 1 POUND STERLING
languages$: ENGLISH

pop : 10

area : 30

gdp : 50

When you are satisfied that you have typed in the new information carrectly, press F5
to insert the new record into the file. The fields you have just typed in will then be blanked
out ready for you to insert a new record. Press F4 when you have finished inserting.

You can also end the entry for each field and move to the next one by pressing ENTER.
The new record is added 1o the file automatically when you press ENTER after the last
value.

If the file has been sorted the new record is inserted at the carrect position to maintain
the order.

JA
|

You can use the delete command to remaove a record from the file. delete removes the
current record (the one shown by display) from the file. All you have to do to remove
a particular record is to display it, and, having made certain that it is the correct one, type:

delete

Itis also simple to modify the contents of any or all of the fields within an existing record.
There are two methods.

Select the record you want to change (use display and find) then type aiter. Alter works
in the same way as insert except each field shows its old contents. You can step over
those fields you do not want to change (use TABULATE cr ENTER). Type in a new
value or use the cursor keys to modify an old one. Press F5 to replace the record.

As with insert, the record is replaced automatically if you press ENTER after the last

field in the record.

Select the record you want to change then change the contents of the field variables

until the dispiayed record is as required. Type update to change the record. (‘

For example, suppose that you decide that Iceland should be in Europe instead of the
Arctic. Find the record by tyning

find "Iceland”
display

Use the let command to change the contents of the continent$ field:
let continent$ = "Europe"

Finally put this change into the record by typing update.

In both of the above methods the new record will be inserted in the correct position
if the file has been sorted. Otherwise the replacement record is inserted in an unspecified
position in the file.

The alter command is simpler to use, but always affects the current record. The update
command can be useful when you are using multiple files.

Remember that you must close the file with the close, the new or the quit command,
before switching off the computer.

12/84

. u—ﬂ"'ﬁ\

if you have been following the examples up to this point, you will have been using Archive
only to look at the file provided for you, This chapter will show you how to create your
own file with your own choice of file names.

If necessary, type new to clear anything in the computer's memory and to close any
open files. Make sure that the formatted cartridge on which you are going to create
the file is in Microdrive 2.

Suppose you want to use ARCHIVE to make a catalogue of your books. To do this,
you will have to create a new file called "books” The first thing to do when creating a
fiie is to decide what it is going to contain, that is, what fields you will use in each record.
In this case you will obviously need to record the author, title and subject; you may also
like to include other details, such as the type (fiction or non fiction), ISBN (International
Standard Book Number), shelf location, a brief description and so on. In this example
we shall simply use three text fields to contain the author, title and subject and one numeric
field which will be used to hold the ISBN.

You create a file with the create command. You must specify the name of the file to
be created and the names of the fields to be used in each record. The $ sign indicates
that the fiefd contains text. When you have finished defining the fields of a record you
end the create command with endcreate. You can create a simple bock catalogue file,
as described above, by typing in the following sequence.

create "books"
author$
title$
subject$
tsbn
endcreate
Note that you do not have to type in the final endereate command. You can do so if

you want, but you can end the creation of the file simply by pressing ENTER on a blank
input line. You must, however, include endcreate if you use create in an Archive program.

When you have created a file, it is open for both reading and writing, but it contains
no records. Records can be added using insert. Type:

insert
and the display area will show:

logical name : main
authors$:

title$:
subject$:

isbn :

All you have to do is to type in the contents of each field. For example, type:

Bloags, J ULATE
A Boring Manual TABULATE
Cannon Making TABULATE
1234567 TABULATE

the display area should show

Logical name : main

authors$: Bloggs, J

title$: ABoring Manual .
subject$: Cannon Making

ishn 1 1234567

Insert the record into the “ook” file by pressing F5. The field value will be cleared ready
for inserting another record.

12/84

CHAPTER 6
CREATING A
FILE

CREATE

ADDING RECORDS

i

Creating aFile

Remember that you can also end the entry for each field and move to the next one
by pressing ENTER and that pressing ENTER after the last value will add the record
to the file.

When you have finished press F1, and remember to use close or quit to save the fite first

12/84

N

When you use the display command on a file that you have created, the records are
shown using the standard Archive screen layout.

You can design your own screen layout, better suited to the information in your data
file. Open an existing file and type in:

display
You select screen editing with the sedit command — type in:
sedit

The display area shows the current screen layout, which will be the one that Archive
creates automatically. If there is no screen layout in the computer’s memary, the dispiay
area may be blank,

You will see that the values of the fields of any fie are not included. The spaces where
these values are normally shown are marked by rows of dots. You should think of a
screen layout as a background against which the vaiues of a number of variables are
shown in specific positions. Archive shows a screen layout into two stages — first # draws
the background text and then it shows the valuas of the variables at the marked positions
on the screen.

You are initially at the main fevel of the command and you have three cptions:

type background text into the screen
press ESC to leave sedit
press F3 to use a screen editing command

To design a screen layout, press F3 and then C to clear the screen and make a fresh
start. Press ENTER 10 confirm your choice; any other key will return you to the main
level of sedit.

Choose paper and ink colours by pressing either P or | and pressing any key to switch
between the four available colours. Prass ESC to return to the main level to enter
background text

Background text might be explanatory, such as:
Andrew Young's World Gazeteer

Or it might consist of a new name for one of the fields in your file;
Population (millions):

You can move the cursor to any point in the display area by using the four cursor keys.
Anything that you type will immediately appear in the display area at the position of
the cursor and will become part of the background of the layout. The only exception
is if the cursor s positioned within an area of the screen reserved for the display of a
variable. Archive shows the name of the variable in the work area at the bottom of the
screen. You cannot type background text into this area unless you first free the area,
as described later,

The four screen edit commands enable you o produce aftractive and colourful formats
for displaying your data. Clearing the screen has already been explained. You may need
to experiment to completely master the remaining three so make sure you are using
a copy of your data file which is expendable.

Suppose you want to show the value of the variable country$ at a particular position in the
screen. Move the cursor to that point and press F3 and then the V key. Archive asks
you o type in the name of the variatle. You type:

country$

Note that this name does not appear on the screen — you are just marking the point
where the vaiue is to be shown. When you press ENTER Archive asks you o show

284

CHAPTER 7
SCREEN
LAYOUTS

DEFINING A
SCREEN LAYOUT

SCREEN EDIT
COMMANDS

Mark Variable (V)

Screen Layouts

ink ()

Paper (P)

ACTIVATING A
SCREEN LAYOUT

SAVING AND
LOADING SCREENS

how much space is to be reserved for showing the value. You press any key except
ENTER to mark the space with a row of dots. CTRL and the left cursor key can be
used to delete reserved space. When you have reserved enough space you press
ENTER and Archive takes you back to the main fevel of sedit.

If you move the cursor inta one of the reserved areas, {marked by dots), Archive snows
the name of the variable for which space is reserved in the work area.

If you reserve space for a variable in a region which overlaps any area that is already
reserved, you are given the option of cancelling the old area. You can then use the
option again to allocate space for a new variable,

Suppose you want to change the ink colour. Move the cursor to the point where you
wart the new colour text to start and press F3 and then the | key, Archive shows the
four available colours in the control area. The one that is selected wiil be the one that
is highlighted. Press any key to change the selected colour and then press ENTER
to record your choice. Any subsequent text that you type will appear in the new colour
until the ink command is used again.

Changing the paper colour works in the same way — except that you press F3 and
then the P key. .

If you want a colour change to affect only part of a line, you should move the cursor
1o the start of the region and seiect the paper and ink colours that you require. You should
then move the cursor to the end of the region and make a second selection of paper
and ink colours, returning them to their original values.

Once you have designed a screen Jayout and have left sedit, the screen layout will be
active. This means that the values of all the variables in the screen layout will be displayed
automnatically every time Archive completes a command or a program. If, for example,
you type the command next Archive moves to the next record of the currert file and
shows those fields that are included in the screen layout. Any active screen is deactivated
each tme you use the ¢ls command.

If a screen layout is not active, you can activate it with the screen command. This displays
the background lext of the screen layout, but does nat show the current values of the
variables.

You can save your screen design on a Microdrive cartridge using the ssave command:

ssave '"filename"
where “flename” is a name of your choice. The screen fayout is saved exacly as it
appears.
You can reload the screen layout by typing in the command.

sload '"filename"

When you load a screen layout, it is automatically displayed on the screen and made
active.

Archive will not automatically update an active screen layout from within a program.
Suppose you want to show all the records of the current fite, one after ancther, and tried
tc do so by typing the cne-line program:

first: let x=0: while x<count():next:let x=x+1:endwhile

(The while and endwhile commands cause the section of program that they enclose
to be performed repeatedly, whiie the condition following while is true. For correct
operation every while command must have a matching endwhile.)

This program would fail to de what you want, since Archive only updates the contents
of the screen layout at the end of the program.

12184

o

. You can, however, force a display of the values of the variables in an active screen from
within a program using the sprint command. The following one-line program will show
alt the records, as required.

first:let x=0:while x<count():sprint:next:let x=x+1:endwhile

if there Is no active screen sprint has no effect.

Remember that the display command uses the standard layout. It will always replace
any screen layout with its own simple list of the fields of the current record of the current
file. You must therefore ssave your screen layout before you next use display. If you
do nat, your screen layout will be replaced and you will not be able to get it back again
except by redesigning it with sedit.

12/84

Screen Layouts

THE SPRINT
COMMAND

THE DISPLAY
COMMAND

CHAPTER 8

PROCEDURES

CREATING A
PROCEDURE

LISTING AND
PRINTING
PROCEDURES

To use the examples in this chapter, first type new to clear the computer, then type look
“gazet” to open the example file on your data cartridge, which is assumed to be in
Microdrive 2.

The commands and functions of Archive: together form a programming language which
you can use o write programs that will manipulate your fles. You will find that Archive
programs are simgle 1o write.

An Archive program is made up of ore or mors separate sections. Each section is
known as a procedure which is simply a named section of program. You can refer 1o
a procedure by its name, like the procedures which you write and use in SuperBASIC,
(n Archive you can run a procedure by typing its name at the keyboard. When you
write a procedure you are effectively adding a new command 10 Archive.

No procedure may contain more than 255 lines, and each line must net contain more
than 160 characters. :

You use the program editor whenever you want to write or change a procedure. This
editor allows you to change, delete or add o the text of procedures.

The program editor is described in detait in Chapter 9, but in this chapter we will look
briefly at some of its features so that we can write a few short procedures. We shall assume
that initially there are no procedures in the computer's memory.
Type:

edit
to enter the program editor. The control area changes, showing that you should type

in the name of the procedure. Entering the editor will always aliow you to create a new
procedure if none are defined or loaded.

The first thing to do, therefore, is to decide what the new procedure should co. Let us
start with a very simple task; to make life easier by renaming the display command.
We will save typing by giving it the name 'd"
Just type

d
The left hand side of the display arsa now shows the name, and the right hand side
a listing of the procedure. The procedure, as yel, contains no commands; the proc and

endproc which mark the beginning and end of the procedure were automatically adoed
by Archive

The body of the procedure must be added:; that is sequence of actions it is to perform.

The control area shows that you can add lines of text to the new procedure. in ierms
of the current example this text is the display command, Type:

display

and Archive will insert the new text into the procedure below the highlighted line. #f you
have followed this example the display will contain:

d procd
display
endproc

You could add more lines of text — each line would be inserted below the highlighted line.

In this case, however, the procedure is complete so you can leave the edit command
by pressing ESC twice.

All you have to do to use the procedure is type its name, followed by ENTER. This new
procedure will perform the same function as typing the command display in full.

Whenever you call the edit command you are shown a list of the names of all the defined
procedures present in the computers memaory.

12/84

You can list any one of these procedures from within edit by pressing the TABULATE
“key to move down the list or the SHIFT and TABULATE keys together to move up the
list untit the particular procedure name is highlighted. The procedure is automatically
listed at the right hand side of the screen. If the procedure is too long to it in the display
area, you will be shown the first part and you can then scroll up and down through
the procedure using the up and down cursor keys. When you have finished you can
leave the edit command by pressing ESC.

If you want a printed fisting of your procedures you can use the llist command. Type:
Llist
and all the procedures currently in the computer's memory will be listed on a printer,

WARNING: Do not use this command unless a printer is attached since this will cause
the program to “hang”.

If you want to keep the procedures that you have defined, you can use the save
command. This stores all defined procedures in a single named file on Microdrive
cartridge. If you want to save the new display procedures that you have just defined
in a file cafled "myprocs’ you should tyoe in

save ""myprocs"

At any later time you can bring these procedures back into the computer's memory
by typing:
load ""myprocs*

The load command deietes any existing procedures in memory before loading the new
ones from the Microdrive cartridge. If you want to add the new procedures to those
already in memory, you can use the merge command. For example:

merge "'myprocs''

This works like load, except that the existing procedures are not deleted. If a new
procedure has the same name as an existing one, the new one will replace the old
VErsion,

Renaming commonly used commands with single-character names is one way of making
life easier for yourself. An alternative would be to write a longer procedure 1o repiace
several commands by single key presses. Try using the edit command 1o define the
following procedure. It allows you to open and examine any of your data files, providing,
of course, that the file you wish to use is not already loaded.

I you have already defined a procedure, typing:
edit

will not automatically give you the option to create a new procedure. From within edit
you must press F3 and then the N key to start a new procedure.

Dont worry if you make a few mistakes while typing in the exampie — you will learn /

how to correct them in the next chapter

12/84

Procedures

SAVING AND
LOADING
PROCEDURES

EXAMINING FILE
RECORDS

17

Procedures

proc vufile

cls

input "which file? ";file$

look file3

display

let key$='z'

while key3<>"q"
sprint
let key$=lower{getkey(2)
if keyg="f":first:endif
if key$="l":last:endif
if key$=''"n":next:endif
if key$="b'":back:endif
endwhile

close

endproc

Remember that you leave edit by pressing ESC twice. ,
You can use the procedure by typing:
vufile

it will first clear the display area and then prompt you to type in a fle name such as
‘gazet” f ‘gazet” is already loaded, however, you will receive an error message. To recover,
type new and load and run the procedure again. When you have entered the name
of one of your data files the procedure will open that file in read-only mode and display
its first record. It will then wait for you to press a key and will respond to the keys f,
[, n, b or g The first four of these will cause the appropriate dispiay action (first, last,
next or back) and pressing the g {guit) key will close the file and end the procedure.

Since this is the first program of any great length that we have written, a few comments
might prove helpful. First note how the exampie is indented to clarify the structure of
the procedure There is no need for you to type it like this, the indents are added
automatically as you write, list or print the procedure.

The main part of the procedure (waiting for a key to be pressed and performing the
appropriate action) is enclosed between while and endwhile commands. This repetitive
loop will only be left when the condition following while is false, in this case, when you
press the q key.

The if command, used several times within this loop, alsc requires that each if has a
matching endif to mark the end of the sequence of instructions to be executed i the
condition is true. If and endif are separate commands and can be used on different
lines. We could, for example, have written the first of the if statements in this procedure as:

if key$=rf
first
endif

You may include several lines of statements between if and endif; they will all be executed,
provided the condition following if is true. In the vufile procedure these staterments are
sufficiently short that each can be written on a single ling, using the colon o separate

-the individual statements.

As you can see, a sprint command is used within the main loop of this procedure to
make sure that each new record is shown on the screen. Remember that, although
the display commands {first, last etc)) always move to the correct record, the data in
the display area is not automatically changed until the end of the procedure. If we had
notincluded the sprint command, no information would have been shown in the display
area until you pressed the q key to leave the procedure. In that case all you would see
would be the result of the last of any sequence of keypresses that you have made.

12/84

This chapter describes the program editor We shall include a few simple examples, but
the best way to learn is by using them yourself. Start by typing new to clear the computer’s
memory.

When you have read this chapter you could try writing a few simple programs of your
own, or you could try modifying the procedures you typed in while working on the last
chapter. It you want 10 use longer examples you could use the editor 1o type in all or
part of the programs in the following chapters,

You enter the main fevel of the program editor with the edit

As an example we can create a procedure and add a couple of statements to it. From
the main level of edit, press F3 and N to create a new procedure. Type in test when
prompted for the name of the procedure.

Press ESC twice to leave the editor without adding any staternents. Then use the edit
command again. If you have no other procedures loaded, the screen will show:

test proc test
endproc

If the procedures you created in the last chapter are stiil loaded, then test is highlighted
on the left as the current procedure amang these cther procedures. Prass F4 to insert
lines of text. The line containing proc will be highlighted.

Now type:

print "this is a test'[ENTER

print '"there are two statements" [ENTER]|[ENTER]

Pressing ENTER twice in succession takes you out of insert. When you have finished
the screen will look like:

test proc test
print '"this is a test'
print '"there are two statements"
endproc

The line containing the second print statement is highlighted.

Remember that until you press ENTER you can use the line editor to correct any text
that you type. However, once you have pressed ENTER the line is inserted into the
procedure. To get it out again to edit it you must press F5. Pressing ENTER will then
replace the old line with the new line.

You are not aliowed to edit the endproc statement at the end of the procedure. You are
also not aflowed to edit the word proc but you may edit the rest of the contents of this
line. You can, therefore, rename a procedure by using the line editor 1o delete the old
name and replace it with a new one. The list of procedures at the left of the screen
is rearranged automatically to keep the procedures in alphabetical order

There are four separate editing commands which you will have noticed in the command
section when creating a new procedure. You can select one by pressing F3 and then

typing the first letter of its name.

You type in the name of the procedure you want to create. If you type in the name of
an existing procedure, you will not be allowed to create a second procedure but wil
be offered the option of editing the existing procedure.

When you press ENTER at the end of the name the new procedure becomes the current
one, listed at the right of the screen. You are presented with an empty procedure —
that is, one containing onty the proc and endproc statements,

This command deletes the current procedure from your program. You must first select
the procedure you want to deiete by using the SHIFT and TABULATE keys, as described
earlier, to make it the current procedure, You then select the command by pressing F3
and then the D key.

You must press ENTER to confirm that you really do want 10 delete the procedure. !f
you change your mind at this stage you can press any other key to go back to edit
without deleting the procedure.

12/84

CHAPTER 9
EDITING

THE PROGRAM
EDITOR

Editing Commands

New Procedure (N)

Delete Procedure (D)

Editing

20

Cut (C)

Paste (P)

Be careful when you use this command since there is no way to restore a deleted
procedure, except by typing it in again.

This command removes cne or more lines of text from the current procedure. The text
that is removed can be inserted in another position, or even in another procedure, by
means of the paste command.

Before you select the command you should use the up and down cursor keys to make
the current Iine either the first or the fast line of the section you want to remove. You
can then select the command by pressing F3 and then the C key.

if you then press ENTER the current line will be removed from the procedure. Alternatively
you can use the up or the down cursor key to move the cursor to the other end of a
section of text that you want to remove. The region of text that will be removed is marked
by highlighting. When you have marked the text you want to remove you should press
ENTER. Archive will immediately remove the marked text.

This command inserts the text removed by the last use of the cut command into the
current procedure, below the current line. The text can be inserted in another position,
or sven in another procedure.

Before you select the command you should, if necessary, use the SHIFT and TABULATE
keys to select the procedure in which you want to insert the text. You should also use
the up and down cursor keys to highlight the line immediately above the position where
you want 1o insert the text

Archive immediately inserts the text, underneath the current line When you have used
pasie to insert the text, the paste buffer is empty. You can not, therefore, insert the same
text in more than one pesition.

FOR SERVICE MANUALS
CONTACT:

MAURITRON TECHNICAL SERVICES

www.mauritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/84

-

CHAPTER 10
PROGRAMMING

This chapler will describe the development of an actual working example and each new IN ARCHIVE
technigque wit! be described as it is needed.

Suppose you are involved in running a club or society which charges a subscription
and produces a newsletter. You will need to send a copy of each issue to every paid-up
member. You will also need to send a reminder to each member when his or her
subscription falls due.

This example allows you ta construct a mailing list and then print a set of address labels
on request The address label includes a reminder when a subscription is due. The
example assumes that you send out six issues of the newsletter per vear and that a
person’s subscription falls due when he or she has received six issues. It could easily
be adapted to any situation where you reguiarly send out some form of circular letter
to a number of pecple on a mailing fist.

In this example we shali make as much use as possible of the existing facilities and A MA’LING LIST
introduce some new ones. If you need help with a feature or command you have not :

yet encountered, or one that seems to do things you dont understand, you may now

find it quicker to look for help in the reference section or use the help furction by pressing

F1. We use the insert and alter commands for all additions and changes to the file

records. We shall, however, need to write special routines to print out the address labels.

We shall have fo cater for the following set of requirements:

Add a new record to the file.
Delete a record.

Maodify a record.

Record subscription payments.
Produce the address labels.
Leave the program.

We shall write a procedure to handle each of these tasks and link them together by
another procedure which will aflow you to select any of these options.

In this appiication: it is quite clear what fields each record must contain. The name and
address are essential plus one field to record the number of issues the person has
received. We can create the necessary file immediately, as shown below

create ''mail"

title$
fname$
surname$
street$
town$
county$
postcodes$
issues
endcreate

We have used three string fields for the person's name; to hold the title {Dr, Mr, Mrs etc),
the first name and the surname respectively. We could probably have managed with
just a single field.

There are four string fields for the address, nominally reserved for the street address,
the town, county and postcode. You do not always have to use them in this way, but
can treat them as four general fields to hold the address. Four fields should normaily
be quite sufficient.

There is only one numeric field, ta hold the information about how many Issues remain
to be sent.

Now that we have the file, we can use it to test the various procedures as we write them.
It is a good idea to test each procedure as far as possiole as you go along. You can
then spot each mistake as it occurs and correct it immediately. If you leave all the testing
to the end it wilt be much more complicated as several things may be going wrong
at the same tme, Keep things as simple as possible while you are stil testing your
procedures. Try to make sure that each procedure works correctly before you move on
1o the next one. That way you will find that your final program wil usuaity work as soon
as you have written the last procedure.

12/84 21

Prograrnming

22

Insertion

DCeletions

Payments

We do not need to write a procedure to add a record. We can use insert. Remember
that you must use sprint to force the disglay of the contents of the record from within
a procedure. You can use insert immediately to add a few records 1o the file so that
you can test the other procedures on a real file.

At some time you will want to remove the records of people whe have not renewed
their subscriptions. We shall write a procedure, wipe, which allows you to scan through
the file, examining the records of all people who have not renewed, and to decide which
should be deleted.

We shall use the field variable issues tc hold the number of issues that a person is entitled
to receive. All records for which the value of issues is zero are therefore candidates for
deletion.

proc Wwipe
rem *=*x%x delete non-pavying subscribers *x¥xxx
cls
display
select issues =0
all
sprint
print at 13,0; "DELETE (y/n)? ";
let ok$ =lower(getkey(})
print ok$
if ok$ =y
delete
print "“DELETED'"; tab 15
else
print tab 15
endif
endal l
reset
endproc

Since a deleted record cannot be recovered, the full contents of the record are displayed
and you are asked to confirm that you really want to delete it. We use the getkey() function
which waits for a key to be pressed and then returns the ASCIl code of that key. Note
that fower() converts the code to the lower case character so that you can type the letter
in either upper or lower case.

Once you are satisfied you have correctly entered this procedure, you may try it out
on your file, (provided, of course, that you have entered some test records). First, leave
edit by pressing ESC (twice if necessary) and save your procedure in a file called “Maillist”

Type:
save "Maillist"
The procedure called wipe is now stored and can be called whenever "Maillist™ is loaded.

After entering each of the following procedures, repeat these steps, each tme storing
the new procedure in “Maillist”.

You will normally want to record a batch of subscription payments from a list of names
and addresses. You wil therefore need to get the record of a particular person. The
quickest way is to write a separate procedure, getrec, to locate a particular record and
then incorporate it in a pay procedure.

The getrec procedure asks for a text string (n$) and then locates the first recerd in the
file which contains that text. If you reply by just pressing ENTER, n$ is set to the empty
string and no search is made. This will, however, Indicate that you have finished recording
payments.

12/84

. From the edit level, press F3 and N to start entering getrec.

proc getrec
rem ***x* |ocate a particular record **x**xx
cls
let ok% ='n"
input '"'who? '"; n$
if ng <>un
find n$
while ok$ <>"y" and found()
print title$; " "; fname$(1); " "; surname$
print street$
print "0K (y/n)? '
let ok$ =lower(getkey())
cls
if ok$ <ryn
continue
endif
endwhile
if not found()
print n$; ' not found"
endi f
endif
endproc

The search uses the find command, so that the text is found in any string field. You
can therefore identify a record by name or by address. Of course, the first record which
matches may not be the one you want, so we have to be abie 1o continue the search.
This is the purpose of the white endwhile ioop. This prints out the name and first line
of the address, to identify the record, and asks you if that is the right record. If you do
not respond by pressing the Y key, it continues the search. The ioop ends either when
you answer by pressing the Y key or when the text is not found in any of the remaining
records. Note that the function found(} returns a true (non-zera) value if the search is
successful,

Since ok§ could initially be *y” (from a previous successiul search) we must give it some
other value at the beginning of the procedure, before entering the loop. This makes sure
that the loop will be used al least once.

We can now write the pay procedure:

proc pay
rem **k*x record subscription payment *xx**
cls
let n$ =rxh
while n§ <>vv
getrec
if ok$ ="y
let issues =issues +6é
update
endi f
endwhile
endproc

The loop in this procedure continues until n$ is an empty string. This allows you to record
several payments without having to select the pay aption for each one. When you have
finished, just press ENTER in response to the “wha?” prompt. If the value of ok$ is “y"
after the call to getrec then the payment is recorded by marking it as valid for a further
six issues.

Again we have to set the initial value of n$ to some appropriate value (anything except
the empty string) to make sure that the procedure is not affected by a previous operation.

The procedure to aflow you to change the contents of a record is now very easy. Again
you must be able to select a particitar record to change, so the general structure can
be identical to pay.

12/84

Programming

Changes

23

Programming

proc change
rem xxkx* alter record **x&*x

let n$ ="x"
cls FOR SERVICE MANUALS
M e e CONTACT:
if ok$ =ryv MAURITRON TECHNICAL SERVICES
alter wWWww.maudritron.co.uk
cls TEL: 01844 - 351694
endif FAX: 01844 - 352554
endwhile
endproc

PARAM ETERS We shall now take a short break from the development of the program to describe the
. use of parameters with procedures. You can use a parameter 10 pass a value o a
pracedure, rather than using the vaiue of a variable. We shall show you a few examples
of how they can be used. You do not need to save these procedures in ‘maillist” and
you may delete them before moving on to the section of the program which ceals with
labeis.

Try the fottowing simple example. Using the line editor, you add the parameter to the
line containing the procedure name.

prcc test; a
print S5*a
endproc

This defines a procedure cailed test which requires one parameter, ‘a" Notice that the
parameter is separated from the name of the procedure by a semicclon. Whenever you
use the procedure you must always supply a value for the parameter. For exampie, you
could type:

test; 3

which will print the value 15 — the number (3) has been passed 1o the procedure as
the value of the variable a.

You may specify any number of parameters for a procedure, provided you separate
them by commas. For example:

proc trial; a,b,c
print a * b * ¢
endproc

which you can call by:
trial; 3,4.,5
The values you supply do not have to be literal values, but could be variables, as shown

below:
let x = 2
let y = 5
let z = 7

trial; x,y,z

Note that the names of the variables do not have to be the same as the names used
within the procedure. We can distinguish between the formal parameters (9. a,bc) in
the definition of the procedure, and the actual parameters which are the actual values
that are passed to the procedure.

You can also pass the results of expressions:
trial; x*2,z/y,{z-y)*x

You are not restricted to using numeric variables but can also pass strings (or string
expressions) as parameters, provided you specify string variables in the definition of the
procedure. For example:

24 12/84

proc try; a$
print a$
endproc

let t$ = '"message’
try; t3

The only requirement is that the number and types of parameters supplied must match
the list of formai parameters in the definiion of the procedure.

The reason for the brief interfude about parameters is that they give a neat way of writing
the procedure to print an address label. For the purposes of testing we shall first write
the precedure to show the addresses on the display and later convert it to send the
output to the printer. We shall assume that the labels are eight lines of print-out in length.
If this is not right for your printer and label combination you will have t© change the
number of lines of space in the procedure so that it maiches your requirement. Remember
1o start saving your procedures in *Mailist” again.

First we shall write a procedure that displays a single line, the contents of which are
passed via a parameter,

proc doline; x$
print x$
endproc

We can now use this procedure to display eight lines of text for the address label

proc dolabel
rem ****x* print labels *%*%xx*
if issues
if issues =1
doline; "REMINDER - Subscription Now Due'
else
doline; v
endif
doline; v
doline; title$ +" "+fname$ (1)+'., “+syrname$
doline; street$
doline; town$
doline; county$
doline; postcode$
doline; »v
let issues =issues — 1
update
endi f
endproc

The procedure includes a reminder in the address label if the person is about to receive
his or her last issue. Each time a label is printed, that person’s issue count is reduced
by one. [f this number has reached zero then the label is not printed.

You can begin to see how useful parameters can be — without them this procedure
would be much longer. Look how easy it is to combine the title, initial and surname for
the first line of the address.

Perhaps you are wondering why we went to the trouble of defining doline when we
could have just used print statements throughout dolabel. The reason is that the routine
in its present form shows the addresses on the display screen. We can convert it to
send its output to the printer merely by changing one line in doline, insiead of having
to change every print statement in dolabel. All we need to do is change dofine to read:

proc doline; x$%
lprint x$%
endproc

12/84

Programming

Address Labels

25

Programming

Leaving the Program

25

ERRORS

Finally we can write the procedure to print all the address labels:

proc despatch
cls
all
dolabel
endalt
endproc¢

The final option is to leave the program when you have finished. This precedure can
be very simple — all it has to do is to make sure that the tila is closed properly before
returning control to the keyboard. We have alsc added a short sign-off message to make
{ clear that the program has ended.

proc bye
close
print ''bye"
stop endproc

It is quite likely that sconer or later you will make an error while using this program.
You may, for example, accidentally press the ESC key or you may type in some lext
when a number is expected. This type of mistake is detected by Archive and normally
results in the display of an error message and a return from your program o the keyboard.

You can use the error command to mark a precedure to be treated specially if any error
is detected. Any error oceurring in the marked procedure, or any procedure that it calls,
results in an immediate, premature, return,

The normal method of handling errors is switched off for the marked procedure and
it is left to you to decide how to deal with it You can find out the number of the last
error that occurred by using the errnum() function. You can use it 10 read the error
number more than once as the value is only cleared to zero by the next use of the
error command. If no errors have occurred since the start of the program, or since the
last time error was executed, then ermum() will return a vaiue of zero.

This methad, although not easy to understand at first, gives you a very powerful and
flexible control of how to deal with errors. The following example shows a ypical way
of using error. It gives you an error-resistant method of inputting a number.

proc dotest
input x
endproc

proc test
let n =1
while n
error dotest
let n =errnum(>
ifn
print ''You made error number " ;n ', try again'
endif
endwhile
endproc

The first procedure simply waits for your input to the variable x. The second procedure
handles any error during the execution of the input procedure. If any error occurs within
dotest it will be terminatec prematurely and the error number will be set. This number
is then read by errnum() and, if it is non-zero, the error message is printed (this error
message could, of course, be anything you like). Since these stalements are enclosed
in a while endwhile foop, any error will cause them to be executed again. The efror
number is cleared by error, ready for the next try. You can rot leave test until you have
typed in a vailid number

This example reperts the number of the error that was detected. On most occasions
you will not be concerned about which error occurred. The main use of errnum() is
to differentiate between there being no error and there being a detected error of any
type. A list of error numbers and possible explanations is included in the Reference

chapter

We can now write a procedure which will allow you to select any one of the six options
with a single keypress. It is sufficiently simple that no explanation Is necessary.

Fio

N

proc choose
rem **xx* choose an option ***+%
cls
print
print ' Add Despatch Pay Change Wipe Quit';
print "7 ";
let choice$ =lower(getkey())
print choice$
if choice$ ="a'": insert : endif
if choice$ ="d": despatch : endif
if choice$ ="p": pay : endif
if choice$ ="c¢': change : endif

if choice$ ="w": wipe : endif
if choice$ ="qg": bye : endif
endproc

All that remains to be done to complete our program is to write a startup procedure
which opens the file and calls choose. We must include choose in a loop so that you
are cffered the options again, each time you complete your previous selection.

You will see that the while endwhile loop in the foliowing procedure wil never end. Such
a loop will only come to an end when the expression following while has a zero value.
In the above procedure the expression always has the value 1, so the ioop will continue
indefinitely. The only way of leaving this loop is to choose the Quit option. The stop
command in bye immediately returns contral to the keyboard.

proc start
*hkkkdk rem start procedure *xxxx

cls
open "newmail.dbf"
while 1

error choose
let n =errnum()

if n
print “Mistake - Press any key to continue"
let m$ =getkey()
endif
endwhi le
endproc

Within this loop is a sequence of statements which handles any errors, using a similar
method to that described in the previous section. If you make a mistake the program
will not continue until you press a key. This allows you to look at what you have just
dore so that you can find out how you made the error.

The main procedure in the mailing list program is called “start’ This is so that you can
use the run command when using the program. We have already used this command
when we used the "loader” pragram to load the ‘gazet” data file

Save this final procedure in “maillist. When you want to run the program you will need
to load the procedures into the computer's memory and then execute the main procedire,
which will call all the others. One way is to use the load command and then type in
the name of the main procedure, for example:

load "maijllist"
start

The run command will load a named program and then automatically execute the
procedure called “start” (if it exists). You can run the program exactly as in the previous
example just by typing:

run "maillist"

The remaining two sections of this chapter inciude some general purpose procedures
which you may find useful.

Most variabies that appear in procedures are global. This means that they are recognised
throughout the program. They may be used or changed in any procedure. and not just
the procedure in which they are first assigned a value.

1284

Prograrmming

THE RUN
COMMAND

LOCAL VARIABLES

27

Prograrmming

28

The variables used as formal parameters in a procedure are focal variables and they
are not recognised oulside the procedure in which they appear

The foliowing example may help 1o make the distinction clear. Before going on, type
new to clear the computer's memory. First we create a procedure which uses two local
variables a and b$, as well as assigning values to two normal (global) variables u and v8.

proc demo; a,b$
print a,b%$
let u=3
let v3=""text"
print u;v$
endproc

Then we use demo:
demo 5;"words'

All four values are printed showing that ail four variables are recognised inside demo.
Typing
print u;vs

v

shows that both of these variables are also recogrised outside the procecure. However,
typing

print a,bs

results in an error because a and b$ are not recognised outside demo. Al formal
parameters are iccal variables, but you can also declare other variables to be local, as
in the following example:

proc dumbo
print "inside dumbo"
print p; a; r
endproc

proc dummy
local
let p
let q
lLet r
print '"inside dummy"
print p; a; r
dumbo
endproc

If you attempt to use dummy by typing:

I n na
FN VN F I

dummy

you will find that the values of p, g and r are all recognised {and therefore printed) in
dummy, but dumbo does not know the vaiues of g and 1, which are local to dummy.

The values of local variables are not defined anywhere except in the procedure in which
they are declared — not even in procedures called from the declaring procedure. The
variable p is global and is recognised everywhere.

You may be wondering why local variables are necessary. To illustrate their usefulness,
suppose you write a program containing several proceduras that you, or someone €lse,
originally write for use in other programs. It is quite possible that two or mere of these
procedures might use variables with the same name for quite different purposes. if these
variables were global then one procedure could alter a value so that it would be wrong
for another In such a situation you would have to check all the procedures that you
use and, if necessary, change the names of the variables. If, however, the variables were
local it would not matter if they had the same name. Provided they were in different
procedures, changing one would have no effect on the other.

Furthermore, it does nct matter if a procedure calls another which uses the same name
for a variable — provided at least one of them is local. For example, the procedure choose
in the section on errors, earlier in this chapter, declared the variable cheice$ to be local.
This means that there is no need to check whether any of the many procedures called
by choose also use choice$ — the called procedures cannot change the value of choice$
in choose.

-~

Displaying a prompt and waiting for a key to be pressed is one of the most commonly
needed actions, so it is worth writing a general-purpose procedure. The procedure must
be able to display a wide range of messages. A simple way of allowing the procedure
to print any message is to pass the message to the procedure in the form of a parameter

proc prompt; m$

print m$ + '": .

let x% =lower(getkey())
print x$%

endproc

The message to be displayed is passed to the procedure as a parameter in the local
variable m$. The function getkey() waits for a key to be pressed and returns the ASCII
code for the key. In this procedure the ASCII code is converted to lower case by the
function lower(), so that the result is independent of upper or lower case. Finally the
resulting value is assigned to the variable x$. This is a global variable, so that the key
that was actually pressed is available to any other procedure in the program.

A useful procedure is pause. It uses prompt to print a message and then simply waits
until a key is pressed. Since you are not usually interested in knowing which key was
actually pressed, it uses a local variable, v8, to preserve the original contents of x$.

proc pause
rem **xxx wait for any key ##xxxx

local v$

let y$ =x§%

print

prompt; 'press any key to continue'
let x3 =vy§%

endproc

Accepting text as typed input is quite simple. Any collection of characters is a valid text
string (even if it does not make sense) and will not cause an system error. You will not
normalty need to take any special precautions when accepting text input. It will usually
be sufficient to use a line such as the following, whicn asks you to type in your name;

input "Please type your name: ";name$

Note that a space is included as the last character of the prompt text; this small point
makes a iot of difference to the appearance of your program when you use it.

You can input several items with one input statement. All you have to do is to include
ait the prompts and variable names, separated by semicolons.

input "Your first name? ";fname$;"Your surname? '";sname$;

This last input statement alsc ends with a semicolon — this stops the cursor moving
to the following iine after you have typed your input.

When you use the input command to enter text to a string variable the computer will
accept anything that you type, without complaint If, however, you try the same thing
with input to a nurmeric variable you will get an error message if you type anything except
a valid number. Assuming that you do not want o leave your program every time your
finger slips while you are typing in @ number, you must make sure that your program
can cope with such errors.

The most useful way is 1o make use of the error command, which was described earlier.
The following procedure, for example, will accept any valid number within a specified
range. It even provides the display of any prompt message you want to appear.

12184

Prograrmming

PROMPTS

PAUSE

DATA ENTRY

Text

Numbers

29

Programming

proc getnum; m$,min,max
rem ***x%*x get number in range **xxx
local wrong
let wrong=1
while wrong
print m$; "7 ';
error readnum
let wrong=errnum(
if not wrong
if num<min or num>max
let wrong=1
print "Allowed range is '‘;min;" to ';max
endi f
endi f
if wrong
print "Try again"
endif
endwhile
endproc

v

Since errar must be followed by the name of a procedure, we define readnum to input
a value for the variable num.

proc readnum
input num
endproc

Suppose you want a procedure that checks that a number is within the range 1 to 10.
You can do this using getnum in the following way:

proc check
getnum; “Numeric value?",1,10
endproc

30 1282

This chapter extends the explanation of how to use the Archive programming language
by describing how to work with two or more open files. When you have more than one
file open at the same time you must be able to identify which file you want to use for
any particular operation. You must give each file a unique logical fife name when you
open or creale it and then refer to it by that name in all commands that refer to the file

Archive automatically supplies the logical file name, “main” when you open a single file.
It is called a logical fle name to distinguish it from the physical file name — the name
you give to the file when you save it

Since a program refers to a file by its logical fle name, you can write a program that
witl work with several different files.

Logical file names are essential for multiple file operations since you can only open a
second file by using both its physical file name and its logical file name. Note that the
logical file name is not saved with the file when it is closed and must be specified each
time the file is opened.

Two or more data files could contain fields with the same name. When this happens
you can identify the file to which the field belongs by adding the logical file name to
the field name. For example, if the field country$ appears in two files whose logical file
names are "main” and "b” you could refer to each of them respectively as “main.country$”
and “bcountry$”

The first example demonstrates how to add, delete or rename fields within an existing file,

Suppose that you want to make some changes to the ‘gazet” fle, to create a new file
containing only European countries. The “continent$” field becomes irrelevant and we
need not include it. We shalt also rename the “pop” field as “population”

The most convenient way of changing the file is to create a second file containing the
fields you want and then to copy the reguired recards from the old file ta the new one.
Let us call the new file “europe” The following procedure will da the rest of the work.

proc start
rem *%xx* create europe file *xx¥x
create "europe”™ logical "e"
country$
capital$
languages$
currency3d
population
gdp
area
endcreate
look ''gazet'" togical ''g"
select continent$="EURQPE"
all ugn
print at 0,0;g.country$;tab 30

let e.country$=g.country$
let e.capital$=g.capital$
tet e.language®$=g.language$
let e.currency$=g.currency$
let e.population=g.pop
let e.gdp=g.gdp
let e.area=g.area
append 'e'
endall

close "e"

close "'g"

print

print "“DONE"

endproc

CHAPTER 11
USING
MULTIPLE
FILES

LOGICAL
FILE
NAMES

CHANGING THE
RECORDS OF A
FILE

Using Multiple Flles

THE CURRENT FILE

32

STOCK CONTROL

The Stock File

The Supplier File

You can see, from this example, that you can use the same name for a field in both
fles — they can be distinguished by including the legical fle name. If you do not include
the logical file name then it will be assumed that the current file is 10 be used. The last
file to be opened automatically becomes the current file. In this exampte the current
file will be ‘gazet" (with logical file name “g") so we could make use of this by simply
writing the g before the field name in the previous program.

If you do not include the logigal file name in any case where it is optional, Archive will
assume that the command refers to the current file. It s usually safer to include the logical
fle name explicitly, to avoid any possibility of confusion.

You can, at any time, specify the current file by means of the use command. If you
included the command:

use "e"

in the above example, then “europe” would be the current file until you changed it again,
either by opening ancther file or by means of the use command.

Now for a more complex example. in a stock control systern you will need to:

Find information on a particular stock item.

Obtain a report on the current stock levels of all iterns.
Record sales and modify the stock records accordingly.
Order new supplies, 1o maintain adequate stock levels,
Record deliveries of stock.

You will obviously need a flle to hold the details of all items held in stock and it is corvenient
to have a second file to hold details of all your suppliers. You will need 1o be able o
access either file from the other — for example you may want to know all the possible
suppliers of a particular item, or to find out what items are supplied by a particular
company.

in order to keep the appiication as simple as possible we shall not use the menu-driven
approach of the examples in the previous two chapters. We shall write it as a series
of separate commands which can be used - like the standard commands - by typing
their names.

Since the procedures will be strongly dependent on the file structure we use, we must
first give some thought to their appearance.

The stock file must contain full details of the stock situation for each item. The following
list explains all the fields we shall use.

Field Name Use Example
stockno$ The internal stock code A101
descriptions$ ltem description Widget, large
qty Number in stock 500
selipr Selling price 1.25
reorderlev Reorder when stock 200

level falls below this value.
buyaty How many to order 400

We can create the fitle by:

create "stock™ logical 'sto'
stockno$
description$
qty
reordertev
sellpr
buyqty
endcreate

This file holds the names, addresses and telephone numbers of the companies that
supply the goods you sell. It will be useful also to include the name of a contact person
in the company. In order to be able to access this information efficiently we shall include
a code for each company We shaii use the following fields:

12184

Field Name Use Example
coname$ The company’s name Wonder Widgets plec
street$ First line of address 27 Belmont House
town$ Second line of address LIVERPOOL
county$ Third line of address Merseyside
postcode$ Last line of address L31 ZHK
contact$ Name of a contact Andrew Cummins
tels Telephone number 051-532 7133
code$ Your code for the a

company

We can create the file by:

create ""supplier logical '"sup"

coname$

street$

town$

county$

postcode$

contact$

tels

code$

endcreate

This file forms the link between the previous two files. It uses the following fields:

Field Name Use Example
stockno$ Your stock code A101
code$ Your code for the a
supplier
scode$ The supptier's code 123-456
for the item
price The supplier's selling 0.87
price
delivery The suppliers delivery 28
time, in days

Each record in this file links one record in the stock file with one record in the supplier
file. The above exampte shows that Wonder Widgets (supplier code "a”) can supply you
with large widgets (stock code "A101"). In addition, we include detalls of the price, delivery
time and the supplier's own stock code. These itemns are useful when you order more
stock.

Using this fle allows you to cater for the cases where one supplier supplies more than
ane stock item (equal values for code$, but different values for stockno$) and where
one stock item is obtainabie from several suppliers (equal stockno$ but different codes).

Create the file with:

create "orders'" logical "ord"
stocknos
code$
scode$
price
delivery
endcreate

Having created these files, we now need some procedures to handie the information
they will contain. You will find that the most frequently-needed facility is to find information
about a particutar stock item in response to customer enquiries. You will need to find
the information as quickly as possible, but may need to find a particular record from
either the part number or the description. We shall therefore use the find command
so that you can give any valid text o start the search.

12/84

Using Muttiple Fles

The Qrders File

Enquiries

33

Using Multiple Files

34

Stock Report

The procedure must be able to ask for you to confirm that the record is the one you
require. We shall delegate this task to a separate procedure, so we can use it in different
situations if necessary.

proc confirm
print : print "Confirm (y/n)";
let yes=lower(getkey())='"y"
cls
endproc

It leaves the variable yes containing t if you press the Y key — otherwise the value
is zero. Note the use of the = sign for assignment and also in a logical condition.

prec inquire
rem *k*x%* jnquire stock item *x¥xx*
print
input "Stock item? '; name$
use ''sto"
find name$
let yes=0
while found() and not yes
display
sprint
confirm
if not ves
continue
endif
endwhile
if not foundQ
print
print pame$; ' does not exist'
endif
endproc

This procedure merely locates the correct record. A more usable procedure for
interrogating the stock file is query:

proc guery
inquire
clear
endproc

This uses another procedure, clear, which waits until you press a key, clears the screen
and then prints a list of the commands you can use. We shall leave this procedure until
we have written the procedures it must list. Remember to leave edit from time to time
to save these procedures as you enter them.

We can also write a simple procedure to produce & general stock repoert

proc report

rem *x%x** stock report ®xxx*

cls

print tab 2; "ITEM"; tab 11; "CODE'";

print tab 20; “QUANTITY"; tab 31; "PRICE";

print tab 40; "STOCK VALUE';

print

let total=0

use "'sto'’

all
print description$(to 10Y;tab 11;sto.stockno$;

tab 20;qty;

print tab 31;"f£";setlpr; tab 40;"f";sellpr*gty
let total=totai+sellpr*xqty
endall

print

print "Total stock value =f"; total

clear

endproc

12184

I%}

“,

All we need to do to record a sale is to subtract the number of items sold from the
relevant stock record. It is advisable to include some form of corfirmation that we are
dealing with the night stock tem and that the stock is sufficient to meet the order,

proc guantity
rem *kx**x% print items in stock **x*x*x
inquire
print
input "How many? ": num
print
cls
print num;™ * ":sto_stocknod;’ (";sto.description$;™)"
endproc

proc sale
rem *xx%k*x process sale *xkk*
guantity
if num<=sto.qty
print "Order value:- £'"; num*sto.sellpr
confirm
if yes
let sto.gqty=sto.gty-num
update
sprint: rem *** show the modified record #*+=
endif
else
print "Not enough stock"
endif
clear
endproc

The following procedure allows you to record the delivery of stock. Again it requests
confirmation of the details you type in before accepting them and updating the relevant
stock record.

proc delivery
rem *k%%%x in case stock on delivery **xx*
guantity
confirm
print
if yes
print "Accepted"
let sto.qty=sto.qty+num
update
sprint
else
print "Delivery not recorded"
endif
clear
endproc

So far our procedures have only referred to the stock file. When we want to order mere
stock we shall have to refer to the supplier and orders files for the name and address
of the company, the price, and so on.

Assuming that we have identified the item in the stock file {with inquire) we select, from
the orders file, those records that have the correct stock code. These records contain
the codes for all the companies that can supply the item. Since the records also contain
the price and delivery time for each supplier, we can decide whether we want the
cheapest item or the shortest delivery time.

We use locate as a fast way of finding the required supplier record. This means that
the supplier file must be ordered (with respect to the supplier code, code$) before we
use doorder.

12184

Using Multiple Flles

Recording Sales

Recording Incoming
Stock

Ordering New Stock

35

Using Multiple Fles

proc doorder
rem **k*xx*order new Stock *xxk*
inguire
use "ord"
select sto.stockno$=ord.stockno$
print
print "fast or cheap (f/c)';
if Llower(getkey())="f"
fast
else : cheap
endif
let ycode$=scode’
reset
use "'sup”
Locate comp$
doform
print
print "Expected delivery is ";del;' days"
clear .
endproc

The procedure cheap finds the supplier with the lowest price, and fast works in the same
way 10 find the supplier with the shortest delivery time.

proc cheap
rem **xx* find cheapest *%k¥**
use "ord"
let pri=price
Let comp$=code$
let del=delivery
all
if price<pri
let pri=price
let comp$=code’
let del=delivery
endif
endall
endproc

proc fast
rem **%x%* fastest delivery *x&¥*
use ''ord"
let del=deltivery
let comp$=code$
let pri=price
all
if delivery<del
let del=delivery
Let comp$=code$
let pri=price
endif
endall
endproc

The procedure doform produces the actual order form. You should modify it to your
own requirements. We shall use a simpte version which shows the order details on the

screen.

proc doform
" rem wxxx* produce order form *x*x%
cls
print
print sup.coname$
print sup.street$
print sup.county$
print sup.postcodel
print
print "Please supply ''; sto.buyaty;

36 12/84

Using Multiple Files

print ' % part number ';

print ycode$

print "{("; sto.description$; ") ';
print "at £'; pri; ' each.'

print

print "Total value: £"; sto.buygty*pri
endproc

The final command that we need is one to close all the files when we have finished
using them.

proc bye

confirm
if yes
cls
print : print "bye"”
close '"sto'
close *"sup"
close "ord"
cls
endif
endproc

We can now write a short procedure 1o run the application. It must open all three files
with the correct logical file names, clear the display and show you the additiona
commands that you have. Note that, in normal use, the stock file is the only one whose
records will need t¢ be changed. The other two files are opened as read only files. It
alsc orders the supplier file so that we can locate a company by its reference code.

prac start

cls

print at 5,5; "STOCK CONTROL DEMONSTRATION"
print

open "stock'" logical ''sto"

look "supplier” logical "sup"

look "orders'" logical '"ord"”

use '"'sup'’

order code$; a

clear

endproc

Finally we can write clear, which simply clears the screen and shows a list of the extra
commands availabie:

12/84

proc clear

rem %**x* clear screen and get command kxExw!
local x$

print

print “Press any key to continue ":

let x%=getkey()

cls

print

print "Query Report Delivery Doorder Sale Bye'":print
print "Type in your choice"

endproc

37

CHAPTER 12

QL ARCHIVE
REFERENCE

aa

VARIABLES

SYNTAX

EXPRESSIONS

Syntax Conventions

Syntactic Entities

Variable names may be up o thiteen characters in length, and must net start with a
digit {0 to 9. They may contain any combination of upper or lower case alphabetic
characters, or digits. Other characters are not aliowed, except for § and . which have
special meganings.

If a variable name ends with a $ it is a string variable. Strings may be up tc 255 characters
in length. If the name does nat end with a $ the variable is numeric. A variable name
may refer to the contents of a record in a file and is then known as a field variable. Field
variables are normatly assumed to refer to the current file but may be made to refer
to ancther open file by including a logical file name, separated by a . from the variables
name. Such a field variable is written as:

logical__file__name . field__name

For example main.continent$. If a variable name includes a dot then it must refer 10
a field in an open file. If there is no dot an attempt iIs made to match the name to an
existing variable in the following sequence: .

1 a field of the current file
2 a local variable {a parameter in the current procedure, if any)
3 a global variable

An error message is given if no match is found.
The term.syntax refers to the exact structure of a command or function, The syntax of

a command specifies the parameters that the command needs, in what order they must
appear, and the symbols (if any) used to separate them.

This section describes the notation used to express the syntax of Archive's programming
language.

An expression is a combination of literal values, variables, functions and operators which
results in a single value. A numeric expression results in a numeric value and a string
expression results in a text value. Examples are:

3 * y % sin (x} + len (a$) [numeric}
“abc” + a% + rept (" ~ " 5) {string}

An expression may, as in the above exampiles, be composed of several sub-expressions.
In such a case you may not mix sub-expressions of different types. They must all be
string expressions or all numeric.

The syntax definitions are similar to those used to define the syntax of SuperBASIC, ie:

Symbol Meaning

italics denctes a syntactic entity

[] encloses an optional item

*x encloses items that may be repeated

| or

{1 comment

shit literal string

sexp string expression

n.exp NUMErC expression

exp expression, either string or numeric
ptm print item

var variable name, either string or numeric
Ifn logical file name

fom physical file name {up to 8 characters)
onm procedure name

A literal string is text enclosed in quotes, for example fext) or “text”

A string expression is a literal string. or a combination of literal strings, string variables
and string functions that results in a text value for example:

“fred"” +a$+chr(72)

12/84

A numeric expression is either a number, or a combination of numbers, numeric variables
and operators (+, —, *, /, efc} that results in a numeric value for example:

(3+x)/sinfy)

A print item is one of four possibilities: at, tab, ink, paper. A full description of a print
itern in qur syntax notation is:

print__item:= | at n exp, n exp
| tab n exp
| ink n exp
I

paper n exp

Logical f'e names and procedure names have the same restrictions as variable names,
Physical file rames must also not exceed eight characters,

As an example of a syntax definition, consider the syntax of the order command. In
our notaticn it appears as:

order spec:= var; a | d
order order spec *| , order spec | *

Order therefore needs to be followed by at least one order specification which itself
consists of a variable separated by a colon from a letter which must be either a or d.
in addition you can also include up to three further order specifications provided each
pai Is separated by commas. Clearly the syntax notation provides a much more compact
description.

Note that the syntax notation does not tell you the meaning or purpose of the symbols
S0 you will have to read the rest of the description for each command. The syntax only
gives you a formal description of the number and kind of items that go to make up
a valid command. In addition the syntax notation does not tell you the maximum number
of repeitons aliowed for the repeated items. Order will accept up to four pairs of a variable
and a lefter

A field is the space reserved to hold either a string or a number,

In Archive, each field is identified by a fteld variable name. Whether a particular field
can hold a string or a number is dependent on the name given to the field at the time
it was created — string fields have a name ending with a $. An Archive string field may
hold up to 255 characters. A numeric field has a name that does not end with a $ sign.
All numbers are stored in the same amount of space, regardless of their value. The
possible range for a number is the same as the valid numeric range for the arithmetic
operalors.

A record is a collection of fields, whose contents are refated in some way. The fields
of a record might, for example, be used to hold the name, the address and the telephone
number of a particular person. In Archive the records are of variable length so that cach
record only takes up as much room as is necessary to hold the information contained
in its fields. There may be up to 255 fields in an Archive record.

A dala fite is made up from a number of related records. To continue the above example,
a data file could consist of a coliection of name, address and telephone number records
for many different people. The number of records in an Archive data file is limited to
roughly 15 000. In practice, you are limited 1o the capacity of one Microdrive cartridge,
which will hold about 1000 records of 100 characters. A file is the basic unit that you
can save on, or load from, a Microdrive cartridge. Each file has a name to identify it.
In Archive you give a physical name to the file when it is created, but you can change
the logical name at any time,

When you want to read from or write to a data file you must first open it. Generally
speaking, opening a data file transfers a copy of the file from the Microdrive cartridge
into memory although, in the case of a long file, it is possible that only part of the file
will be present in memory at any one time.

You can open a data file in read only mode with look which, as its name suggests, means
that you can not change its contents. You also have the option of opening a data file
in update mode with open so that you are allowed both to read and to change its contents.

12/84

Reference

e

ARCHIVE DATA
FILES

A Field

A Record

A File

Opening and
Closing Files

39

Reference

49

Logical File Names

PROCEDURES

THE PROGRAM
EDITOR

Every time you open a data file, Archive reserves space for the field variables needed
by a record within the fiie. The field variables always contain the values of the current
record.

When you close a data file with close or quit any changes that you have made are
copied into the file stored on the Microdrive cartridge. The copy held in memory is
discarded. Closing a file is the onty way of ensuring that the copy on the Microdrive
cartridge contains your latest version. Since an open fle uses part of the computers
memory, you should not leave files open if you are not using them.

When you leave Archive with the quit command, all oper: files are closed automatically.

Do not turn off the computer, or remove a cartridge from a Microdrive, while the
cartridge contains open files.

Each open data file has an associated logical fle narme, given 10 it when the file is opened.
If you do not specify a logical file name when you open the file, it is automatically given
the logical file name “main”

The iogical file name is used to identify a particular file when you are using several files
at once.

A procedure is a named section of program, starting with a procedure declaration of
the form:

proc pnm[; var *|, varl *]
and ending with:
endproc

It may be referred to by name from any other program or procedure, including itself.
it acts as though its code had been inserted at the point from which it is called.

In Archive, the proc and endproc commands cannot be entered directly at the keyboard,

but are added automatically when you use the program editor to create a procedure.

The program editor is entered using the edit command.

If there are no procedures present in memory, you will be immediately offered the option
of creating a new procedure. Otherwise you are given a list of all the procedures in
memory on the left hand side of the display area. The first procedure is highlighted and
is listed in full on the right hand side of the display. The first line of the procedure is
highlighted to mark the current procedure and the current line.

Once in edit you have five options:

Select a procedure
Press TABULATE to move down the list of procedures, press SHIFT and TABULATE
to move up the list. The listing on the screen always shows the current procedure.

Select a line
Use the up and down cursor keys to select a line within the current procedure. The
current line is highlighted.

Press F3 for the menu of editing commands.
There are four commands, which are selected by pressing the key corresponding to
the first letter

Delete Press ENTER to delete the pracedure highlighted on the left of the display.
Press any other key to leave the command without deleting the procedure.

New Type in the name of the new procedure and press ENTER. If a procedure
of that name already exists you will be offered the opportunity to edit it

Cut Removes text from the current procedure and transfers it to the paste buffer.
Before calling this command use the up or down cursor keys to make the first
{or last) line of the region to be removed the current line. Then use the up and
down cursor keys to mark the region of text to be removed. Press ENTER to
remove the text into the paste buffer.

Paste Copy the contents of the paste buffer into the current procedure below the
current line. Paste will clear the paste buffer

12/84

ey

~

Insert text

- Press F4 to insert one or more lines of text below the current ling in the current procedure.
Type the text and press ENTER. Pressing ENTER without any preceeding text will leave
the insert option.

Edit text

Press F5 to edit the current line of the current procedure. The line of text is copied into
the input fine and can be edited with the line editor Press ENTER to replace the old
line with the new line.

The screen editor is entered with the sedit command. It allows you 1o design a new
screen layout or modify an existing one. Once you have designed a layout you can save
it on a Microdrive cartridge with the ssave command and lcad it with the sload command.

A screen layout is composed of two parts, the fixed background text and the variable
values that are dispiayed in it The screen command shows the background text and
the sprint command adds the current values of the variables it contains.

Sedit has two options:

type text into the screen background
press F3 to use a screen editing command.

There are four screen editing commands available after pigssing F3:

C - clear the screen

V — mark a region to show a variable
I - set the ink colour

P - set the paper cclour.

A screen layout is made active by:

sload
screen

When a particular screen is active it will show the current values of its variables after
sprint, or when control returns o the keyboard after executing a program (cr a command).
A screen layout is made inactive by clearing the screen with ¢ls. If there is no active
screen, sprint has no effect. You may only have one screen layout in the computer's
memary at any one time.

The display cormmand creates and uses its own screen layout. It will therefore replace
any other screen layout with its own design.
The following commands are available.

Scans through the logically present records of the file in the fastest possible time.
Syntax: all [/#n] : ... : endall

This scan will not, in general, be in any particular sequence. The optional logical file
name will force it to refer to a specified open fle. If the logical file name is not given
then it will scan the current file.

The all loop is primarily designed for examining the file records rather than for changing
them. Do not use update within an all loop, unless you are sure that the length of the
record will remain unchanged. You may, for example, change the vaiue of a number,
or convert a text field to upper case. If in doubt, use a while loop — using the value
of ecf() 1o detect the end of the file. For example :

first

while not eof()
update
Héxt

endwhile

Alters the current screen layout to display the current values of the variables.
Syntax; alter

12184

Reference

THE SCREEN
EDITOR

THE COMMANDS
ALL

ALTER

4

Reference

42

APPEND

BACK

BACKUP

CLOSE

CLs

CONTINUE

CREATE

DELETE

DIR

You can change the contents of any one or more fields of the current file whose values
are shown in the screen tayout. Note that it is not necessary for all the field variables
to be shown. You can not change a field that is not shown. If none of the field variables
appear in the screen, Archive forces a display of the file.

First select the field 1o change by pressing TABULATE or ENTER unti the cursor is

at the correct field (variables that are not fieids of the file are skipped). You can then
or ENTER te move to the next field. (Pressing SHIFT and TABULATE together moves
back to the previous field.)

When you have made all the changes you want, press F5 1o replace the old record
with the new one. The record is 'eplaced automatically it you press ENTER. If the file
is ordered the new version of the record is inserted in sequence,

Adds a record to the specified file, or o the current fila if the logical fiie name is not given,
Syntax: append []

The fields of the record take the Current values of the field variables. If the file i$ ordered,
the insertion is in sequence.

Moves backwards one record in the specified file, or in the current file if the Jagical file
name is not given.

Syntax: back | /fn |

Makes a copy of the specified file. You should make copies of all your files, to protect
against accidental damage or erasure.

Syntax: backup oldfrim as newfnm

Closes the specified file, or the current file if no logical file name is specified.
Syntax: close [/fn]

Clears the dispiay area and switches off any display screen. See screen, sload, sprint.
Syntax: cls

Continues the previous search or find, from the record following the current record in
the current file.

Syntax: continue

Creales a named open file whose records contain the fields given by the list of variables
specified in the command. You have the option of specifying a logicai file name — if
you do not the file is created with the logical file name *main"”

Syntax: create fim [logical: ifn | : var *[: var]* : endcreate

Deletes the current record from the specified fite, or from the current file if no logical
file name is given,

Syntax: delete { /fn |
Warning: Use this command with care since you can not recover the deleted record.

Displays a list of files on a Microdrive cartridge.
Syntax: dir [drive]

You may specify the Microdrive to be either madv1 or mdv2. I you do not include the
Microdrive name Archive will automatically list the files on the cartridge in Microdrive 2.

Betore showing the list of files, Archive displays the volume name of the cartridge (the
name you gave when you formatted if).

Shows the logical file name of the current file and a list of the field names and the values
of the field variables for the current record. If the file is sorted, 1t ailso shows the sort
fields and their sort priority.

Syntax: display

The command replaces any existing user-defined screen tayout with this list. which
becomes the active screen layout.

Syntax: dump | ; var | *[, var |*

Prints the specified fields of the selected records of the current file in tabular form sert
output. If you do not give a list of field variable names, alf the fields are printed.

You can divert the output to a Microdrive file with spoolon.

Calls the procedure editor 1o create a new procedure or to edit an existing procedure.
Syntax: edit

See all.
See create.

Syntax: error pnm| ; exp *[, exp | *]

by using the errnum() function to read the error number. This error number is cleared
each time that error is executed.

Saves the named fields of the selectad records of the current Archive file on a Microdrive
cartridge in a form suitable for import to QL Abacus or QL Easel.

Synlax: export fim [ivar] *[, vas* [quill]

If you do not specify a list of field variable names, a the fields are exported. If you include
the optional parameter quill, (separated by at least one space from the last variable name}
the file is exported in a form suitabte for import by QL Quill.

The export file is named fam and, unless you specify your own file name extension,
Archive uses the extension _EXP.

See the Information section for a full discussion of import and expart.

Rewinds the file to the beginning and searches for the first record containing a ratch
to the specified string in any string field. The match is independent of upper or lower
case text.

Syntax: find sexp

You can continue the search with the continue command, and determine whether the
search was successful by examining the value returned by the found() function.

Finds the first record of the specitied file, or the current file if no logical file name is
specified.

Syntax: first | fin |

Formats the cartridge in Microdrive 2 (the right hand drive). It gives the cartridge the
name you specified. This name ig reported when you subsequently use dir 1o show
a directory of the files on that cartridge.

Syntax: format “you specifieg”

12/84

DISPLAY

DUMP

EDIT

ENDALL
ENDCREATE

ERROR

EXPORT

FIND

FIRST

FORMAT

43

44

IF

INK

INPUT

INSERT

Allows a specified condition to contral subsequent processing.
Syntax: if nexp : .. [:else: .]: endif

Without else,
If the expression ig non-zero, the following staterments are executed. If the expression
is zero execution transfers 1o the statement following endif.

With else,

If the numeric expression is non-zerg, the slatements between if ang else are
executed. Otherwise the statements between else and endif are executed. In either
Case execution continues with the staternents following endif

Reads a filg, nameT, exported from QL Abacus or QL Easel ang produces an Archive
data fle name2. As with open and look you have the option of specifying a logical file
name for the data file

Syntax: import namet as namez llogical fn|

where: namet: = fom
namez.= frm

See the Information section for a full description of import and export.

Sets the foreground colour for all following text to the colour specified by the value of
the expression.

Syntax: ink n.exp

The colours are: 0 and 1 bigck
2 and 3 red
4 and 5 green
6 and 7 white

in an input list may be preceded by a initial string which will be displayed ags g prompt
for the input. Al input items must be separated from each other by semicolons if the
list has a final semicolon, the cursor will not move 1o a new line after the input,
Syntax: input [var | st | ptm *[; var | siit | ptm I*1

The list of input iterng may include the Cursor-positioning items

at line.colurmn
tab column

where: fine:= nexp,
column: = n.exp

The first of these positions the cursor at the specified line and column position, and
tab moves the cursor 1o the specified column within the current line, If the cursor is already
10 the right of the specified column, tab wil have no effact

These two items may not be used outside an input or a print command,

You may also use ink and Paper as input items, If useq within an input command they
will only affect the jnk and paper colours 1o the end of the input, when the colours will
return to their original settings

Adds a new record o a file
Syntax: insert

Uses the current screen layout to display the current values of the variables, You can
type a new value for any one or more fields of the current file whose values are shown
in the screen layout. Note that it is not necessary for all the field variables to be shown.
You cannct type a vaive for a field that is not shown. ¥ none of the field variables appear
in the screen, Archive forces a display of the file

12/84

First select a field by pressing TABULATE or ENTER until the cursor is at the correct
field (vaiues that are not fields of the file are skipped). You can then ype a new value,
Press TABULATEor ENTER o move to the next field. (Pressing SHIFT and TABULATE
together moves back to the previous field.)

15 In the last field. Any field that you have not given a value will be zero (fitis a numeric
field) or an empty string (f it is a text field). If the file is ordered, the new record is inserted
in sequence, otherwise the insertion takes place at an unspecified position.

Erases the specified file from the Microdrive cartridge.
Syntax: kill fnm
Warning: Use this command with care since YOu cannot recover the erased file.

Finds the iast record of the specified file, or the current file if you do not specify a logical
file name

Syntax: last | /fr |

Used to assign a value 10 a variable (as in SuperBASIC).

Syntax: let var = exp

Lists all the procedures currently in memoty on a printar.
Syntax: Hlist

Loads the specified procedure file from a Microdrive cartridge into memary.
Syntax: load | object | fnm

I you include the optional object Archive wil expect the file 10 be in binary rather than
ASCIl form, see save.

Within a procedure, forces the following list of variabies t0 be local variables. These
variables exist only within the procedure in which they are declared and are undefined
in any other procedure. Their values are destroyed on exit from the procedure,

Syntax: local var *, var]

Finds, in an ordered file, the first record whose field contents maich the expression(s}.
Syntax: locate exp * | exp | *

The record is located much mare quickly than if you used find, but the file must first
have been sorted. Each expression must explicilly refer to the contents of a particular
sort field. In the case of a string field the match is case-dependent.

order animals i @, weight ; a
locate "Elephant" » 2000

will find the first record in which the field animalg contains the text ‘Elephant” and a
weight that equals {or exceeds) 2000.

If there is not an exact match locate will still find a record. This record will be the first
one whose field contents ‘exceed” — in the sense of the ordering (ile. ‘d” comes after
e if the file is sorted in descending crder) — the specified values,

Opens the named file for read access only. If the logical file name is not specified, it

I8 given the default value "main’
Syntax: look fnm [logical ifn |

12184

KiLL

LAST

LET

LLIST

LOAD

LOCAL

LOCATE

LOOK

45

486

LPRINT

MERGE

MODE

NEW

NEXT

OPEN

ORDER

PAPER

same way as for llist.
Syntax: Iprint [exp | pim *[5exo | pim)a) [

Adds the procedures of the specified program file to the procedures already in the
computer's memory. If the file contains a procedure with the same name as one already
N memory, the new procedure replaces the old one.

Syntax: merge [object | frn

If you include the optional object Archive wil export the file to be g binary rather than
ASCIl format. See Save.

Changes the farm of the display.
Syntax: mode var,var

The first variable may have avalue of O or 1. A value of 0 joins the control, digplay and
werk areas into a single region. A value of 1 separates them back into three distinct areas,

The second variable may have a value of 4. 6 or 8 and switches the display between
showing 40, 64 or 80 characters per line,

The initial sefting, when you Ioad Archive for use with a manitor, is equivalent to:
mode 1,8

Deletes all the data from the computers memory, ready for a fresh start Any open files
are closed. (The command does not delete files stored on a Microdrive cartridge.)

Syntax: new

Moves to the next record in the specified fite, or in the current file if you do not specify
a logical file name

Syntax: next | /fn |

Opens the specified file for both reading and writing. The file is given a logical file name
'main” if you do not specify one.

Syntax: open fnm | logical fn]

Orders the records of the file according 1o the contents of the specified fields,
Syntax: arder order__spec *| order_ spec | *
where: order__spec: = var; a | d

The first fielg specified in the list is the primary sort field. Records which have equal
contents of their primary sort field are further sorted according to the contents of the
next field in the ligt (if it is specified} and so on. For each specified field an ordering
direction must be given. This must be either a or d to specify ascending or descending
order respectively,

Order only takes account of the first 8 characters of a text field and You may not specify
mare than four fields to order the fite.

Sets the background colour for all following text to the colour specified by the value
of the expression,

Syntax: paper nexp
The colours are:

0 and 1 black
2 and 3 red

4 and 5 green
6 and 7 white

12/84

If the expression evaluates to more than 7, the value taken is the remainder after division
by 8, ie. paper 11 is equivalent to paper 3, both setting the colowr to red.

If paper is used within a print command, it will only change the background colour
for the duration of that command,

Makes the record whose record number is given by the expression the current record.
Syntax: position nexp

Displays the values of the following tist of items - which must be separated by semicolons
= on the screen. If the list has a final semicolon, the cursor will not move to a new
line after the display. See also Iprint.

Syntax: print [exp | ptm | *|[; exp | ptm | *] [1]

Closes all files and returns to SuperBASIC,
Syntax: quit

When used within a procedure, it marks the rest of the line as containing a comment,
Any following text on that line is ignored when the procedure is executed.

Syntax: rem

This command restores afl the records in the current file which were removed by an
earlier use of select. It destroys any ordering of the fite,

Syntax: reset

Used within a procedure to cause an immediate termination of the procedure by returning
to the calling procedure.

Syntax: return

Loads the specified procedure file into memory and starts execution of the procedure
called start,

Syntax; run [object | fnm

* you include the optional object Archive will expect the file to be in binary rather than
ASCII form, see save.

Saves all procedures currently in memory as a single named file on a Microdrive cartridge.
Syntax: save | object | fom
If you include the optional object, Archive will save the file in binary, rather than ASCII,

You may also save such an object program in a form that is protected against examination
or madification. Include, instead of object, the optional protect. A program saved in this
way can only be loaded, run or merged - using the optional object with the appropriate
command.

A protected program cannot be listed, edited or saved. If youmerge a protected program
with any other program then the combination will be similarly protected. The only way
to clear the protected status is with the new commang.

Saving a protected version does not affect the copy of the program in the computer’s
memary. You can stit list, edit or save the program in the normal way.

Displays the formatted screen layout previously sloaded. It does nothing if there is no
Screen layout present It does not display any of the variables in the scraen.

Syntax: screen

12/84

Reference

POSITION

PRINT

QUIT

REM

RESET

RETURN

RUN

SAVE

SCREEN

a7

48

SEARCH

SEDIT

SELECT

SINPUT

SLOAD

SPOOLOFF

SPOOLON

SPRINT

SSAVE

STOP

Searches the current file from the beginning until a record is found in which the specified
exprassion is true. This record becomes the current record.

Syntax: search n.exp
Calls the screen editor 'to enable you 1o define a new screen layout. See Chapter 7.

Scans the whole file selecting only thase records for which the specified expression is
true. The file then behaves as if only the selected records are present.

Syntax: select n.exp
You can restore all the discarded records with the reset command.

Waits for input to the variables in the following list, using the order specified in the list
All the variables in the list must be currently displayed in an active screen layout.

Syntax: sinput var *{, var 1*

Loads a previously defined and saved display screen layout, It aisa dispiays this screen
fayout and activates the display of any variables within the screen.

Syntax: sload frm

The displayed values are then updated automatically whenever control returns from a
procedure 1o the keyhoard interpreter

Direct all following Iprint and Ilist output lo the printer. This cancels the effect of spoolon.
Syntax: spooloff

Directs all following Iprint, llist and dump output to the specified file — or 1o the screen
- instead of to the printer

Synlax: spoolon <fm> | export | aump)
or:
spoolon screen

i you are directing output 1o a file, it is directed via the currently installed printer driver
so that it contains all the special codes that your printer needs.

If you include the optional export, Archive ensures that the file contains only printable
ASCIt codes, carriage returns and line feeds. The resulting file is suitable for importing
into Quill.

The optional dump allows the text to be transmitted to the file without being processed
by the printer driver. In this case all ASC| codes (including control codes) are passed
straight into the file,

Unless you specify a file name extension, Archive assumes an extension of __lis {__exp
or __dmp if you include the optional export or dump},

The alternative form of the command — spoolon screen — directs the output to the
monitor screen instead of the printer

Used within a procedure to force a display of the fields of the current record.
Syntax: sprint

There must be an active screen layout {the screen layout is made active by a previous
use of screen, sload or display). If there is no active screen tayout, the command will
have no effect.

Saves, as a named file on a Microdrive cartridge, the current display area as a defined
screen layout.

Syntax: ssave fnm

It saves the text of the screen and a ligt of the variables in the display, together with
their positions.

Terminates the execution of all procedures and returns control to the keyboard.
Syntax: stop

12/84

Switches the trace mode on and off.
Syntax: trace
Type:

trace

1o turn on the trace. In race mode each line of the program is displayed in the work
area of the screen, as it is executed. Press the space bar and keep it held down 1o
pause. The trace will continue when you release the space bar. To turn the trace off
again, type:

trace

Replaces the current record in the specified file (or the current file if no logical fite name
is given) with a record containing the current values of the field variables,

Syntax: update | /fn]

Makes the specified file the current fiie.
Syntax: use /fn

Repeatedly executes the statements between while and endwhile for as long as the
value of the expression is non-zero (true).

Syntax: while nexp : ... : endwhile

Thirk of a function as a kind of recipe which converts cne or more initial values, known
as the function’s arguments, into a different value, which is said to be the value that is
returned by the function.

The functions provided by Archive may take three, two, one or no arguments. The
arguments for a function are placed in brackets after its name. You must not leave a
space between the name and the opening bracket, but spaces are allowed between
items within the brackets. If a function takes more than one argument, the arguments
are separated by cormmas. All functions must be foliowed by the brackets, even if they
take no arguments. The presence of the brackets is a useful reminder that you are referring
to a function. They aliow you to distinguish between a variable and a function, even
if they have the same name.

The following functions are provided.

ABS(n.exp) Returns the absolute value of the argument, ke. ignores any minus sign.
ATN(n.exp) Returns the angle, in radians, whose tangent is nexp,
CHR(n.exp) This function returns the ASCIl character whose code is nexp. A

character with an ASCIl code less than 32 is only sent to the printer
it preceded by an ASCII null. For example:

lprint chr(0)+chr(13}

passes the ASCIH character for a carriage return to a printer. This is
useful if your printer needs cantrol code sequences to produce special
effects — refer to your printer manual for any special codes that it needs.

You can, for example, send an ‘A’ to the screen with:
print chr(65).

CODE(sexp) This returns the ASCII value of the first character found in the specified
text.

COS(n.exp) Returns the cosine of the given {radian} angle,
COUNT(| #in]) Returns the count of the number of records in the current file.
DATE(r.exp) Returns today's date as a text slring in one of three forms:

nexp date string

0 YYYYMM/DD"
1 "DDIMMIYYYY™
2 MM/DDYYYY™

12/84

TRACE

UPDATE

USE

WHILE

FUNCTIONS

49

Reference

50

DAYS(s.exp}

You must first have set the system clock, as described in the
SuperBASIC Keyword Guide.

Returns a number of days, from the first of January 1583, to a date
given as a text expression of the form “YYYY/MM/DD". The conversion
assumes the Gregorian (modern) calendar is being used. The formula
is therefore anly valid for dates after 1582

DEC(valuedpwidth)

DEG(n.exp)

EOF([/fn])

ERRNUM()

EXP(n.exp)

value:=(n.exp)
dp:= (nexp)
width:= (nexp)

Converis the given numeric value 1o the equivalent text string, in decimal
format with dp decimat places. The text is justified nght in a field of
width characters. For example:

dec(1.23e1,3,10) returns the text " 12.300" (with 4 leading spaces).

Takes an angle, measured in radians, and converts it to the same angle
in degrees.

Returns a value indicating whether you have attempted o read past
the end of the current file, or the specified file if a file identifier is given.
The value returned is 1 if you have attempted to read past the end
of the file, otherwise it is zero.

Returns the number of the last error which occurred {an error number
of zero indicates no errors). The error number is the same as that
dispiayed together with the error message when Archive reports a
detected error.

Returns the value of e (approximately 2.718) raised to the power of
{n.exp). The returned value will be in error if nexp is greater than +88
since the result will then exceed the numeric range of Archive.

FIELDN(n.expl, #nf)

Returns the name of the specified field in the current record of the
specified file (or the current file if no logical file name is given). Note
that fieldn(0) returns the name of the first field.

FIELDT(nexp [, ifn])

Returns the type of the specified field in the current record of the
specified file (or the current fite it no logical file name is given). Note
that fieldt(0) returns the type of the first fieid.

It returns the value O if the field is numeric, otherwise it returns 1.

FIELDV(nexpl, /fn {)

FOUND()

Returns the value of the specified field in the current record of the
specified file (or the current file if no iogical file name is given). Note
that fieldv(Q) returns the value of the first field.

Returns one if a record is found by use of search or find, otherwise
returns zero.

GEN(value,width)}

GETKEY()

INKEY()

value =n.exp
width: =n.exp

Converts the given numeric value 1o the equivalent text string, in general
format. The text is justified right in a field of width characters. For
example:

gen(1.23e1,10)
returns the text " 12.3" {(with 6 leading spaces).

Walits for a key to be pressed and returns a singie text character which
corresponds to the key that was pressed.

Returns the single text character corresponding to any key that was
being pressed at the time the function is called. it does not wait for
a keypress, but will return a null striing (*") if no key is pressed.

12/84

INSTR(main,sub)
mair= sexp
Subi= sexp
This finds the first occurrence of sub within main and returns the position

of the first character of sub in main. tt wilf return a value of zero if no
match is found. The match is case-dependent,

instr("January"”, "jan'") [returng 1)
instr("January","an”) {returns 2]
instr("January","AN“) [returns 0]

INT{r.exp) Returns the integer value of the number, by truncating at the decimai

point. The truncation always operates towards zerq, Thus;

int(3.7) {returns 3
int(-4.8) {returns -4]

LEN(sexp) Returns the number of characters in the specified text.

LN(n.exp) Returns the natural, or base e, logarithm of nexp. An error results if

NExXp Is negative or zero, since logarithms are ot defined in this range.
LOWER(sexp) Converts the specified text to lower case.
MEMORY() Returns the number of unused bytes of memory remaining.
MONTH(rexp) Returns, as lext, the name of a month,

For example month(3) returns the text “"March”

t an argument larger than 12 is used. it is replaced by the remainder
after division by 12 o that, for example, month({13) and month(1) wil
both give the result January”

NUM(value, width)
value:= nexp
width:= nexp

Converts the given nurmeric value 1o the equivalent text string, in integer
format. The text is justified right in a field of width characters. For
example:

num(1.23e1,10) returns the text 12" (with 8 leading spaces).

NUMFLD(/7) Returns the number of fields in the records of the specified file (or the
current file if you do not give a logical fie namey),

PI{) Returns the value of the mathematical constant 1t
RAD(n.exp) Takes an angle, measured in degrees, and converts it to the same angle
in radians,

RECNUM(| /7 }) Returns the number (counting from zero at the first record) of the current
record of the specified file {or the current file if you do not give a logical
file name).

REPT (sexp,n.exp)
This function returns a string consisting of a number of copies of the
first character of the given text. The resuiting text may be up to 255
characters in length. For example,

Print rept('s",s) {will print five asterisks]
print rept('abc",3) [prints "aaa")
SGN(n.exp) Returns +1, ~1 or g, depending on whether the argument is positive,
regalive or zero,
SiN(n.exp) Relurns the value of the sine of the specified {radian) angle
SQR(n.exp) Returns the square root of the argument, which must not be negative,
STR(n,fype,dp) m=nexp
iype:=n.exp
dpi=nexp

Converts a number, N, 10 the equivalent text string.

12/84

Reterence

51

52

ERRORS

The second parameter, type, indicates the form of the converted string
as follows;

0 decimal (floating point)

1 exponertial, or scientific, notation
2 integer

3 general format

The third parameter dp, indicates the number of figures afier the
decimal point in the converted string. it should always be specified,
although its value is ignored for integer and genera! formats.

For example:

let a$=str(12.3456,0,2) {gives a$ the value 235"
let a$ str{12.3456,1,4) {gives a$ the value 1.2346et"}

TAN{n.exp) Returns the tangent of the specified (radian) angle,

TIME() Returns, as text, the time of day in the format "HH:MM:SS" You must
first have set the system clock, as described in the SuperBASIC Keyword
Guide.

UPPER(sexp} Converts the specified string to upper case.

VAL(s.exp) Converts the text to its equivalent numeric value. It will only convert text
composed of valid numeric characters and the conversion will stop at
the first character that can not be interpreted as a digit. For example,
val(“1.1ABC”) wili return the numeric value 11, and val("ABC™) will return
00

VALUE(sexp) Returns the value of the variable whose name is given by sexp — for
example:

let a$="'(en'"
let {ength=15
print value(as+''gth'')

will print the value 15,

Note that value(fieidn(y)} is exactly equivalent 1o fieldw(y).

When ARCHIVE detects an error in a command typed at the keyboard or in a procedure,
it displays an error number and a short error message. Examples of errors that would
be detected are:

aftempting to divide by zero
If not matched with an endif
supplying a procedure with the wrong number of parameters,

If the error comes from keyboard input, the text of the staternent remains visible in the
work area. You can press F5 to recail the text $0 that you can use the line editor to
correct the error. You can then press ENTER to execute the corrected staterment,

If the error comes from a program statement, ARCHIVE shows the name of the procedure
and the fine in which the error occurred. You can then use the program editor to correct
the error.

When you use the error command in your programs, ARCHIVE will not report any error
that it detects in a procedure marked with error. You are free to deal with any such error
in any way that you want (including ignoring it). You can find which error has occurred
by examining the value returned by errnum(). This number is the same as the one
ARCHIVE gives when it prints an error message.

The following list shows ARCHIVE's error numbers, together with the corresponding
messages. Where possible, the list includes a shor example of a statement that would
give the error. The error messages are not designed te pinpoint the precise errar, but
are intended to give you an idea of what type of error to look for

Those error messages for which there is no short example are marked with an asterisk.
They are dealt with in the notes which follow the list.

12/84

No Message

Example

___4_4____ﬁ___4___4_4___4___4_;ﬁ__4m__4‘4___4__‘ﬁ___g_g_________;___ﬁ_

0 no error

1 command not recognized

2 end of statement expected
3 variabte name expected

4 unrecognized print item

5 wrong data type

6 numeric expression expected
7 string expression expected
8 variable not found

9 variable undefined

10 missing separator

i1 name too long

12 duplicate name

13 string literal expected
14 missing endproc

15 bad proc statement

16 premature end of statement
17 program structure fault

18 too many numbers

50 missing clesing quote

51 missing exponent after vgn
52 number too big

53 unknown symbo|

70 evaluator syntax error

71 mismatched parenthesis

73 type mismatch

T4 Wrong number of arguments
75 string too tong

76 divide by zerg

7 bad function arguments

78 string subscript error

80 out of memory

0 no room to open a file

91 incomplete fijle transfer
Q3 out of range

94 file not open

100 cannot open file

101 write to read only file
103 wrong file type

104 bad file name

apend

let x=3 let y=4

let 31=x

print create

A1)

let x=""fred"

tet x$=4

let x=gq (gg undefined)
print ggq

print at 5

let thisverylongname=4
create:n¥$:n%:endcreate
")

" {3)

)
Create''test":endcreate
" {4)

" (5

let x$=""frag

let x=1.2E

let x=1_2E100

let x=¥%

let x=3+

let x=(3+5)/7)

let x$=""fred+3

let x$=str(1,2)

let XE=rept ('+1,25¢4)
let a=0: let x=5/a
let x$=sqr(-4)

let x$='"fred" (to 97>
" (6)

“(7)

G

print at 100,100;37

append (without first opening a file)

lookxxx™ (non-existent)
Look "names'' :insert
sload"names" (data file)
save''3test®

105 erraor reading file ¥ {9)

1 The most likely cause of error 5 — ‘wrong data type” — s that you have inputted
text when a number ig expected, eg. in response to an nput statement such

as:

input x

2} Emor 13 - "string literal expected” — can occuy, for example, during the import
of a file that you have constructed yourself (without using any of the export
commands in the QL programs). It means that Archive has found a number, or
a numeric or text exprassion, where it was expecting to find a literal text value,
I most situations where Archive finds numeric data when expecting text, or vice

versa, it will give error 7 or error 8.

3)

12/84

to occur it you construct a program fite with an editor cther than the one included
in Archive,

Eror 17 - ‘program structure fagk™ — usually indicates that an all, if or while
is not paired with a carresponding endall, endif or endwhile in a procedure. You

Reference

Notes

53

54

5)

9)

can alsc generate this error by including an endproc inside another program
structure, or by using return directly from the keyboard.

Eror 18 - “tog many numbers” ~ indicates that YOu are trying o input more
numbers than will fit into the memory reserved for input. The error may occur either
in a line of input from the keyboard, or while loading a program that includes a
procedure with many numbers in one of jtg fines. The exact limit depends on
circumstances - a typical limit would be 15 to 20 numbers, so you are unlikely
to get this error

Error 80 — 'out of memory” — should only be given if you use a very large program
The size of an ordinary data file is not limited by the amount of memory in the
computer since only part of a large file is in memory at any one time, If Archive
gives you this error you wil have to reduce the size of your program before
continuing. You can, if necessary, break your program into severaj sections, in
different files, and use merge to load each section as jt is needed. This technique
will, however normally need a considerable amount of programming skill,

Error 90 - “no room to open afile’ - occurs when the area of memory Archive
reserves to store internal information about the files currently in memory becomes
full. This may happen even if there is stil memary available {ie. if the value returned
by memory() is still not close to zero)

Error 91 — ‘incomplete file transfer” — means that the loading or saving of a file
has failed for some reason. This may mean that the data has been corrupted,
or that the cartridge or the Microdrive has been damaged.

Error 105 — ‘error reading file" — means that some of the data in a file is in the
wrong format, the wrong order, or has been corrupted. This is only likely to occur
if you construct your own import file — or Your own program file without using
the Archive program editor (advanced uses).

12/84

- — | — || g

QL

QL Easel

©1984 PSION LIMITED
by Dick de Grandis-Harrison (Psion Limited)

QL Easel is fuffy interactive, which means that YOu see the results of everything you do
immediately. From the moment you start you can just type in a series of numbers and
see them displayed as a graph, as you type them in. You never need to worry about
building up tables of values: Easel takes care of that kind of thing for you, and keeps
them where they shouid be — out of sight.

You can add fext to the graph just as simply as you enter data and, once it is there,
you can edit it or move it around (easily, of coursel) until you are satisfied with the result

Easel is organised in a series of levels and exhibits a pyramidal structure. The top level,
which is immediately available when You start, allows you 1o do the most commonly
needed operations, for example, entering data or text. The fuli power of Easel becomes
apparent as you become more familiar with 1 and dig more deeply into the pyramid.

Despite this power, Easel stil remains simple to use at all levels, You do not need to
rememiber lots of numbers and commands, since you are guided through each process

#, at any time, you are not sure what to do, remembaer that you can ask for Help by
pressing F1. Also remember that you can cancel any partially completed aperation by
pressing ESC.

12/84

CHAPTER 1
ABOUT
QL EASEL

GETTING
STARTED

LOADING QL EASEL Load QL Easel as described in the Introduction to the QL Programs. When loaded Easel
will display the fallowing message:
LOADING QL EASEL
Version x.xx
Copyright © 1984 PSION SYSTEMS
business graphics

where x.xx is the version number, eg. 104

Easel wil, from time to time, read more information from the Easel cartridge. You must
not take the cartridge out of Microdrive 1 until you have finished using Easel and
returned to SuperBASIC,

APPEARANCE When you have loaded Easel the display should look like that shown in Figure 21. The

display is divided into three main areas, known as the status area, the display area and
the control area.

HELP | NuMBERS Use || x-wiREs TEXT FORMULAE || COMMANDS
press F1 TABULATE Key move f press F3
PROMPTS to move wire (| with «- type ¥ Enter ESCAPE
press F2 type numbher keys { then text directly press ESC
Title
10—

A -

X

1

s 5 —

2 -

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Axis 1
(]
Format 1 Rep BAR 1
Current Name figures 12K Memory

Figure 21 The main display

The Status Area The format tells you how the values you type in will be shown. There are eight different
display formats (numbered 0 to 7) to choose from, pre-defined to give an assortment

of bar, line and pie chart displays. [nitially, the format is set to give you a bar graph display
(format Q).

You are also told the name of the set of data (or figures) for your graph. If you have
mare than one graph there will be a named set of figures for each graph. The current
set of figures is the set that is changed when you type in numbers.

In addition you are told the style which will be used. Easel can show a set of figures
in one of three different representations as—a bar graph, a line graph or a pie chart,
Easet initially selects a bar graph representation and uses bar number 0 (there are 16
different bar designs ready for you to use).

12/84

Getling Started

The amount of memory available at any time is displayed in the status area together
with error messages when necessary.

=N

-

Figure 2.2 The stalus area Figure 23 The display area

All graphs produced by Easel are shown in the display area. The Display Area

Initially, there is an empty bar graph in the display area marked with a grid of horizontal
and vertical lines. The horizontal lines correspond to the values shown on the vertical
axis (Axis 2) and the vertical lines divide the graph into cells. Each cell marks the position
where one value of a set of figures will be plotted.

Each cell has a cell iabel, along the horizontal axis {Axis 1). Easel automatically supplies
the text YJan’ “Feb” and so on, up to "Bec” for cell labels but you can change the text
to anything you want.

Think of each set of figures as a row of cells, each containing one of the values to be

plotted.
Figure 2.4 The control area Figure 2.5 The crosswires

The control area shows the normal options: Help (F1), to turn the prompts on and off The Control Area
(F2), o select a command (F3) and to cancel an incomplete selection (ESC). In addition,
there are four options that are specific o Easel. These are:

move the crosswires,
type in a number,
type in text,

type in a formula,

Press the right cursor key and hold #t down briefly. You will see the vertical crosswire THE CHOSSWIRES
moving across the screen, from left to right. The left and right arrow keys move it across
the screen.

The up and down cursor keys move the hiorizontal crosswire.

12/84

Getlling Staried

NUMBERS

TEXT

FORMULAE

THE COMMANDS

You can indicate any point in the display area by moving the intersection of the crosswires
to that point.

In addition, the vertical crosswire marks the position in the graph where a number that
you type in will be plotted.

It the crosswires are not visible Press any cursor key; press either the left or the right
cursor key to display the vertical Crosswire, and either the up or down cursor key to
show the horizontal crosswire. Note that you can only do this from the main display,
and not from the command manuy.

i vou press a cursor key and release i mmediately the crasswire will move a short
distance in the appropriate direction, but if you hold the key down the crosswire will
move more rapidly across the display area.

Type in a number (and then press ENTERY). It will be displayed immediately on the graph,
at the current position of the vertical crosswire. The crosswire will move one celi to the
nght, ready for the next number

Each time you type in a number that exceeds the range of values shown along the
vertical axis, Fase! will redraw the graph with a scale that allows the new value to be
shown,

If you press TABULATE, you will find that each press of the key makes the vertical
Crosswire move to the right by one cell. Hold down SHIFT and press TABULATE, and
the vertical crosswire moves left by one cell. The position of the vertical crosswire marks
the current cell ~ the cell that will show the next number you lype in.

if you put an incorrect value into your graph you can correct it by moving the vertical
crosswire to the cell where the mistake appears and typing in the correct value

If you spot a mistake before you press ENTER you can correct it by using the fine edior
Alternatively you can cancel the number by pressing ESC and then typing in the correct
value.

Whether you move the crosswire with TABULATE or with the cursor keys, the next value
you type in will always be shown in the cell containing the vertica! crosswire

You can add text to your graph by typing a doubie or single quotation mark (orn
as the first character of your input.

The crosswires will appear (if they were not already visible) and any following text that
you type in will be written in the display area starting at the intersection of the crosswires
and in the input line. Press ENTER when you have finished.

i the text is not in the exact position you want, move it using the cursor keys. The crosswires
will move across the screen, carrying the text with them. When the text is in the position
you want, press ENTER and the crosswires will disappear.

A formula can be used to create a new set of figures, or to change an existing set

Easei interprets any keyboard input that does not start with a numeric digit or quotation
marks as a formula. For exampie, we can change the current sel of figures (which, as
you can see from the status area, has the name “figures”.

figures = figureg + 2 ENTER

The new graph is similar to the old one, except that each value has been increased
by 2. tf you want to return to the original graph You <an type in another formula:

figures = figures - 2 ENTER

Aformula always starts with the name of a set of figures. This name could be the name
of an existing set or it could be a new name. In either case the contents of that data
set are defined by the expression to the right of the equals sign in the formula. It is
important to realise that the formula will affect all the vaiues in the set, rather than just
one value.

The commands afiow you 10 use some of the more sophisticated aspects of Easel. Press
F3t

0 select @ command. The contents of the control area will change to show a ligt
of the available commands - the command menu.

12/R4

Getting Started

HELP
press f1

PROMPTS
press f2

COMMANDS
press F3

ESCAPE
press ESC

COMMANDS Files Newdata
Change Highlight Qlddata Save
Defaults Ki{l Print View
Edit Load Quit lap

Jan Feb Mar Apr May Jun ut Aug Sep Oct Nov Dec

Axis 1
Format 1 Rep B8AR 1
Current Name figures 12K Memory

Figure 26 The command menu.

When the command meny is displayed you can select acommand by typing its first letter,

For example, the Quit command leaves Easel and returns to SuperBASIC. Select it by
pressing F3 and then Q. Easel gives you the option to press ESC to stay in Easef {in
Case you selected the command by mistake). If you decide you really do want to leave
Easel, you press ENTER.

You cannot type in a number to a cell or type in a formula when the command menu
is visible. Also, you cannot move the crosswires, except when given this option as part
of a command,

Atthe end of a command, Easel remains in the command menu and you must press
ESC to go back to the main display.

You can delete a value from the graph. Use the TABULATE key (or the SHIFT and DELET]NG A VALUE
TABULATE keys) to pasition the vertical crosswire on the number you want to rub out

and then press F4, {f your graph is showing more than one set of figures, pressing F4

defetes all vaiues shown in that cell. It has no effect on sets of figures that are not shown.

If you delete the values from a cell that has no label, then that cell will not be included

in the graph when it is next redrawn,

Easel will only delete a cell that has no label and no vaiue. If you want to delete a cell
you should delete its contents and also delete any label that it has. The cell will not be
included next time the graph is redrawn with the View command.

You can insert a new value to the right of the one marked by the vertical crosswire Press lNSERT, NG A VALUE
FS and a gap is Opened up, ready for you to type in a new number The new cell will
not have a label, but You can add one.

Inserting and deleting values from pie charts is slightly different and is explained in Chapter
9.

12/84 5

CHAPTER 3
DESIGNING
A BAR

SELECTING A BAR

Selection by Number

Selection by Example

This chapter shows how you can modify the appearance of your graph by using a differert
design of bar

All the options to modffy_the various features of the graph work in the same way. Learning
how to change your graph 1o use a new bar design explains the methods you will use
to change any other aspect of the graph.

We assume that you have typed in a few numbers and have a bar graph shown on
the screen.

You use the Change command 1o select a different bar, F3 and then the C key. You
are offered marny options - to change an Axis, Text, and so on. Select the Bar option
by pressing the B key. -

There are two routes to using a new style of bar—selection by number or by example,

When you have selected the Bar option, the input line shows the text;
COMMAND>Change to BAR ?

and Easel waits for vou to type in a number. There are 16 different bars, numbered 0
0 15 and you can select any one of them by typing its number. followed by ENTER.

This is a vary quick method of changing the bar you use, provided you know the number
of the one you want.

If you do not know the number of the bar, or you want to use your own design, press
ENTER, instead of typing a number Try this method by typing in

(F3 C B [ENTER]

(You do not have to press F3 if you are still in the command menu.) The display changes
to show examples of all the available bar styles, together with their associated numbers.

The selected bar is surrounded by a box. You use the left and right cursor keys to move
this box from bar to bar until it is positioned on the one you want. When you press ENTER
the bar you have chosen will be used,

HELP

press F{

PROMPTS
press F2

COMMANDS
nress F3

ESCAPE
press ESC

SELECTION
Move the box curser with the «
keysandpress ENTER. For a

new design select the last (7).

Easel Bars

Your Bars

Format 1 Rep BAR 1
Current Name figures 12K Memory _J

Figure 31 Selecting a bar

12184

When you use the option to select by example you will notice that there is one bar present BAR DES'GN
in the second row, which shows a question mark in place of its number. You select this
bar if you want to make yowr own design,

Position the selection box on this bar and then press ENTER. The design by example
continues by presenting you with a blank bar design and a list of options,

HELP
press F1

PROMPTS
press F2

COMMANDS]
press F3
ESCAPE
press ESC]

DESIGN Use 11 keys to select design
option and press ENTER. Use « — keys to
select colour then press ENTER.

Bl colour

Border colour

Border thickness

Satisfied

command > Change to Bar‘?

Format 1 Rep BAR 1 *
Current Name figures 2K Memory

Figure 3.2 Designing a bar

The first option highiighted is bar colour and allows you to choose the bar colour from Bar Colour
the palette shown across the top of the display. You can accept the option by pressing
ENTER or select ancther option by using the up and down cursor keys,

If you accept the bar fill option a box is drawn around the first colour in the palette and
the specimen bar is filed with that calour. You can move from colour to colour by pressing
the left or right cursor keys. Make your selection by pressing ENTER when the bar is
filled with the colour you want. Easel draws the bar against a background of the current
graph paper.

The next option in the fist to select a border colour for the bar is then highlighted Border Colour
automatically. Again you can either select this option by pressing ENTER, or move on

The ihird option is to select the width of the border. In this case you are asked 1o type Border Width
in @ number to represent the width of the border as a percentage of half the width of
the bar,

You are finally given the option of deciding whether you are satisfied with the design
as shown. If you are you should press ENTER, when the new design will be added
to the list of bar designs and it will automatically be used for display of the current set
of figures. If you are not satisfied with the design you can 90 back to one of the other
options, using the up and down cursor keys, and try a new combination. At any time
before you accept the design you can terminate the command by pressing ESC and
you will leave the command without creating a new bar design,

12184

CHAPTER 4
USING TEXT

ORDINARY TEXT

AXIS NAMES

CELL LABELS

TEXT COLOUR AND
DIRECTION

Each time you edit some text, or add new text, it is shown in the colour and direction—
horizontal or vertical—that you last set with the Text option of the Change command.

Easel recognises three basic types of text:

Ordinary Text (including the Title).
Axis Names
Cell Labels

Ordinary text — ie. all text except for the axis names and cell labels — behaves as though
it were pasted on the screen. {t is always printed over the top of the graph or chart and
remains on the screen until you delete it, regardless of any other changes you make.

The Edit command has options 1o edit the 3 types of text listed above, and a fourth
option relating 1o the Key. The Key option is only relevant when you have more than
one set of figures in your graph. It is described in the next chapter.

Press the T key to select the Text option. You then use the Cursor xeys to move the
intersection of the crosswires close to the text which you want to change. It is not necessary
to position the crosswires exactly; press any key and the crosswires wil attach themselves
to the nearest piece of text A copy of the text also appears in the input fine,

You can delete the text by pressing F4, or modify the text using the line editor If you
choose to delete the text this will also end the command.

When you are completely satisfied with the wording of the text you should press ENTER.
Easel then gives you the opportunity to reposition the text Press ENTER when you are
salisfied with the position.

Easel treats a graph title in the Same way as any other text, The enly difference is that
Easel supplies the text Titie” centred above the graph, when you load it from its Microdrive
cartridge.

Axis names only appear on bar and line graphs and are not shown when you select
a pie chart representation.

Select the Axis option of the Edit command to edit either of the two axis names. Press
V or H to select the vertical or horizontal axis. You can then edil, delete or move the
text, as described for the Text option. Easei redraws the text in the current ink and paper
colours.

The cells of the graph are provided with labels which are initially set to show the months
from January to December These labels are shown along the horizontal axis of a bar
or line graph. In a pie chart they are used o label the segments of the chart.

You use the Labels option of the Edit command to change the cell labels. When you
do so the crosswires will attach themselves to the nearest label which will then be
displayed in full. Cell labels can be up to ten characters long bpt normally only the first

You use the Text option of the Change command o alter the colour of the text and its
background. You can also select whether the text is vertical or horizontal.

Easel uses the new text colour and direction for all new text that you add to the graph
— and for any old text that you edit.

A convenient way of changing the colour of text is first to change the text colour and
then to use the Edit command — described in the following section - on the existing
text, without actually changing its wording or position.

Select the Text option of the Change command. Easel offers you a list of text design
options in a similar way to designing a bar by example. You can step through the options
with the up and down cursor keys, and select the highlighted option by pressing ENTER,

12/84

The first option is to select the ink colour. You use the left and right cursor keys to select
the colour and press ENTER when the text is shown in the colour you want. The following
option is highlighted automatically, ready for selection by pressing ENTER.

This second option is to select a background paper colour You select the colour with
the left and right cursor keys, press ENTER to confirm your selection and maove to the
next option.

The third option is to select a transparent background for the text. If you select this option
Easef ignores your selection of paper colour and allows the background graph to be
seen around the text Each time you select this option the background switches between
the chosen background colour and a transparent background,

The fourth option is to sefect the direction in which the text is printed. Each time you
select this option Easel switches the text between horizontal and vertical,

Finally you are given the option of deciding if you are satisfied with the appearance
of the text. At this stage you can press ENTER to keep your selection of text style and
return to the command meny. Alternatively, you can use the up or down cursor keys
to go back and make further changes,

12/84

Ink Colour

Paper Colour

Text Direction

CHAPTER 5
SEVERAL

SETS OF
FIGURES

THE CURRENT
FIGURES

THE RENAME
COMMAND

THE NEWDATA
COMMAND

USING A FORMULA

10

So far we have only described how to create and display a single set of figures, On
many occasions you may want to display two or more sets of data on the same graph,
for example to compare the sales figures for two successive years. This chapter describes
the techniques you can use to produce, medify and display graphs containing several
sets of figures,

No matter how many sets of figures you have in your graph, you can only modify one
sel at a time. The set that you can add to or change is known as the currert figures,
and its name is shown in the status area, Initially you have one set of figures called "figures”
if & set of figures is current it wil be displayed on the screen.

Suppose that you have typed in a set of numbers to ‘figures" and want io change the
name to "sales” You do this with the Rename command. Press F3 and then the R key.
Easel asks you to type the old name of the set of figures and mark the end of the name
by pressing ENTER. You then type in the new name To change the name of figures”
to the new name “sales” you should type:

[F3]R figures [ENTER] sales ENTER

The set of figures that you have renamed becomes the current figures.

There are two methods that you can use to produce new subsequent sets of figures.
These are by using the Newdata command, or by using a formula. The two methods
are described in this and the following section.

Suppose you have created a set of figures called "sales” as described above, containing
monthly sales figures, and that YOU now want to include a display of the monthly costs.
You can do this by pressing F3 and then the N key, 1o select the Newdata command.
You then type in a name for the new set of figures, ending by pressing ENTER.

To create a new set of figures cailed costs’ you therefore type:

N costs [ENTER

Easel immediately gives You a new, blank graph (assuming You are in a bar or a line
format) with the vertical crosswire set on the first column. The status area shows that
the current figures are the new set, with name ‘tosts” All you have to do is type in the
new numbers which are immediately displayed on the graph as normal.

f you want to create a third set of figures, you can use the Newdata command again,
exactly as has been described, giving the new set of figures a different name. You can
Create as many sets as you like, the only limit is the amount of available memory.

On occasions you may wish to produce a new set of figures related in sorme way 10
Gne or more existing sets.

Suppose you have already entered sets of figures for "sales” and ‘costs” and want to
génerate a graph showing the resulting profits. All you have to do is type in a formula
which describes the new set of figures, for example:

profits = sales ~ costs

This creates a new set of figures with the name ‘profits’, each value being the difference
between the corresponding values of the “sales” and ‘costs” figures. “Profits" will become
the current figures and the graph will be displayed immediately,

You can also use a formula without having to refer to existing sets of figures. You could,
for example, write a formula such as

wWave = 10 * sin(cel[/2}

12/84

This formula creates and displays a new set of figures with the name "wave” whose values
are calculated using the sin () function. In this formula we have also used ‘cell” This
gives the cell number. counting from 1 at the left hand side of the graph. To see how
this works, type in the formula: .

a=cell

and look at the graph that is drawn. When you use cell’ in a formula, the number of
values in the set of figures is made eaual to the number of columns currently being
shown on the graph.

There is another reserved word in Easel — ‘cellmax” It has a value equal to the number
of cells currently shown on the screen. You can use ‘celmax” to adjust the scale of the
horizontal axis in & formula. For example, the formula;

curve = sin(2+pi (I*x(cel!l - 1)/ (cellmax - 1))

draws one complete cycle of a sine curve, regardiess of how many celis are shown on
the screen.

When you use the Newdata command the set of figures that you create becomes the
current set. Remember that this is the set that can be added to or changed by typing
in numbers. If you want to make some changes to an existing set of figures that is not
the current set, you can do so by using the Olddata command. When you select this
command you are asked to type in the name of an existing set of figures, and that set
becomes the current figures,

Suppaose that you have the three sets of figures called “sales” “costs” and “profits’, and
that “profits” is the current set of figures. If you want to change or adg to the ‘costs”
figures you should select it with the Olddata command. The costs figures will then be
shown on the graph and you can modify the data by typing in replacement numbers.

Note that ary change you make in the ‘costs” figures will not automatically change the
‘profits™ graph. (This is a job for Abacus)

You can see the effect of displaying all of your figures on a single graph with the View
command.

Try selecting this command. As you see, Easel suggests that all the sets of figures should
be shown on the graph and you can accept this suggestion by pressing ENTER. Easel
then suggests the display format to be used and again you can accept the suggestion
by pressing ENTER. The graph is drawn immediately, containing all the data that you
have defined — together with a key box which shows the name of each set of figures
and the way that it is represented (the key is not shown if you only have cne set of figures
on the graph).

It you have defined a large number of sets of figures the graph wit be very crowded
and make very little sense. In general it is a good idea to display only a small number
of sets of figures on any one graph to make the best visual impact This does not mean
that you should only define a small number of sets of figures, since the View command
allows you to select which sets of figures you want {0 see.

You do this by not accepting the “all figures” suggestion that Easel gives in the View
command. Instead of just pressing ENTER at this point, you can type in a list of the
names of those sets of figures which you want to be displayed, separating the iterns
in the list by commas. When you have typed in all the names of the sels cf figures that
you want to be displayed, press ENTER.

You can also select a different format for the display instead of accepting the suggestion
made by Easel. Instead of just pressing ENTER to accept the suggested format you
can type in a number between O and 7. Easel is provided with eight pre-defined formats,
providing varicus styles of bar charts. fines or pie diagrams. You can type in a question
mark to see a menu of all possible formats. Try using the View command to display
three or four sets of figures in a number of the different formats available.

One of the options in the Edit command is to move the key. The key is replaced by
its outline, and you are then offered the opticn of either deleting the key — by pressing
F4 — or moving the key by means of the cursor keys. If you choose the move option
the cursor keys move a box equal in size to the key around the display area. When
you press ENTER the graph will be redrawn with the key in its new position.

12/84

Using Text

THE OLDDATA
COMMAND

VIEWING THE DATA

THE KEY

"

You may at some time want to restore the display of a key which you had deleted earlier
You can do this by using the Edit command and selecting the Key option. The outline
ot the key will appear You can move the key to a new location. Pressing ENTER will
redraw the graph, including a display of the key.

The only change that you can make to the contents of the key box is to change the
colour of the text that it includes. This text is always drawn in the colour last set by using
the Change command. The symbols shown in the key box will, of course, always match
the symbols which you use to display the graphs.

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWw.mauritron.co. uk
TEL: 01844 - 351694
FAX: 01844 - 352554

12/84

CHAPTER 6
GRAPH
FORMATS

Easel is provided with 8 display formats {numbered 0 to 7) and you can use one of CHANG'NG FORMAT
these numbers to specify which format should be used each time you use the View

command. In addition to using different stytes of background and bar colour, these formats

give you a range of display styles.

You can also use the Format option of the Change command 1o select one of the 8
formats. Easel puts the text:

COMMAND Change to format ?

n the input line and you can select a particular format by typing in a number between
0 and 7 (followed by ENTER). f you press ENTER, then Easel shows you the appearance
of alf 8 formais and again asks you for the format number.

You can redesign the entire appearance of any or all of the eight different formats provided REDESIGNING A

by EASEL. FORMAT

You will normally have some idea of how you want your graph to appear. In this case
you would select the format that is closest to the one you want and then medify it unti
it matches your requirements.

Use the options of the Edit command to change the text of the cell labels and the axis
names. You use the Change command to modify the text and bar styles.

If you wart a line graph you can use format 3, or you can use the Line option of the
Change command. Pie charts are described in Chapter 8.

The Graph paper option of the Change command allows you to select the paper colour Graph Paper
and the colour of the grid markings. You can select a graph paper from an existing

set of 7 styles, or you can design a new one. The method of design is exactly as described

for the Bar option of Change.

The Axis option of the Change command allows you to select the axis style for your Axis
graph. You can select an axis from an existing set of 10 styles, or you can design a

new one. The method of design is exactly as described for the Bar and Graph paper

options of Change,

The Axis design option aflows you 1o select a colour for the axis line, whether ar not
the axis line is drawn, the colour of the numbers labelling the vertical axis and the axis
limits,

EASEL normally chooses the limits for the range of values shown on the vertical axis.
It chooses a range that allows you to see all the values in your graphs. If you sefect
the option to change the axis fimits you are offered one of three possibilities.

Press the A key to select automatic limits. In this option Easel selects a suitable range,
depending on the values in your graphs. The range might not include the zero point
if, for example, all the values are large and positive.

Press the Z key to select automatic limits which always include zero. This is the type
of axis limits that Easel uses if you do not make your own choice,

Press the M key if you want to make your own choice of fimits. Easel asks you to type
in the lower limit and then the upper limit (mark the end of each value by pressing
ENTER). Note that Easel will override your selection if it does not cover the full range
of values in your graphs.

In ail cases the two limits are adjusted so that the intervals in the scale are sensible ones.
Note thal the specimen axis, shown at the right of the screen, does not necessarily show
the exact range that will be used in the resulting graph. It is a representative axis and
is only intended to illustrate the general type of axis that you have chosen.

12/84 13

CHAPTER 7
LINE
GRAPHS

SELECTING A LINE

14

STYLE

Line Colour
Symbols
Symbol Colour

Filled Lines

Line Thickness

NUMERIC ENTRY
FOR LINES

As you may have seen when you experimented with the different display formats, the
sets of figures can also be represented by line graphs or by pie charts. This allows you
to disptay a given set of the figures in many different ways so that you can choose the
method most appropriate for your needs.

Format 3 uses lines to display the sets of figures. Each value may be marked by a symbol
and the values are joined by lines of various thicknesses and colours. You can also use
filled” lines where the space between the line and the zero level is completely filled
with colour,

You may find filed lines useful for showing ‘critical values’, such as a break even level,
as a background to your graph.

Since bars and lires are both displayed on the same type of grid, you can mix bars
and lines in any combination. Tilles, axis labels, general text and the key box all behave
in exactly the same way for both bars and lines.

If you select the Line option of the Change command you can change the representation
of a set of figures to use a line graph. First make the graph you want to change to be
the current figures (eg. with Clddata). Then select the Line Option of the Change
command.

There are 16 pre-defined line styles and Easel first asks you to lype in the number of
the fine you want. Type in the number and press ENTER, or just press ENTER to see
the selection available. Select a line by pressing the left or right cursor key. When the
box encloses the line you want press ENTER. Easel immediately draws the set of figures
with the line style that you have selected.

Select the line shown with a Question mark instead of a number if you want to design
your own style of fine,

Easel gives you a list of options for your line and YOu use them exactly as was described
for the Bar option, in Chapter 3. Press ENTER 1o select the highlighted option, or use
the up and down cursor keys to step to the option you want,

selects the line coiour Select the colour with the left and right cursor keys and press
ENTER to move to the next option.

aflows you to choose whether to mark each point on the line with a symbol. Each time
you select this option the symbols are switched between on and off.

selects the symbol colour in the same way as you select the line coiour, You can step
over this option if you have chosen not to use symbols.

swilches between a normal line and a line which is fited with the line colour 10 the
horizental axis. Each time you select this option Easel switches between the two types
of line.

allows you to choose the thickness of the line. Type in a number between 0 (thinnest)
and 100 (thickest) and press ENTER. You can step over this option if you have selected
a line filed to the axis.

Easel offers you a final option to check that you are satisfied with the result. Press ENTER
to see the graph with your style of line, or use the up or down cursor keys to go back
to modify your selections,

Figure 71 was created in format 2 (stacked bars) with one set of figures changed from
a bar to a line representation.

It you select a format which uses a line graph for your current figures, you can enter
your data in exactly the same way as described for bar charts — simply type them in.

The only real difference between line and bar representations appears when you are
typing numbers into a set of figures represented by a line. In order to allow you to type
new numbers — or change existing ones — without redrawing the whole graph for each
number, Easel does not use the true line colour,

12/84

HELP NUMBERS Use X-WIRES TEXT FORMULAE || COMMANDS
press F1 TABULATE Key move t press F3
PROMPTS to move wire with «- type " Enter ESCAPE
press F2 type number keys | then text || directly press ESC
Softco Production Figures
28—
$] Sales _
> 153 ot/ Profits
I §
L g 3 g
| 3
i]
0o 9]
n] _
@ . S % ey 1B 3
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nev Dec
1984
Format 3 Rep LINE 16
Current Name figures 12K Memory

Figure 7.1 Stacked bars and lines

While you are typing in the numbers, the graph is drawn using a thin white iine — or
afilled line — depending on the line style you have chosen. The colour of the line changes
as it passes over any bars, lines or text. Easel warns you in the status area that the line

calour is not being shown correctly.

When you have finished typing in numbers, use the View ¢

with the correct colour and thickness of line.

12/84

ommand to see your graph

Graph Formats

IN]

Note that you can only show one set of figures at a time in pie chart format, and that
any negative values are ignored. Easel will warn you it data has been omitted.

Since you can only have one set of figures in a pie chart, the View command offers
you the option of viewing the current set of figures - instead of the usual “all Figures”
You can type in a replacement name. If you type in a list of names (separated by commas)
Easel will display the first set of figures in the list, ignoring the rest

ENTERING To illustrate entry into a pie char, use the Change command to change to format 7,

NUMBERS which is a pie chart format. Then use the Newdata command to create a new, empty
set of figures called, for example, 'tosts” Easel draws a filed circle, labelled with the
first cell label which, unless you have changed it, is ‘Jan”

Type a number and press ENTER. Easel redraws the circle, but this time the number
you typed in is shown under the label. The diagram is a pie chart with only one value,
Type in a few more numbers, exactly as if you were typing numbers into a bar chart.

During data entry into a pie chart the next cell to receive data will be indicated by having
its label hghlighted. If this is not possible it will be indicated by a special highlighted
display box at the bottom left of the display area. In Figure 81 this is the label "PORTUGAL”

NUMBERS Use X-WIRES TEXT FORMULAE
TABULATE Key move 1

to move wire with «— type " Enter
type number keys | then text I directly

HELP
press 1

PROMPTS
press F2

COMMANDS
press F3

ESCAPE
press ESC

BRITAIN
220

FRANCE
308

225

Format 8 Rep PIE
Current Name costs 12K Memory

Figure 81 A pie chart

Since the chart must be redrawn each time you add or change a value, you may find
it more convenient to enter the numbers in one of the other formats changing to pie
chart format later

CELL LABELS You move from cell to cell with the TABULATE or SHIFT + TABULATE keys, just as

in a bar chart, Remember that as always the option is not available from the command
menu,

Press F5 to add ancther cell after the one whose labet is highlighted. Easel gives each
new cell the label “unnamed" Type a number into the cell as normal. You can edit the

12/84

Pie Charts

cell label with the Label option of the Edit command. The cell that you can edit ig
highlighted, and you can step from labe! to labed with the TABULATE and SHIFT keys.

As in bar charts and line graphs you must delete both the cell tabal (use the label option
ot Edit, and press F4) and the number in the cell (step to the cell with TABULATE and
press F4) before Easel deletes the whole cell. Easel deletes a blank celt when you next
use the View command.

You can add, delete, and rmove text and tites exactly as described for lines and bars TEXT
in Chapters 2 and 4. You use the horizontal and vertical crosswires in the normal way
for adding, editing or moving ordinary text,

The Text and Format options of the Change command work in exaclly the same way THE CHANGE

with a pie chart as in any other format. COMM AND

Graph paper, bars, lines and graph axes have no meaning for a pie chart and Easel
does not allow you to use these options.

The Segment aption can only be used in the pie chart format, It allows you to change
the colour of a segment of the chart. First select the segment whose colour you want
to change (Press TABULATE until its label is highlighted.} Then select the Segment option
of the Change command.

Easel draws the palette of possible colours in the display area. Press the left or right
cursor key to select the colour you want and then press ENTER, Easel redraws the
pie chart with the segment in your chosen colour

SERMVICE MACHFAL S
SO ALY
MAURT i TED HNICE:. (ER-ACES
WWWLITIALITITGTLG S LR
TEL: 01844 - 351244
FAX: 01844 - 352554

12/84 17

CHAPTER 9

PERMANENT

COPIES OF
YOUR

GRAPHS
PRINTING

PHOTOGRAPHY

' you have a dot matrix printer that is compatible with the Epson FX80 (for example
the Brother HR-15 or the Canon PW10B0A) you can make printed copies of your graphs
immediately.

The print command makes a printed copy of the graph shown on the screen. Press
the P key to select the print command. Before printing Easel reads the printer driver
from the file gprint_prt' from the cartridge in Microdrive 1.

Press the S key to dump the screen into a Microdrive file; you must type in the name
of the file to use followed by ENTER. This file can then be subsequently processed
for example by a SuperBASIC program and sent to a printer not supported by Easel.
Note that this file is very large and normaily no more than three can be stored on a
Microdrive cartridge.

Press the | key o install a different printer driver Several other printer drivers are supplied
on the Easel criridge, they are in files with the extension __prt. Some of these are colour
printers, for example the Integrex 132 and the Okimate 80, Type in the name of the printer
driver you want and press ENTER.

The new printer driver is not installed permanently and Easel will revert to the Epson
FX80 the next time Easel is loaded. The default printer driver is contained in the file

renaming the files. First copy the original gprint_prt' to another fite, for example
FX80_prt' and delete the original file. Then copy the file containing the driver you require
to the file ‘print__prt’ Note that the origina! Easel cartridge is write protected so you must
use the copy you made.

You can use a baud rate different from the initial 9600 baud assumed by the QL. For
example, if you wanted to set 4800 baud start Easel by typing:

BAUD 4800

LRUN mdv1_boot

instead of having the Easel cartridge in Microdrive 1 when you press Ft or F2.

Alternatively you could make the change of baud rate permanent by adding an exira
ine to the Hoot’ program. First load and renumber the program by typing:

LOAD mdv1 boot
RENUM 10,10

Ther add, for example, the line:
5 BAUD 4800

Delete the oldg copy of the program and save the new version on the Easel cartridge, type:
SAVE mdv1_ hoot

Again this change must be made 10 a copy of the Easel cartridge.

The simplest, and fastest, way of obtaining a permanent copy of one of your graphs
is to take a photograph of the screen. You must, however, take a little care YyOou want
lo obtain good results,

One of the most common causes of a poor photograph of a television screen is using
oo shont an exposure time, The picture is made up of 625 separate lines, displayed
one after another. It takes a 25th of a second to display all the tines in the picture and
if you use an exposure time of about this length, or shorter, the picture wil be unevenly
it It is best to use an exposure time of around a quarter of a second — this means
that you must support the camera on a tripod. An average colour film {for prints or
lransparencies) with a speed of, say, 100 ASA will need an aperture of around F56.
Use a long focal length lens (about 100mmy if you have one, as this wil reduce the
distortion caused by the curved surface ot a TV screen,

12/84

Try to take the photograph in a darkened room, to avoid reflections of the surroundings
on the surface of the screen. It is surprising how strongly such reflections show up on
the photograph, even if you do not notice any when you look through the camera
viewfinder.

Press F2 to remove the control area and give you a larger graph. You can also press
SHIFT and, while holding it down, press F2 io erase the text in the status area.

Before taking the picture make sure that all text, cell labels, axis names and the key
appear exaclly as you want them,

FOR SERVICE MANUALS
CONTACT:
MAURITRON TECHNICAL SERVICES
WWW.maduritron.co.uk
TEL: 01844 - 351694
FAX: 01844 - 3525584

12/84

20

CHAPTER 10
EASEL

Q
REFERENCE
THE FUNCTION
KEYS

i addition to the standérd use of F1, F2 and F3, function keys 4 and 5 are used as follows:

delete
text
labels
numbers
the key

user-defined objects

Note: user-defined objects are bars, lines, graph paper and axes.

insert a cell

THE COMMANDS The commands

give acoess to the deeper levels of Fasel and allow you to use many

of the more advanced facilities, The following commands are provided.

CHANGE The Change command allows you la modify the appearance of any feature of the graph.
You are offered the following options:

Axis

Bar

Format

Graph__paper

Line

Segment

Text

to select the axis markings. You can alter the colour of the axes and
of the numbers labelling the y-axis. You may also select whether or
not the axis lines are to be drawn, Easel will not allow you to select
this option in format 7 (a pie chart),

The option to change the axis limits allows you to choose between
automatic or manuat limits. Press the A key for automatic limits or the
Z key for automatic limits which always include zero,

Alternatively, press the M key 1o select manual limits. In this case you
must type values for both limits, Easel may modify your choices of limits
to ensure that the whole of your graph is shown, with simple numeric
values on the scale.

to select or define the style of bar used to represent the current set
of figures. You may choose one of 16 previously-defined bars by its
number, or by example. The design by example option allows you to
sefect a bar or to design a new one. Easel will not allow you to select
this option in format 7 (a pie char),

1o redefing the appearance of the entire graph. You may choose one
of 8 defined formats by its number, or by example.

lo select one of 7 ditterent graph papers, or to replace one with your
own design. You can select both the background colour and the colour
of the grid markings. Easel will not allow you to select this option in
format 7 (a pie chart).

to select one of 16 defined line styles, or design your own line. You
can choose the line colour and thickness, and the colour of the symbol
used for each point on the line, or selact a filled line, where the space
between the line and the zero level on the graph is colour-filed. Easel
will nat allow you to select this option in format 7 (a pie chart).

to select the colour of a
ailow you to select this

particular pie chart segment. Easel will only
option in format 7 (a pie chart),

1o seiect the colour used for both the text and its background. You can
select a transparent background so that the underlying graph will show
through. You can also select whether the text is to be drawn horizontally
or vertically.

Any existing text will retairt itg originat colour and direction, but new
text will appear in the selected style, until you change it again. (The
text in a key box is always drawn in the current text colour)

12/84

The Defaults command allows you to select a number of features, such as whether you
use a 40, 64 or 80 character display. You can select an item by pressing the key
corresponding to its first iefter in the fist of options shown.

The Edit command aliows you to modify or move text, labels and the key.
You are asked to choose between the following four options:

Text the crosswires lock on 1o the nearest piece of text and you can use
the line editor to change the wording. Press ENTER and you are offered
the option of maving the text to a new position. Press ENTER when
you are satisfied with the position.

Labels the crosswires lock on to the nearest cell label and you can then edit
the text of the label as in the Text option. Press ENTER when you have
finished. Cell labels can not be moved.

Key You are immediately offered the option of moving the key box with the
cursor keys. Press ENTER when the outline of the key box is in the
position you want. The key box is then redrawn in its new position.

Axis you are asked to press either the V or the H key to select the vertical
or the horizontal axis name. The crosswires lock on the chosen name
and you can edit the text and then reposition it,

After editing, all text is shown in the colour and direction set by the last use of the Text
option of the Change command. The only exceptions are the axis names, which are
fixed in direction.

This command allows You to modity Easel files, previously saved on a Microdrive cartridge,
or to transfer data files to another of the Psion QL programs.

You are offered the following options:

Backup used to make a backup copy of an Easel file You are asked for the
name of the file to be copied and the name you want to give to the
new copy. Making copies of your files is strongly recommended, to
protect yourseif against accidental loss of, or damage to, the cartridge,

Delete defetes a named file from a Microdrive cartridge.
Warning — this command is not reversible and should be used with
great care.

Export exports a named file. The file contains all the sets of figures currently

in the computer's memory. #tis saved in a form suitable for being read
by QL Abacus or QL Archive, Import and export are described in the
Appendix.

If you do not specify a fie name extension for an exported file, Easel
will supply an extension of __exp.

Import imports a named file and aliows Easel to read data files exported from
QL Abacus or QL Archive and display them in graphical form.

If you do not specify a file name extension for an imported file, Fasel
will assume an extension of —exp.

Format formats the cartridge in Microdrive 2, or ancther named Microdrive,
Accept Easel's suggestion to format mav2 or type in another Microdrive
specifier, eg. mdv3. Easel asks You to confirm your selection of this
option,

Warning - all information on the cartridge is erased when you format it,
This command aliows you to use a special symbol to represent a particular number
in a set of figures, or all negative values in a bar chart The value to be highlighted is

the one at the current position of the intersection of the crosswires, or the one whose
label is hightighted in a pie chart.

12/84

DEFAULTS

EDIT

FILES

HIGHLIGHT

21

Reference

22

KILL

LOAD

NEWDATA

OLDDATA

Ease! first asks you to press either the V key to highlight a particular value, or to press
N to highlight a negative values. You are not allowed to select this second option for
a pie chart.

if you choose to highlight a value Easel asks you to select the value. Press TABULATE
(or SHIFT and TABULATE) to select the celi you want to highlight and then press ENTER.
In the case of a bar graph You are shown the selection of defined bars, and can choose
one — or design a new one. In a pie diagram the selected segment is detached from
the remainder of the Die.

If you select the option to highlight negative values, Easel immediatefy asks you to select
or design a bar

HELP

COMMANDS

NUMBERS Use X-WIRES

TEXT FORMULAE
press F1 TABULATE Key move 1 press F3
PROMPTS to move wire with «— type " E{wter ESCAPE
press F2 type number keys | then text directly press ESC

Standard Text Area

(OPPER
£5

METALS

Format 8 Rep PIE
Current Name METALS

Figure 101 A highlighted pie sector.

12K Memory j_]

Deletes one or more sets of figures from the graph and destroys the data. When you
select this command you are asked to type in a list of the names of the figures you
want to delete, separated by commas and ending with ENTER. If you just press ENTER,
Easel will delete the current figures. You can, if you like, type in the text all figures.

Loads a previously saved graph from a Microdrive cartridge. Easel asks you to type
in the name of the file to be loaded All the Design options are foaded with the data
s0 that the graph of the loaded data has exactly the same appearance as it had when
it was saved.

If you do not specity a file name extension, Easel assumes an extension of _grt.

Allows you to create a new set of figures, which becomes the current figures’ You are
asked to type in the name of the new set (no quotation marks are needed). When you
press ENTER you are returned in data entry mode, ready to type in some values,

The Olddata command allows YOou 10 make an existing set of figures the current figures!
You are asked to type in the name of the old set (no quotation marks are needed). When
you press ENTER you are returned to data entry mode, ready to change or add to
the values.

12/84

Prints the graph that is currently displayed on the screen.

The command offers three options. Press the P key to print the graph, using the current
graphics printer driver

Press the S key for a screen dump to a Microdrive file. In the Screen dump option Easel
asks you 10 type in a name for the file. -

Press the | key if you want to install a differem graphics printer driver Easel will wait
for you to type in the name of gne of the printer driver files {with an assumed extension
of __prt) supplied on the Easel cartridge. See Chapter 9 for further information.

You use this command to leave Easel and return to SuperBASIC. You are offered the
options to press ENTER to confirm your choice and return to SuperBASIC, or to press
ESC to cancel the command and return to Easel's command menu,

This command allows you o rename an existing set of figures. Easel asks you to type
in the old name, suggesting the current set of figures, and then the new name. Press
ENTER at the end of each name.

It you do not specify a file name extension for the old file, Easel assumes an extension
of __grf. The new file is given the same extension as the old one, unless you also type
in an extension for the second name,

Saves alf the sets of figures currentiy in the computer's memory on a Microdrive cartridge.
You are asked to type in a name under which the figures will be saved. If you do not
specify a file name extension, Easel assumes an extension of __grf.

All the properties of the graph, eg. the bar colours and style of axes, are saved with
the figures.

You use this command to redisplay your graph, showing afl, or a selected few, of your
sets of figures. Easel suggests that all sets of figures are to be displayed and you can
either accept this suggestion, by pressing ENTER. or type in alist of the names of those
sets that you want to be displayed. You shouid separate the names in the list by commas
and end the list by pressing ENTER,

In the pie chart format Easel suggests only the name of the current set of figures. f

You type in a list of names in thig format Easel shows a Dpie chart of the first name in
the list and ignores the remaining names.

You are then offered a suggested format number for the display. You can accept the
suggested format (which is the last one you were using) by pressing ENTER, or you
can type in your own choice of format number, foillowed by ENTER,

This command erages ali text, alt sets of figures and aif user-defined objects (bars, lines
and so on). it also restores the original month labels for the cells. It does not, however
restore the original appearance of the graph formats, but leaves any changes that you
may have made,

Think of a function as a kind of recipe which converts g number of initial values, known
as the function's arguments, into a different value, which is said 1o be the value that is
returned by the function.

The functions provided by Easel take one or no arguments. The argument for a function
is placed in brackets after itg name. You must not leave a space between the name and
the opening bracket, but Spaces are allowed within the brackets. Al function names must
be followed by the brackets, even if they take no arguments. The presence of the brackets
i8 a useful reminder that you are referring to a function. They allow you to distinguish
between the name of a set of figures and a function, even if they have the same name.

The following functions are provided.

ABS(n) Returns the absolute value, that is the numerical value irrespective of
its sign, of the argument For example, abs(5) and abs(-5) both return
the value 5.

ATN(m) Returns the angle, in radians, whose tangent is n.

COS(n) Refurns the cosine of the given (radian) angle

12/84

Reference

PRINT

QUIT

RENAME

SAVE

VIEW

ZAP

FUNCTIONS

23

Reference

24

EXP(n)

INT(n)

LN(n)

Pi()
SGN(n)

SIN(n})
SQR(n)
TAN(n)

Returns the value of e (approximately 2.718) raised to the power n. The
returned value will be in error if n lies outside the range from -87 to
+88, since the result will then exceed the numeric range of Easel

Returns the integer value of the number, by truncating at the decimal
point. The truncation always operates towards smaller numbers. Thus:

int(3.7) returns 3
int(~4.8} returns -5

Returns the natural, or base e, togarithm of n. An error results if n is
negative or zero.

Returns the value of the mathematical constant .

Returns +1, -1, or 0. depending on whether the argument is positive,
negative or zerg,

Returns the value of the sine of the specified (radian) angle.
Returns the square root of the number n, which must not be negative,
Returns the tangent of the specified (radian) angle,

12/84

— | [[— |

QL

Information

©1984 PSION LIMITED
by Dick de Grandis-Harrison (Psion Limited))

A B C D
1] cashflow January February March
2 | Ssales 1000 1050 1100
3| costs 500 530 560
4 | profits 500 520 540

Abacus gnd for export

Ifthis data was imported inlo Easel, it would be interpreted as three sets of figures, called
Costs, sales and profits. Easel uses the month names as the cell name labels for the
graphs. The information would be:

cell labels January February March
sales graph 1000 1050 1100
COsSts graph 500 530 560
profits graph 500 520 540

Importad into Easal

Easel does not use the first piece of text, cashfiow. When YOou export a set of figures
from Easel it automaticaily inserts the text, labes, in this position o maintain compatibility.

It we were to import the same set of figures into Archive the resuit would be a data
file containing three records, each of which would have four fields with the field names:

Fields Record Record 2 Record 3
cashflow$ January February March
sales 1000 1050 1100
costs 500 530 560
praofits 500 520 540

Imporied intg Archive

1. When you export the contents of g grid from Abacus the section of the grigt being
exported must have text in the first cell of each fow (or each column if exporling in
column order).

row {or column). The type of this
rest of the row (or columny. Each row {or column) rust contain either all numeric
or all string data,

4. You can expart files from Abacus or Archive which contain several sets of text data,
Easel can only export a file containing one set of text data - the cell labels,

S. I you import a file containing more than one set of text data into Easel, it uses the
first as cell labels and ignores the rest.

12/84

QL PROGRAN
~IMPORT AN
EXPORT

RULES

FILE STRUCTURE

EXPORT TO QUILL

The export fite structure consists of a series of records each terminated by <CR> (ASCH
code 13) and <LF> (ASCIl code 10). The import commands will, however, accert either
of these characters or the two together, in either order. The end of file is marked by a
CTRL Z character (ASCIl code 26).

Each record consists of a series of values separaled by commas. The values are either
text (which must be enclosed in quotes) or numbers.

The first value in each record must be text and if its name ends with a dollar sign all
the following values must be text.

The export file produced by exporting the original set of example data from Abacus
is as follows:

"cashflow$","sales","costs", "profits"<LF>
"January",1000,500,500<LF>
"February'",1050,530,520<LF>
“March',1100,560,540<LF>

An expor file

An export file can be generated from SuperBASIC. The following program will generate
an export file, called example__exp, for the standard data.

100 OPEN_NEN#A,dequxampLe_exp

120 PRINT #4,'”cashfLowS“,“sales“,"costs","profits"'
130 PRINT #4,"'"January",1000,500,500"'

140 PRINT #4,'"February",1050,530,520"

150 PRINT #4,'"March",1100,560, 540"

160 PRINT #4, CHR$(26)

170 CLOSE K4

SuperBASIC will automatically add a line feed character (ASCII code 10) at the end of
each record.

QL Quili works with formatted text and so files exported to Quill must contain formatted
text rather than the normal export file structure. Quill will accept any text containing form
feeds (ASCIl code 12) and line feeds (ASCIi code 10) and the printable ASCII characters.
Line feeds are interpreted as an end of paragraph marker and form feeds as an end
of page. Any other characters in the file are ignored.

Abacus and Archive can produce special files for import by Quill. Archive can export
to Quill by producing Formatted report, produced by lprint. To export the report you
divert the printed output to a Microdrive file using the export option of the spoolon
command (See chapter 12 of the Archive Guide)

12/84

The master QL program cartridge is write protected and so cannot be put through
the printer install process. The cartridge should first be backed up and the subsequent
copy installed.

Each of the four Psion QL programs can print text on almost any make of printer that
has an RS-232-C interface.

The printer can be set to use either continuous ar single sheet paper. If using single
sheet paper the printer wil stop at the end of the sheet and a message will appear
on the display prompting for more Paper Press ENTER to continue or ESC to abandon
the document,

The printer is controlled by a special program called the printer driver, which can be
modified to use whatever printer you wish.

A non-printable character, other than a line feed and carriage return, must be preceded
by an ASCII code 0 (NULL) to indicate to the printer driver that it must be output. For

lprint chr¢O) + chr(27) + «gnt
In Abacus the same task can be performed by putting:

chr(D) + chr(27) + »gn
into a cell at the point where boid printing is to start,

Adapting QL Quill, QL Abacus and QL Archive 10 suit other printers is called installing
the sofiware and is done using the SuperBASIC install program. The install program
(install_bas), installation data for various printers (install__dat) and the installation data
for the current printer {printer__dat) are on the QL Quill and QL Abacus program
cartridges. You can use the program to install a prirter for QL Archive even though the
archive cartridge does not contain the installation program or the installation data.

The Abacus, Archive and Quill programs themselves use only the information in
printer__dat.

For example to install Quil to work with an Epson FX-80, fitted with an RS-232-C interface,
put the Quill cartridge in Microdrive 1, but do not run it. While in SuperBASIC type:

lrun mdv1_install_bas

and the installation program will run. The program requires the ‘install__dat’ to be on
the cartridge in Microdrive 1 so it shouldnt be deleted.

You must first select the Microdrive in which the printer will be instalied., In this case press
1, followed by ENTER, to install Microdrive 1. Then press ENTER 1o select a serial printer
{connected 1o the computer via serial port ser1 or ser 2).

The program then reads the installation data and displays a list of the names of printers
for which a customised driver driver is supplied.

You select a printer from the list with the up or down cursor keys until the required printer
is highlighted and then press F5 to install it. You must confirm the installation by pressing
ENTER; any other key wil cancel the installation and return to the list of printer names.

When the installation is complete you will be returned to SuperBASIC. When Quill is next
loaded it will be set up to use the printer you selected, including bold characters,
underlining, subscripts and superscripts.

You can remove a printer from the list by pressing F3, and save all the printer drivers
in the list by pressing F4. Since both of these options make irreversible changes to the
printer drive irdormation they must be confirmed by pressing ENTER.

12/84

QL
PROGRAMS
PRINTERS

PRINTER DRIVERS

INSTALL A SERIAL
PRINTER

OTHER SERIAL
PRINTERS

Do nothing

Install it

It your printer is not included in the ligt displayed by the install program you have two
options:

Leave the installation program by pressing ESC. All four programs are set up with a
simple printing facility which should be able to print ordinary text on almost any printer

Add a new name to the list of printer names. There are three ways of daing this:

1. Use the down cursor key to select the ftern called 'OTHER! Press either F1 or F2
o create a new item, ready for you o set it up for your printer

2. Select an existing printer name and press F1 to create a new printer with the same
values as the old one, Use this option if your printer is similar to a printer already
in the list,

3. Select an existing printer and press F2. This does not make a new copy, but allows
the values of an existing printer to be changed. Do not use this option unless you
are sure of the changes you intend to make,

In each case you are shown a ligt of printer parameters to alter. Press the up and down
cursor keys to select an item and the left and right cursor keys to change it

There are two types of item in the list:

— those with a variety of possible values, such as the DRIVER NAME, and END OF
LINE CODE,

- and those with a limited range of values, such as the PARITY
The values of each type are changed in different ways. The diagram below shows the

values given to the DEFAULT printer At the right of the diagram are other possible values
(for those with limited range).

Default Other options
DRIVER NAME . DEFAULT
PORT : serd " ser2
BAUD RATE : 8600 75, 300, 600, 1200, 2400, 4800
FARITY : NONE SPACE, MARK, ODD, EVEN
LINES/PAGE . B6 0 to 255
CHARACTERS/LINE - 80 0 to 255
CONTINUQUS FORMS - YES NO
END OF LINE CODE : CR, LF
PREAMBLE CODE - NONE
POSTAMBLE CODE . NONE
BOLD ON - NONE
BOLD OFF - NONE
UNDERLINE ON - NONE
UNDERLINE OFF : NONE
SUBSCRIPT ON : NONE
SUBSCRIPT OFF : NONE
SUPERSCRIPT ON - NONE
SUPERSCRIPT OFF : NONE
TRANSLATE® : NONE
TRANSLATEZ : NONE
TRANSLATE3 : NONE
TRANSLATE4 : NONE
TRANSLATES : NONE
TRANSLATES - NONE
TRANSLATE? : NONE
TRANSLATES : NONE
TRANSLATES . NONE
TRANSLATE1Q : NONE

For each of the items that has a limited number of options, the value changes each
time the left or the right cursor key is pressed.

12/84

For the other items pressing one of these cursor keys erases the existing value; you
then type in your own value and press ENTER. All these iterns, except for the DRIVER
NAME, will accept lists of up 1o ten codes separted by commas. Each code can be
typed in several ways:

A number between 0 and 255

A hexadecimal number. preceded by a dollar sign, between $0 and 3FF
Any single character preceded by a quote symbol (* or ')

A standard ASCIl contral code mnemonic, in upper or lower case:

NUL SOH sTX ETX EOT ENQ ACK BEL
BS HT IF VT FF CR S0 Sl
DLE DC1 DC2 DC3 DC4 NaAK SYN ETB
CAN EM SUB ESC Fs GS RS us

5 The text DEF (or defy causes the printer to use a default action making the printer
backspace to produce the desired effect It should only be used for emphasis
and underlining. These items must be set in pairs, for example, if UNDERLINE
ON s set to DEF then so must UNDERLINE OFF The printer must be able to

respond to the ASC backspace code,

Alternatively you may just press ENTER 1o select NONE. You are free io mix the different
methods in any way you choose.

Ry N

the name you want and press ENTER.
The PORT is either serl or ser? and selects one of the two standards serial ports,

The BAUD RATE determines the speed at which characters are via a serial interface,
interms of the number of bits that are transmitted per second. 110 baud is approximately
equivalent to 10 characters per second, 300 baud to 30 characters per second, and
S0 on. The baud rate of the printer driver must match that of the serial interface of your
printer,

The PARITY item depends on the way your printer handles the most significant bit (binary
digit) in the data sent from the_- computer. All ASCII codes lie between 0 and 127 and

as graphics or as accented characters. Your printer may interpret the eighth bit of an
8-bit code as a Larity bit, used to check if there has been an error during transmission
of & character Your printer may use EVEN parity (the parity bit is set to 0 or 1, s0 that
the total number of 1s in each character code is even) or ODD parity (the total number
of s is odd). If your printer does not check the parity you can select SPACE {the eighth
bit is atways 0) or MARK {the gight bit is always 1). A setting of NONE allows the full
eight bits to be sent o the printer.

LINES/PAGE and CHARACTERS/LINE specify the maximum number of lines of text
{including the blank lines if You are printing double — or triple — spaced text) on each
page, and the maximum number of characters on any one line. The values used in
the printer drivers supplied are suitable for uge with A4 stationery.

CONTINUOUS FORMS specifies whether your printer uses continuous stationery (YES)
Or separate sheets (NO). if You are printing on single sheets of paper, the printer will
stop at the end of each page. A message appears on the screen, asking you to insert
a fresh sheat of Paper. Press ENTER 1o start printing again, or press ESC to abort the
print out,

the end of a line, Most printers will accept a carriage return followed by a line feed,
Select a line fead as the end of line marker if you want to print a SuperBASIC program
to a file.

12/84

The BOLD ON and OFF iterns contain the codes to turn bold {emphasised) printing
on and off. If your printer cannct print emphasised characters you can use the DEF
value, described earlier, provided the printer will respond to a backspace character

UNDERLINE ON and OFF 1urn undertining on and off, provided your printer has an
automatic undertining facility. If your printer cannot print underfined characters you can
use the DEF value, described earlier, provided the printer will fespond to a backspace
character,

Use the SUBSCRIPT ON/OFF and SUPERSCRIPT ON/OFF items for the sequence of
codes needed by your printer to turn subscript and superscript printing on and off.

Each of TRANSLATET to TRANSLATE 0 accepts up to ten characters. The first character
specified is translated into the following sequence of characters before being sent 1o
the printer. The first character must not be a cantrol character (its ASCII code must be
in the range 32 to 255). The translation can contain any character The result must appear
as a single character when printed.

As an example, let us create a second printer driver for the Epson FX-80. Start by loading
and running the installation program from SuperBASIC. Select the driver named OTHER
and press either F1 or F2. The initial values displayed are listed below, the column at
the right showing the values needed for the FX-80: :

Default Other options
DRIVER NAME : OTHER

PORT . serl . ser2
BAUD RATE : 9600 1 9600
PARITY - NONE - NONE
LINES/PAGE 66 : BB
CHARACTERS/LINE : 80 . 80
CONTINUOUS FORMS : NO - YES
END OF LINE COBE :CR, LF :CR, LF
PREAMBLE CODE - NONE . D esc,@,ESCRNUL
POSTAMBLE CODE - NONE : NONE
EMPHASIZE ON : NONE : ESCE
EMPHASIZE OFF : NONE : ESCF
UNDERLINE ON : NONE :ESC - 1
UNDERLINE OFF - NONE CESC -0
SUBSCRIPT ON : NONE t ESCS 1
SUBSCRIPT OFF : NONE - ESCT
SUPERSCRIPT ON : NONE : ESCS0
SUPERSCRIFT OFF : NONE - ESCT
TRANSLATEY : NONE : E,ESC,R,ETX,#,ESC,R,NULL
TRANSLATER - NONE . NONE
TRANSLATE3 - NONE - NONE
TRANSLATE4 : NONE : NONE
TRANSLATES - NONE - NONE
TRANSLATES - NONE : NONE
TRANSLATE7 : NONE : NONE
TRANSLATES : NONE - NONE
TRANSLATEG - NONE - NONE

TRANSLATE10 - NONE - NONE

First change the driver name, press the right cursor key to erase the existing text, and type

FX-80

If you make a mistake You can repeat the process.

Press the down curser key until the CONTINUOUS FORMS entry is highlighted. There
are only two options; select YES by pressing the right or left cursor key.

A suitable PREAMBLE sequence for the Epson FX-80 is ESC which initialises the printer
and clears its print buffer The printer should also be set 1o use the American character
set (to print both the hash symbol, #, and the pound sign — see later). The FX-80
code to do this is ESC R NUL.

12/84

Use the cursor keys 1o select the PREAMBLE and press the right (or left) cursor key
to erase the current value, The following three options all produce the same result and
initialise the printer;

ESC,"d,ESC, "R, NUL

27,64,27,82,0
$1B,$40,$1B,$52,$U

You could use this item 1o set other printer properties, such as the line spacing or italic
characters. If your printer doesn't require any initialisation then You can leave the initial
sefting at NONE.

The FX-80 doesnt need a POSTAMBLE s0 the setting can be kept at NONE.
EMPHASIZE ON and EMPHASIZE OFF codes for the Epson FX-80 are ESC E and
ESCF fespectively. You can set them by typing:

esc,""E
esc,"F

The remaining codes can be set by typing:

]
A

tern You type
UNDERLINE ON esc,''—,m

OFF esc,"-,"p
o 7
SUBSCRIPT ON esc,"s,m

OFF esc,"T
e A
SUPERSCRIFT ON

esc,'Ss,"Q

OFF esc,"T
\
TRANSEATE®

E,esc,R,ETX,#,ESC,R,NUL

In the above exarnple TRANSLATE 1 enables the Epson FX-80 to print a pound sign,
which is only available in the English chracter set, The QL pound sign is translated to:

Switch to the English character set
print a hash symbol {(which appears as a pound sign)
switch back to the American chracter set

When you have finished ediling the printer codes You can install the printer by pressing
F5. Alternatively you can return to the list of printers, ready to make made changes.

Put a QL Quill or QL Abacus cartridge in Microdrive 1 and a QL Archive cartridge in INSTALL FOH
Microdrive 2. Load and run install__bas from Microdrive 1 but then press 2, followed OL ARCHNE
by ENTER, to indicate that you want to install g printer to Microdrive 2

Follow the installation procedure as normal, The instaflation data will be read from
Microdrive 1 but the printer will be installed to the cartridge in Microdrive 2.

The installation program allows the instafiation of g printer connected to the QL via ports PARALLEL
other than ser1 or ser2. You would use this option if, for example, you have added an PR,NTERS
optional paraiie! interface. Load and run instali__bas as described earlier. After you have
selected installation to Microdrive 1 or 2, press the space bar to select the parallel port

The list of printers appears as before but when You press F1 or F2 the list of parameters
appears as shown in the following table,

12/84

THE CONVERT
UTILITY

Default Other options

DRIVER NAME - - DEFAULT

PORT - NONE
LINES/PAGE . 66 0 to 255
CHARACTERS/LINE : 80 0 to 255
CONTINUQUS FORMS D YES NO
END OF LINE CODE . CR, LF
PREAMBLE CODE - NONE
POSTAMBLE CODE : NONE
EMPHASIZE ON . NONE
EMPHASIZE OFF - NONE
UNDERLINE ON : NONE
UNDERLINE OFF - NONE
SUBSCRIPT ON : NONE
SUBSCRIPT OFF : NONE
SUPERSCRIPT ON : NONE
SUPERSCRIPT OFF : NONE
TRANSLATED - NONE
TRANSLATE2 : NONE
TRANSLATES . NONE
TRANSLATE4 : NONE
TRANSLATES : NONE
TRANSLATE®G - NONE
TRANSLATE? : NONE
TRANSLATES : NONE
TRANSLATES - NONE
TRANSLATE10 - NONE

You are not given the option to select the baud rate or parity since they are only relevant
for a serial interface via sert or ser2. The PORT section is also different. Change this
item by pressing either the feft or right cursor key and then typing any valid device name,
of up to sixteen characters. Refer to the Devices section of QL Concepts, or the manual
accompanying an add on interface.

Apart from these differences, the remainder of the installation is exactly the same as
described for a serial interface.

Version 2.0 of the install__bas program has been medified to offer a wide range of prirter
options. This means that it is not compatible with instali__dat files created with version
1. A conversion program, convert__bas, is supplied to convert version 1 install__dat
files so that they are readable by the version 2.0 installation program,

First copy convert__bas to another cartridge. Put the cartridge containing the copy of
convert__bas in Micradrive 1 and a cartridge containing your version 1 install__dat file
in Microdrive 2. Run the program by typing:

Lrun mdv1_convert bas

The program reads the install__dat fle in Microdrive 2 and writes the new version to
Micredrive 1. Note that the new version will replace any instali__dat file on this cartridge.
You can then, if necessary, copy the new install__dat file to another cartridge.

12/84

The program config__bas allows you to specify alternative default devices for the QL
programs and to modify the sort order in the Order commands of Abacus and Archive.

As supplied. the programs expect 1o use Microdrive 2 for storing data, and Help
information and the instailed printer driver are on Microdrive 1. You may wish to modify
these to make use of additional Microdrives, disk drives, and so on.

You may also wish to modify the order in which Archive records, or rows of an Abacus
grid are sorted. This might be useful, for example, if you want to sort text which includes
accented characters from a foreign language.

You can run config__bas from any Microdrive, and modify a QL program on a cartridge
in either Microdrive 1 or Microdrive 2. Suppose you want to run config__bas from
Microdrive 2 to modify a copy of a QL program in Microdrive 1. Run the program by
typing:

lrun mdv2_config_bas

When prompted, type the name of the program you want to modify (Quill, Abacus, Easel
or Archive) and press ENTER. Then enter the value 1 when asked which drive contains
the program.

The program waits for you 1o press the space bar after you have made sure that the
program cartridge is in the correct Microdrive. When you have done so the program
shows you the main menu of options which are:

Select new default devices
Modify the sort order
Leave the program

To select the option to modify the sort order press ENTER. When prompted press the
space bar

The largest area of the screen shows a block of 256 characters which define the sort
order. The position in the biock, reading from left to right and top to bottom, determines
the character being sorted; the contents at that position shows how the character will
be tested by the Order command. The sight hand side of the screen shows more
information about the character marked by the cursor. Move the cursor from character
to character with the cursor keys.

The block of characters at the bottom of the screen is used for modifying the order
It also has a cursor, which you mave with SHIFT and the cursor keys. This block only
shows half of the full set of characters — press F1 to switch between the two halves.

The best way of describing how to medity the sort order is by means of examples. As
supplied, the lower case characters will be sorted to come after all the upper case ones,
that is, “a” will come after 'Z". Suppose you want to make the order independent of
upper or lower case so that, for example, "A” and “a" are not distinguished.

To make "2" be sorted as though it were "A", move the cursor in the main block of
characters 1o the letter “a” and press the "A” key (make sure you type an upper case
character). The 'a" in the upper block changes to "A” and the information on the right
of the screen shows that the character "a” will now be regarded as equivalent to "A’
for the purpose of sorting.

Repeat this process for each lower case letter, making "b” equivalent to "B”, " to C",
and sc on.

An alternative way of changing a character is to move the cursor in the lower block of
characters, using SHIFT and the cursor keys, until it marks the character you require
and then press F2. This method is particiiarly useful for the characters, such as foreign
accented characlers, that are not marked on the keys. Tnis method is used in the following
example.

Suppose you want to reverse the normal sort order for the upper case letters, leaving
the rest of the ordering unchanged. To do this you must change the part of the main
block that reads A B C ... X Y Z" sothatitreads “ZY X ... C B A”. Move the main
cursor to "A" and the lower cursor to “Z" and press F2 to enter the new character The
character “A" will then scrt as though it were “Z" . Repeat this for each upper case letter,
changing "B" to *Y", "C" to "X", and so on.

12184

QL PROGRAM
~ CONFIG

USING CONFIG

Sort Order

Device Selection

When you have completed specifying the sort order, press F5 o save the new order
in the QL program, replacing the old one. Press ESC lo return to the main menu,

As supplied, the QL programs use Microdrive 1 for system information (the installed printer
driver, for example) and for Help. They all use Microdrive 2 for their data.

From the main menuy press the space bar to choose new default devices. Press the
space bar again when prompted.

After reading the current settings from your program cartridge, the program shows you
these values and waits for you to type in your new choices, Press ENTER to keep an
old vaiue, or type in Your new selection and press ENTER.

Having rmade your selection You may save your new devices, reselect the devices or
cance! this option and return to the main menu.

If you save your device selection, the QL program will use these devices until you use
config__bas to change them again.

12/84

QL PROGRAM
Except for Easel the valid range for numbers in the QL programs is: | ARITHMETIC

T 29%10% 1o + 17x1038

All calculations are accurate to sixteen significant digits but only a maximum of fourteen
characters can be displayed.

In easel the range of valid numbers is
+ 10-%1t0 + 10 x 10+

The foltowing arithmetic operators are provided in Abacus, Archive and Easel:

Operator Function

+ Addition on numbers or
concatenation on strings

Subtraction

Muttiplication

Division

Raise to a power

Equal

Greater than

Lesser than

Lesser than or equal to

Greater than or equal to

<> Not equal to

e *

i1

VAAV I

There is no automatic coercion between data types. Therefore, operands must be of
the same type. The result is always a number, 1 i the comparison is true and 0 if it s false,

Functions and operators have the following precedence:

Operation Precedence
Subscripting and slicing 12
All functions il
~ 10
Unary minus 9
*,/ 8
+, - 6
=2,<,<=,>=, <> 5§
not 4
and 3
or 2

12/84 N

FORMAT
PROCEDURE

BACKUP
PROCEDURE

12

Formatting a cartridge will result in overwriting any data that was previously stored on
the cartridge. This data cannot be recovered so ensure that you only farmat blank
carridges or cartridges that have no usefu! information on them.

Fust decide on a name for the cartridge, using not more than ten characters. With the
QL switched on and displaying the flashing cursor, place the cartridge to be formatted
in Microdrive 1. Let us assume that the cartridge name is to be data’. Then type

FORMAT mdv1_data

Do not confuse the underscare symbal (__) with the minus sign (=), since they are on
the same key. The underscore symbaol is the upper one and so SHIFT must be held
down while the key is pressed.

Press ENTER and the left hand Microdrive light wilt glow far about thirty seconds. The
QL will output a message on the screen indicating how much space is available on
that cartridge. The FORMAT command is described in full in the Keywords section.

It is good practice to format a new cartridge several times. This will help the tape to
run smoothly and may result in a greater capacity.

The cartridge could equally well have been formatted in Microdrive 2 by substituting
mdv2__ for mdvi__.

A backup is made by copying alt the files contained on the cartridge to be backed up
onto & blank cartridge. Preferably the biank cartridge wili be newly formatted and named
to reflect that it is a backup. ‘

Choose a blank cartridge or a cartridge that holds no useful information and place it
in Microdrive 1. Decide on a name for the cartridge, for example, if the name of the
cartridge to be backed up is ‘QL__data’ then ‘QL__data__bak’ would be a gocd name
for the backup cartridge. Then type:

FORMAT mdv1_data bak
followed by ENTER. The left hand Microdrive light will glow for about thitty seconds,
Place the cartridge to be backed up into Microdrive 2 and type
DIR mdve
this will list all the files contained on this cartridge.
For each file lsted type:
COPY mdv2_filename TO mdv1_filename

substituting the relevant file names where marked. This command will copy each specified
file fram Microdrive 2 to Microdrive 1. The speed of this operation depends on the sizes
of the files being copied: the operation could take some time.

Repeat the COPY command for each of the listed files. When complete, the backup
cartridge (the one in Microdrive 2) should be marked with the data and the name of
the cartridge for which it is a backup and then put in a safe place.

Normally for each cartridge that you work with and which contains data you may have
one, two, or more backup cartridges depending on how important the data is. If you
use this system then always backup onto the dldest backup cartridge in the set.

12184

QL Users

You may find that you would like some assistance in using and getting the most out Bl.ll'eau
of your four supplied QL programs. The QL Users Bureau (QLUB) has been founded
to enable you to do just this and keep you in touch with developments on the QL.

Membership is only available to QL owners and entitles you to a number of benefits:

® Regular newsletters will be published giving technical information and tps.
Information will be given on new software and peripherals with an cpportunity to
buy new products in advance of the general public.

¢ Sinclair Research has made arrangements for QLUB members to obtain software
assistance from PSION. [f you have any gueries concerning the use or application
of QL Abacus, Archive, Quill or Easel, all you have to do is write to PSION direct
using a QLUB Query Form and quoting your membership number. PSION wil
usually reply within 48 hours.

e

When updates to the four QL programs (QL Abacus, Archive, Quill and Easel)
are issued they will be offered to QLUB members at special discount prices.

® Membership of the QLUB is FREE and for LIFE.

To join the QLUB please fil in the registration form in the information section of your
QL User Guide.

Psion can assist members solely on the QL programs supplied with your QL. QL software
which you buy subsequently wil, where appropriate, offer separate service and update
arrangements.

If you feel you need help in using the QU itself, rather than the QL programs, piease
refer first to the relevant section(s) in your QL User Guide. Numerous publishers are selling
books about all kinds of different aspects of the QL. You may find these not only helpful
but also very interesting.

Companies independent of Sinclair Research are offering QL. user courses and symposia
and we are encouraging such developments. We will keep all members informed of
such activities through the newsietter

ORDER FORM

Quantity Unit Price Code Total
Monitor lead (2 metre)* 795 6030
RS-232-C lead (2 metre) 1495 6040
Joystick adaptor 595 6060
SUB TOTAL
POST AND PACKING - Orders under £90 295 0028
£90 to £390 485 0029
over £390 795 6999
TOTAL |

Please tick box if VAT receipt required:

* I enclose a chegue/postal order payable to Sinclair Research for £

* Please charge my Access/Barclaycard/
Trustcard account number

please delete as applicable

Signature:

PLEASE PRINT
Mr/Mrs/Miss

Address:

Please send this form and your remittance (if paying by chegue or postal order) to:

Sinclair Research Limited
FREEPQOST, Camberley, SURREY. GU15 3PS
Telephone: Camberiey (0276) 685311

Please allow up to 28 days for delivery

Your Sinclair Q. is covered by a 12 month comprehensive guarantee valid in the UK
only and effective from the date of dispatch. It is not transferable. The guarantee is
invalidated if the product is opened, modified, repaired or tampered with by any party
other than Sinclair Research Limited or their agents. This guarantee does not affect your
statutory nghts.

A guarantee card is enclosed with your QL. Please read it straight away if you have
not already done so.

If you have a problem then it may not be immediately clear whether this s caused by
the QL itselt or one of the QL program carlridges.

Please follow the instructions below.
none of the four software cartridges witl toad

your QL is probably faulty.

all the software packages run successfully but ail display a similar fault when running

your QL is probably faulty. If you believe your QL to be taulty, please take your complete
QL package (including the QL programs) in its original polystyrene box back to the shop
from which you originally purchased it, together with your proof of purchase.

If you bought the QL by mail order from Sinclair Research Limited then please send
the QL package to:

Sinclair Research Limited,
Stanhope Road, Camberiey,
Surrey, GU15 3BR

Please use recorded delivery or registered post and keep proof of postage. Please
send with the package a letter indicating your present address (and your old address
if you have moved since ordering the QL), and giving any details you can about the
nature of the fault which it has developed.

If your QL is faulty it will be repaired or replaced at Sinclair's option, free of charge within
the guarantee period.

one or more of the software packages fails to foad, but at least one cartridge loads anc
runs successiully
the carlridges which you have are probably faulty, and not the QL. Whether you bought
the QL from a shop or by mail order from Sinclair Research Limited please return the
faulty QL program cartridge(s) in its protective case to

Sinclair Research Limited,

Stanhope Road, Camberley,
Surrey, GU15 3BR

GUARANTEE

THEN
OR

THEN

THEN

